冠心病复杂冠脉病变研究进展
Research Progress of Complex Coronary Artery Disease in Coronary Heart Disease
DOI: 10.12677/acm.2024.1482350, PDF, HTML, XML,   
作者: 白 喆:延安大学附属医院心内科,陕西 延安
关键词: 冠心病冠脉复杂病变OCTIVUSFFRCoronary Heart Disease Complex Coronary Artery Disease OCT IVUS FFR
摘要: 复杂冠脉病变是冠心病中的一大挑战,其多样的病变形式和复杂的解剖特征增加了诊断和治疗的难度。近年来,随着医疗技术的突飞猛进,新器械及新技术的出现为这类患者诊疗提供了更多保障。在复杂冠脉病变的治疗中,腔内影像学与功能学评估是建立在冠脉造影基础上的可靠技术,能够弥补冠脉造影的不足,为术者提供更为准确和全面的信息。这些先进评估技术有助于指导血运重建策略的制定,减少不良心血管事件的发生,从而改善患者的预后。
Abstract: Complex coronary artery disease is a major challenge in coronary heart disease. Its diverse forms of lesions and complex anatomical features increase the difficulty of diagnosis and treatment. In recent years, with the rapid development of medical technology, the emergence of new instruments and new technologies has provided more guarantees for the diagnosis and treatment of such patients. In the treatment of complex coronary artery disease, endovascular imaging and functional evaluation is a reliable technique based on coronary angiography, which can make up for the deficiency of coronary angiography and provide more accurate and comprehensive information for the surgeon. These advanced evaluation techniques can help guide the formulation of revascularization strategies, reduce the occurrence of adverse cardiovascular events, and improve the prognosis of patients.
文章引用:白喆. 冠心病复杂冠脉病变研究进展[J]. 临床医学进展, 2024, 14(8): 1277-1281. https://doi.org/10.12677/acm.2024.1482350

1. 引言

冠心病是指冠状动脉发生粥样硬化引起管腔狭窄或闭塞,导致心肌缺血缺氧或坏死引起的心脏病,简称冠心病,也称缺血性心脏病(Ischemic heart disease, IHD) [1]。复杂冠状动脉病变是冠心病中较为严重的类型之一,通常伴有多种解剖和病理特征,主要包括左主干病变(LMCA)、多支血管病变(MVD)、慢性闭塞性病变(CTO)、弥漫性长病变以及分叉病变等。研究证实,冠脉病变复杂程度越高,支架血栓发生风险及心血管事件风险越高[2]。因为这些种种因素,导致复杂冠脉病变的治疗难度和风险极高。本文针对复杂冠脉病变的现状与进展作一综述。以期为复杂冠脉病变的临床诊治提供新思路。

2. 定义及血运重建的风险评估

复杂性冠状动脉病变被定义为:(1) 真分叉病变(Medina:1.1.1)并且分支血管直径 > 2.5 mm;(2) 慢性完全闭塞(CTO);(3) 无保护的左主干病变;(4) 长病变,预期支架长度 > 38 mm;(5) 多支病变(至少2支冠脉需要介入治疗);(6) 需要使用多个支架(计划>3个支架);(7) 支架内再狭窄的病变;(8) 严重钙化病变;(9) 冠脉开口病变[3]

长久以来,对于复杂冠状动脉病变,风险评估应该是一个综合的过程(综合患者的临床特点、功能检查及冠脉解剖等情况),个体化地评估风险与获益,确定治疗策略,包括冠脉血运重建(CABG与PCI)或指南指导的药物治疗(guideline-directed medical therapy, GDMT)。而选择冠状动脉旁路移植术(coronary artery bypass grafting, CABG)还是经皮冠状动脉介入治疗(percutaneous coronary intervention, PCI)一直是争论的焦点,目前临床上已经有多个冠脉血运重建风险评估模型,包括:EuroSCOREII评分系统、STS评分、SYNTAXII评分、SinoSCORE、NCDRCathPCI,然而,这些风险模型都存在局限性[4] [5]

2016年的美国ACC/AHA指南[6]建议应用SYNTAXII评分(the SYNTAX Score II, SS II)对多支冠脉病变和无保护性左主干进行危险分层。在SYNTAXII评分的发展阶段,其包含了解剖SYNTAX评分与ACEF评分相结合以及大量的CABG及PCI术后的长期预后信息。Carlos等通过验证了来自CREDO-Kyoto中心注册的3896例患者,结论得出,与SYNTAX评分相比,SYNTAXII评分有更强的预后准确性,Banning AP等[7]研究也支持这一结论,SS II对4年全因死亡率的预测价值优于SS。故此,SYNTAX系列评分的出现,在指导复杂冠状动脉病变治疗策略上发挥了重要作用。

3. 腔内影像学与功能学评估

复杂冠脉病变的诊断需要多种影像学技术来全面评估冠状动脉的病变程度和特征,虽然冠状动脉造影仍是冠心病诊断的金标准。但随着科技水平的不断革新,目前,冠脉内显像技术,如血管内超声(Intravascular Ultrasound, IVUS)和光学相干断层扫描(Optical Coherence Tomography, OCT)已广泛应用于冠心病临床介入诊疗中,尤其是在指导复杂冠脉病变的血运重建方面具有特殊的意义。IVUS和OCT通过冠状动脉内成像可提供比冠脉造影更有价值的信息,因此可用于临床优化支架植入和降低支架相关并发症[8]

3.1. 光学相干断层扫描(OCT)

光学相干断层扫描(OCT)是一种高分辨率(10~20 μm)的基于光的血管内成像模式,具有高帧率采集和非常高速的回撤,可以在几秒钟内询问目标血管,并立即显示原始的纵向管腔轮廓,自动检测病变严重程度、部位和管腔/支架面积。此外,OCT提供了钙位点的关键信息,可以准确测量与管腔的最小距离,这是支架/支架膨胀不足、贴壁不良和偏心率的主要决定因素[9]。20 μm的高轴向分辨率使其能够识别血管中的微小细节,使血管走形及管壁微结构的可视化程度达到前所未有的水平,目前在指导冠脉支架植入方面的应用逐渐广泛[10]。Kala等将[11] 201例STEMI患者随机分为单独的经皮冠状动脉介入术(PCI)和OCT下PCI组,所有患者均接受了9个月随访,没有发现与OCT相关的并发症,使用OCT优化了1/3患者的支架部署,并在9个月的随访中显著减少了节段内狭窄面积,但OCT终点的这种改善是否会对后期临床结果产生积极影响,仍需要进行更大规模、更长期的随访研究。CLI-OPCIII研究表明,不符合OCT定义的最佳支架植入与主要不良心血管事件(MACE)风险增加有关[12]。然而OCT也有其缺点,OCT的组织穿透性较差,尤其是在富含脂质的组织中。OCT在评估弥漫性病变的斑块负荷和血管腔内径方面有一定局限性,这些病变更需要结合应用IVUS来指导支架的选择[13]

3.2. 血管内超声(IVUS)

血管内超声(Intravascular Ultrasound, IVUS)是一种指导心血管介入的重要技术,主要是利用超声波成像原理,通过对冠脉血管横截面显示,从而观察冠脉病变的形态,明确斑块负荷及血管直径和面积,指导支架尺寸,评估支架置入效果。IVUS的缺点是分辨率不高,不能准确预测粥样硬化斑块的组织成分[14]。与冠脉造影相比,IVUS能够识别钙化斑块,测定斑块负荷及最小管腔面积(minimum lumen area, MLA),以便指导血运重建策略[15]。2022年HANNAN等[16]一项大型多中心研究发现,对于复杂病变,IVUS指导下PCI相比单纯CAG指导下PCI降低了11%的心血管全因死亡率。由此可见,IVUS对降低CHD患者PCI术后死亡率并改善预后具有重要意义。对于CTO病变、弥漫病变、左主干开口病变和肾功能不全患者(减少造影剂用量)的PCI时,IVUS应作为首选;但这并不意味着IVUS在各方面都优于OCT,一项随机试验[17]表明,OCT指导下PCI的疗效并不劣于IVUS指导下PCI。Kang D Y等[18]人通过前瞻性的研究2008例随机分组的复杂冠脉病变患者,得出在复杂冠状动脉病变患者中,OCT引导的PCI与IVUS引导的PCI相比,心脏原因、靶血管相关心肌梗死或靶血管血运重建的原发性复合事件风险相似的结论,也佐证了上述观点。

4. 有创冠脉生理学评估方法

临床实践中,IVUS或OCT只能对冠脉病变进行解剖学评估,无法客观准确地评价病变与缺血心肌之间的关系[19]。目前指南[20]公认的有创冠脉生理学评价指标为血流储备分数(fractional flow reserve, FFR),已将FFR列为指导PCI Ia类推荐。国内通过回顾性队列研究[21]表明,在当代临床实践中,与血管造影引导下的PCI相比,FFR引导下的PCI与支架使用减少、临床结果改善和成本降低有关。2016 FFR临床应用专家共识[22]指出:对于复杂多支冠脉病变,推荐测量全部和/或冠脉病变的FFR,以指导血运重建的策略。

5. 新型治疗手段

近年来,复杂冠脉病变的手术治疗在过去几年中取得了显著进展。介入治疗方面,为了消除永久性金属假体支架滞留所产生的不良影响,近年来以生物可吸收支架(bioresorbable scaffold, BRS)和药物涂层球囊(drug coated balloon, DCB)代表“介入无植入”新理念应运而生[23],未来可能助力于改善复杂冠脉病变介入治疗的僵局。复杂冠脉病变中的严重钙化病变是介入治疗的难点,近年来冠状动脉旋磨术(rotational atherectomy, RA)及准分子激光冠状动脉斑块消融术(excimer laser coronary atherectomy, ELCA)等新技术的应用也大大提高了治疗效果[24]。旋磨术是通过选择性地祛除钙化或纤维化的动脉硬化斑块,从技术原理角度来看,旋磨是严重钙化病变最佳选择,但对于旋磨操作困难的病变,可尝试准分子激光冠状动脉斑块消融术(ELCA)或激光预处理+旋磨策略(RASER技术),些新技术的诞生提高了治疗效果和安全性。

外科手术方面,微创CABG和机器人辅助手术的应用减少了手术创伤,改善了术后恢复。对于某些复杂冠脉病变患者,结合PCI和CABG的混合手术方式成为一种新的选择未来,但需要充分的随机试验来评估其的疗效和成本效益[25]。随着技术和药物的进一步发展,复杂冠脉病变的治疗效果有望继续提高。

6. 总结与展望

复杂冠脉病变是冠心病中的一大挑战,其多样的病变形式和复杂的解剖特征增加了诊断和治疗的难度。其诊断依赖于多种影像学技术的综合应用,以提供全面、详细的冠状动脉评估。这些技术各有优缺点,应根据患者的具体情况和临床需求选择合适的诊断方法,再结合影像学检查结果,制定个体化的治疗策略,有助于提高治疗效果和改善患者预后。

参考文献

[1] 葛均波, 徐永健, 王辰. 内科学[M]. 第9版. 北京: 人民卫生出版社, 2018: 150-261+725-786.
[2] Levine, G.N., Bates, E.R., Blankenship, J.C., et al. (2011) 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Journal of the American College of Cardiology, 58, e44-e122.
[3] Lee, J.M., Choi, K.H., Song, Y.B., Lee, J., Lee, S., Lee, S.Y., et al. (2023) Intravascular Imaging-Guided or Angiography-Guided Complex PCI. New England Journal of Medicine, 388, 1668-1679.
https://doi.org/10.1056/nejmoa2216607
[4] Henriques, J.P.S., Claessen, B.E., Dangas, G.D., Kirtane, A.J., Popma, J.J., Massaro, J.M., et al. (2015) Performance of Currently Available Risk Models in a Cohort of Mechanically Supported High-Risk Percutaneous Coronary Intervention—From the PROTECT II Randomized Trial. International Journal of Cardiology, 189, 272-278.
https://doi.org/10.1016/j.ijcard.2015.04.084
[5] Shan, L., Ge, W., Pu, Y., Cheng, H., Cang, Z., Zhang, X., et al. (2018) Assessment of Three Risk Evaluation Systems for Patients Aged ≥70 in East China: Performance of Sinoscore, Euroscore II and the STS Risk Evaluation System. Peer J, 6, e4413.
https://doi.org/10.7717/peerj.4413
[6] Patel, M.R., Calhoon, J.H., Dehmer, G.J., et al. (2017) ACC/AATS/AHA/ASE/ASNC/SCAI/SCCT. Journal of the American College of Cardiology, 69, 2212-2241.
[7] Banning, A.P., Serruys, P., De Maria, G.L., Ryan, N., Walsh, S., Gonzalo, N., et al. (2021) Five-Year Outcomes after State-of-the-Art Percutaneous Coronary Revascularization in Patients with de Novo Three-Vessel Disease: Final Results of the SYNTAX II Study. European Heart Journal, 43, 1307-1316.
https://doi.org/10.1093/eurheartj/ehab703
[8] Koskinas, K.C., Ughi, G.J., Windecker, S., Tearney, G.J. and Räber, L. (2015) Intracoronary Imaging of Coronary Atherosclerosis: Validation for Diagnosis, Prognosis and Treatment. European Heart Journal, 37, 524-535.
https://doi.org/10.1093/eurheartj/ehv642
[9] Shimamura, K. and Guagliumi, G. (2016) Optical Coherence Tomography for Online Guidance of Complex Coronary Interventions. Circulation Journal, 80, 2063-2072.
https://doi.org/10.1253/circj.cj-16-0846
[10] Araki, M., Park, S., Dauerman, H.L., Uemura, S., Kim, J., Di Mario, C., et al. (2022) Optical Coherence Tomography in Coronary Atherosclerosis Assessment and Intervention. Nature Reviews Cardiology, 19, 684-703.
https://doi.org/10.1038/s41569-022-00687-9
[11] Kala, P., Cervinka, P., Jakl, M., Kanovsky, J., Kupec, A., Spacek, R., et al. (2018) OCT Guidance during Stent Implantation in Primary PCI: A Randomized Multicenter Study with Nine Months of Optical Coherence Tomography Follow-Up. International Journal of Cardiology, 250, 98-103.
https://doi.org/10.1016/j.ijcard.2017.10.059
[12] Prati, F., Romagnoli, E., Burzotta, F., Limbruno, U., Gatto, L., La Manna, A., et al. (2015) Clinical Impact of OCT Findings during PCI. JACC: Cardiovascular Imaging, 8, 1297-1305.
https://doi.org/10.1016/j.jcmg.2015.08.013
[13] 赵祖亮, 杨承健, 叶新和. 光学相干断层扫描在冠状动脉粥样硬化性心脏病介入中的应用[J]. 国际心血管病杂志, 2020, 47(4): 225-229.
[14] Bangalore, S. and Bhatt, D.L. (2013) Coronary Intravascular Ultrasound. Circulation, 127, e868-e874.
https://doi.org/10.1161/circulationaha.113.003534
[15] Mintz, G.S., Garcia-Garcia, H.M., Nicholls, S.J., et al. (2011) Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Regression/Progression Studies. EuroIntervention, 6, 1123-1130.
[16] Hannan, E.L., Zhong, Y., Reddy, P., Jacobs, A.K., Ling, F.S.K., King III, S.B., et al. (2022) Percutaneous Coronary Intervention with and without Intravascular Ultrasound for Patients with Complex Lesions: Utilization, Mortality, and Target Vessel Revascularization. Circulation: Cardiovascular Interventions, 15, e011687.
https://doi.org/10.1161/circinterventions.121.011687
[17] Chamié, D., Costa, J.R., Damiani, L.P., Siqueira, D., Braga, S., Costa, R., et al. (2021) Optical Coherence Tomography versus Intravascular Ultrasound and Angiography to Guide Percutaneous Coronary Interventions: The iSIGHT Randomized Trial. Circulation: Cardiovascular Interventions, 14, e009452.
https://doi.org/10.1161/circinterventions.120.009452
[18] Kang, D., Ahn, J., Yun, S., Hur, S., Cho, Y., Lee, C.H., et al. (2024) Guiding Intervention for Complex Coronary Lesions by Optical Coherence Tomography or Intravascular Ultrasound. Journal of the American College of Cardiology, 83, 401-413.
https://doi.org/10.1016/j.jacc.2023.10.017
[19] 马贵洲, 徐荣和, 蔡志雄, 等. 复杂高危冠脉病变患者介入治疗现状及进展[J]. 实用医学杂志, 2021, 37(24): 3107-3112.
[20] Writing Committee Members, Lawton, J.S., Tamis-Holland, J.E., et al. (2022) 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 79, e21-e129.
[21] Hu, P., Tang, M., Song, W., Jiang, J., Sun, Y., Liu, X., et al. (2015) Fractional Flow Reserve Guided Percutaneous Coronary Intervention Improves Clinical Outcome with Reduced Cost in Contemporary Clinical Practice. Chinese Medical Journal, 128, 2000-2005.
https://doi.org/10.4103/0366-6999.161341
[22] 王建安, 郭丽君, 张永珍, 等. 冠状动脉血流储备分数临床应用专家共识[J]. 中华心血管病杂志, 2016, 44(4): 292-297.
[23] 霍勇, 郑博, 刘耀琨. 冠心病介入诊疗最新临床研究进展[J]. 临床心血管病杂志, 2023, 39(5): 327-331.
[24] Jurado-Román, A., Gómez-Menchero, A., Amat-Santos, I.J., Caballero-Borrego, J., Ojeda, S., Ocaranza-Sánchez, R., et al. (2024) Design of the ROLLERCOASTR Trial: Rotational Atherectomy, Lithotripsy or Laser for the Management of Calcified Coronary Stenosis. REC: Interventional Cardiology, 5, 279-286.
https://doi.org/10.24875/recice.m23000381
[25] Moreno, P.R., Stone, G.W., Gonzalez-Lengua, C.A. and Puskas, J.D. (2020) The Hybrid Coronary Approach for Optimal Revascularization. Journal of the American College of Cardiology, 76, 321-333.
https://doi.org/10.1016/j.jacc.2020.04.078