基于残余炎症风险评估的冠心病二级预防
Secondary Prevention of Coronary Heart Disease Based on Residual Inflammatory Risk Assessment
DOI: 10.12677/acm.2024.1482351, PDF, HTML, XML,    科研立项经费支持
作者: 骆海舰:上海市(复旦大学附属)公共卫生临床中心,心血管内科,上海;热那亚大学,内科学与专科医学部,意大利 热那亚
关键词: 冠心病残余炎症风险秋水仙碱主要心血管不良事件Coronary Heart Disease Residual Inflammatory Risk Colchicine Major Adverse Cardiovascular Events
摘要: 冠心病是常见的心血管疾病,长期的炎症反应促使患者病情进展与死亡风险增加,残余炎症风险是比低密度脂蛋白胆固醇更强的主要心血管不良事件预测因子。本文从炎症与冠心病的关系入手,结合国内外抗炎治疗方面的最新研究进展,探讨建立残余炎症风险评估指导下的冠心病二级预防策略。
Abstract: Coronary heart disease is a common cardiovascular condition. The long-term inflammatory response of patients contributes to the progression of the disease and an increased risk of death. Residual inflammatory risk is a stronger predictor of cardiovascular adverse events than low density lipoprotein cholesterol. The secondary prevention strategies of coronary heart disease under the guidance of residual inflammation risk assessment were discussed according to the relationship between inflammation and coronary heart disease as well as the latest clinical research advances in the anti-inflammatory treatment.
文章引用:骆海舰. 基于残余炎症风险评估的冠心病二级预防[J]. 临床医学进展, 2024, 14(8): 1282-1289. https://doi.org/10.12677/acm.2024.1482351

1. 引言

我国心血管疾病现患病人数3.3亿,且仍呈上升趋势,已成为重大公共卫生问题[1]。冠心病是常见的心血管疾病,长期的炎症反应促使动脉粥样硬化进展与患者死亡风险增加[2]。残余炎症风险(RIR)是指持续的炎症反应引发心血管事件的风险,它是比低密度脂蛋白胆固醇(LDL-C)更强的主要心血管不良事件(MACE)预测因子[3]

近年来多项大型临床试验研究发现,长期使用低剂量的秋水仙碱对急性冠脉综合征(ACS)和慢性冠状动脉综合征(CCS)的心血管结局均有改善[4]。在全球范围内冠心病发病率持续上升的背景下[5],秋水仙碱作为防治MACE事件的新药物,具有巨大临床获益和广泛的经济可行性[6] [7]。本文从炎症与冠心病的关系入手,结合国内外抗炎治疗临床研究的最新研究进展,探讨建立基于RIR评估的冠心病二级预防方案。

2. 冠心病与炎症反应的相关性

冠状动脉粥样硬化的发生发展与炎症反应密不可分,涉及单核细胞、巨噬细胞、T淋巴细胞、B淋巴细胞等多种免疫细胞[8] [9]。氧化型低密度脂蛋白(Ox-LDL)和胆固醇结晶可诱发炎症反应,促进巨噬细胞内的核苷酸结合寡聚域(NOD)样受体家族吡啶结构域3 (NLRP3)炎症小体的生成与活化,通过IL1β、IL-6和C反应蛋白炎症反应轴增加下游炎症因子的表达[10]

单核细胞趋化蛋白-1 (MCP-1)、血管细胞粘附分子-1 (VCAM-1)和细胞间粘附分子-1 (ICAM-1)通过募集单核细胞和巨噬细胞发挥重要作用[11]。巨噬细胞可分为M1 (促炎)和M2 (抗炎)两种类型细胞,两者之间的平衡状态影响动脉粥样硬化疾病的进展或好转[12]

淋巴细胞异常是促进动脉粥样硬化进展的独立危险因素[13]。某些不同亚群(如Th1、Th2和Th17) T淋巴细胞释放具有促炎或调节炎症活动的特定细胞因子[8]。CD8+ T细胞通过限制Th1细胞和巨噬细胞发挥保护作用[14]。B淋巴细胞通过产生白细胞介素(IL)-10来调节炎症,IL-10+ B淋巴细胞也与动脉粥样硬化患者的炎症反应有关。

胆固醇晶体诱导中性粒细胞释放中性粒细胞胞外诱捕网(NET),引起与促进炎症反应等作用[8]。NLRP3炎症小体通过促进血管炎症和干扰脂质代谢,在冠心病的发生和发展中起关键作用[15]。肥大细胞、自然杀伤细胞和树突状细胞也通过各种机制促进动脉粥样硬化[16],如酶促降解、泡沫细胞形成和细胞因子产生等[17]。此外,炎症和血栓级联反应紧密相关,炎症促凝反应导致特定病理条件下的血栓形成[18] [19]

3. 冠心病患者残余炎症风险评估

冠心病患者可根据RIR与LDL-C分为四大类[20] [21]:第一类是指仅存在残余胆固醇风险(RCR)的患者,需接受进一步的降低LDL-C治疗;第二类是指仅存在RIR的患者,虽然其LDL-C水平已达标,但仍存在炎症活动风险;第三类为RCR与RIR共存患者;第四类为既无RCR也无RIR的患者。

近年来发现可根据白细胞亚型的比率来评估机体炎症状态,这些新型炎症标志物包括[22]全身免疫炎症指数(SII)、全身炎症反应指数(SIRI)、全身炎症聚合指数(AISI),后者也称为全身免疫炎症反应指数(SIIRI)或泛免疫炎症值(PIV)。

SII用来评估CCS的发生及其严重程度的危险因素[23] [24],并与心血管[25] [26]和全因死亡率[27] [28],以及与ACS患者出现心力衰竭[29] [30]或MACE [31] [32]独立相关。SIRI与CCS患者发生ACS的风险程度相关[23],被认为是ACS患者PCI术后MACE的独立危险因素[33]。AISI被确定为接受PCI术的ACS患者不良结果的独立预测因子[34]。它们在预测冠心病的临床结局方面具有一定的实用性[22] [35],但敏感性较低[36]

LoDoCo [37]、CANTOS [38]、COLCOT [39]、LoDoCo2 [40]、PROMINENT、REDUCE-IT和STRENGTH等临床研究证实[3] [41],炎症反应参与冠心病事件链的全过程,即使患者的LDL-C水平已低于目标值,却仍会因为机体的炎症反应而出现MACE,表明RIR客观存在[42]。此前已发现多种生物标志物可用于检测和评估冠心病患者的RIR,其中hs-CRP是最广泛可及的有效生物标志物,hs-CRP水平在多个前瞻性流行病学队列中可独立预测新发和复发心血管事件[43]

炎症反应使动脉硬化斑块的风险增加,RIR体现了冠心病患者的血管炎症状态,且与MACE密切相关[20] [44]。尽管越来越多的患者接受了血运重建、抗栓、他汀类强化降脂等综合治疗,但其住院死亡率和远期死亡率仍居高不下,单纯RIR (上述第二类患者)比单纯RCR (第一类患者)的发生率更高,并且hsCRP评估的RIR比LDL-C评估的RCR更能预测未来心血管事件和死亡的风险[3]

RIR是指持续的炎症反应引发心血管事件的风险,也可被理解为冠心病患者血浆LDL-C水平 < 1.8 mmol/L且hsCRP水平 ≥ 2.0 /L这一目标值时,存在的持续性血管损害风险[3]。在排除急性感染后,稳定的hs-CRP水平通常低于目标值2.0 mg/L。如果患者已控制了LDL-C但hs-CRP水平仍升高,则应考虑干预与降低RIR (如抗炎药物治疗)。

4. 冠心病抗炎治疗临床研究现状

抗炎治疗改善冠心病MACE事件的第一个证据来自CANTOS试验[45],该研究发现,白细胞介素-1 (IL-1)特异性抑制剂卡那单抗可将hs-CRP > 2.0 mg/L的慢性冠状动脉疾病患者心血管死亡、心肌梗死和卒中的复合结局的风险降低15% [45],但卡那单抗价格昂贵,且使患者严重感染的风险增加[38]

临床试验发现可改善冠心病患者预后的抗炎治疗药物包括三大类[38] [46]-[49]:NLRP3炎症小体抑制剂(秋水仙碱、别嘌呤醇)、IL-1受体拮抗剂(阿那白滞素、卡那单抗)、IL-6抑制剂(如托珠单抗、泽伟奇单抗)。在标准治疗的同时服用低剂量(0.5 mg/日)的秋水仙碱,可将稳定的CCS患者的MACE降低31 [50],还可将ACS患者的MACE降低23% [39] [51]

秋水仙碱作为一种药物使用至少已有3500多年的历史[52]。70年前它已被用于预防痛风和家族性地中海热发作[53] [54],它被用于治疗和预防心包炎也有近50年历史[55]。最近的多项随机对照试验的荟萃分析验证了秋水仙碱联合标准冠心病治疗方案的疗效与安全性[56]-[58]

秋水仙碱主要通过抑制中性粒细胞和巨噬细胞功能而发挥抗炎和抑制免疫作用。Phelps P等人发现,在体外,0.1 nM秋水仙碱可以抑制中性粒细胞的趋化性,抑制中性粒细胞中趋化因子S100A8和S100A9的释放[59],Cronstein B等人发现秋水仙碱还可以通过抑制微管合成和促进微管解聚来抑制中性粒细胞粘附和募集[60] [61]。此外,秋水仙碱可通过抑制P2X7诱导的K+通道开放,减少K+外流,细胞内高浓度的K+会阻止NLRP3炎症小体的组装和激活,并可通过抑制caspase-1,最终降低IL1β的水平,从而抑制动脉粥样硬化中的炎症反应[62]

5. 冠心病抗炎药物二级预防策略

欧洲及多国最新的冠心病治疗指南建议将LDL-C降至1.0 mmol (40.0 mg/dL)以下,仅建议对已发生MACE的患者谨慎使用秋水仙碱[63]。2023年6月,秋水仙碱获得美国食品和药品监督管理局(FDA)批准,成为全球第一个用于CCS的抗炎治疗药物[41]。目前在欧洲及亚洲多国,秋水仙碱的临床适应证仅限于发生MACE时ACS的治疗,并未推荐用于CSS患者[63] [64]

为了有效地制定防治方案,临床医生需要评估患者的总体风险与收益比,积极使用生物标志物来评估RIR,从而在MACE发生之前的CCS阶段尽早起始管控机体炎症反应的治疗[65]。非侵入性或侵入性成像技术,例如冠状动脉计算机断层成像、颈动脉超声、正电子发射断层扫描、血管内超声、近红外光谱和光学相干断层扫描,均可以显示粥样硬化的动脉血管,RIR评估也可以识别出动脉粥样硬化高风险患者[21]

一旦患者LDL-C达到目标值,建议同时使用生物标志物(如hs-CRP等)来评估RIR,而不是仅采取MACE发生后的救治方法。虽然目前尚没有哪一种药物被证明更有效,但考虑到先前的研究与临床经验、最近FDA的批准通过,秋水仙碱或许是目前最好的药物选择[66]。因此,将hs-CRP作为首选RIR生物标志物,将秋水仙碱作为冠心病二级预防首选抗炎药物是合理的[41] [67]

6. 面临的问题与展望

建立该防治方案需要解决几个问题,例如LDL-C达到目标水平后,检测hs-CRP的时间和频率、肾衰竭或胃肠道不耐受患者的处理措施、秋水仙碱处方持续时间以及降低RIR后的随访策略等。上述方案并未解决同时具有低hs-CRP与低LDL-C水平的MACE防治问题。对于合并艾滋病、肝炎和结核病的患者,还必须解决药物之间相互作用方面的挑战[17] [68]

尽管评估秋水仙碱在冠心病二级预防中的研究排除了肌酐清除率为<50 mL/min的患者,但这些研究的持续时间不到3年[50],同时秋水仙碱半衰期长、治疗窗口窄且需经肾代谢,因此应避免用于晚期肾病患者(eGFR < 30 mL/min/m2)。美国用于冠心病患者二级预防的秋水仙碱剂量为每日0.6 mg,但已发表的临床研究使用的剂量为每日0.5 mg [69],其长期疗效和安全性以及最适宜的治疗人群等仍需进一步观察与研究[65] [70]

秋水仙碱被认为是一种治疗指数较小的药物,其有效剂量与可能导致严重不良反应的剂量之间只有很小的差异。秋水仙碱由细胞色素P450 3A4和p-糖蛋白代谢,容易发生药物相互作用,因此监测不良反应至关重要。鉴于此,需要制订高度个性化精准给药方案,并将秋水仙碱的使用限制在处于高风险的冠心病人群中[65]

预防冠心病高风险人群的MACE一直是许多创新疗法研究者关注的焦点。许多突破性的临床试验已经表明,降低RIR可为患者带来实质性的益处。ACS与CCS发生的不良心血管事件仍严重威胁着患者生命,RIR正是这一风险的关键驱动因素。阐明RIR的病理生理机制,聚焦RIR评估的受益人群,研发低成本且可更广泛应用的RIR抑制性药物可能是未来该领域的主要研究目标。

基金项目

上海市公共卫生临床中心临床研究专项(KY-GW-2023-05)。

参考文献

[1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612.
[2] 李建军. 血脂异常与动脉粥样硬化关系的现代观念[J]. 中国循环杂志, 2022, 37(3): 212-214.
[3] Ridker, P.M., Bhatt, D.L., Pradhan, A.D., Glynn, R.J., MacFadyen, J.G. and Nissen, S.E. (2023) Inflammation and Cholesterol as Predictors of Cardiovascular Events among Patients Receiving Statin Therapy: A Collaborative Analysis of Three Randomised Trials. The Lancet, 401, 1293-1301.
https://doi.org/10.1016/s0140-6736(23)00215-5
[4] Tucker, B., Goonetilleke, N., Patel, S. and Keech, A. (2024) Colchicine in Atherosclerotic Cardiovascular Disease. Heart, 110, 618-625.
https://doi.org/10.1136/heartjnl-2023-323177
[5] Federation, W.H. (2023) World Heart Report 2023: Confronting the World’s Number One Killer. Geneva, Switzerland.
[6] Zhang, R.S., Weber, B.N., Araiza-Garaygordobil, D. and Garshick, M.S. (2024) Colchicine for the Prevention of Cardiovascular Disease: Potential Global Implementation. Current Cardiology Reports, 26, 423-434.
https://doi.org/10.1007/s11886-024-02049-y
[7] Fiolet, A.T.L., Keusters, W., Blokzijl, J., Nidorf, S.M., Eikelboom, J.W., Budgeon, C.A., et al. (2024) Cost-Effectiveness of Low-Dose Colchicine in Patients with Chronic Coronary Disease in the Netherlands. European Heart JournalQuality of Care and Clinical Outcomes.
https://doi.org/10.1093/ehjqcco/qcae021
[8] He, C., Kim, H.I., Park, J., Guo, J. and Huang, W. (2024) The Role of Immune Cells in Different Stages of Atherosclerosis. International Journal of Medical Sciences, 21, 1129-1143.
https://doi.org/10.7150/ijms.94570
[9] 葛均波, 徐永健, 王辰. 内科学[M]. 第9版. 北京: 人民卫生出版社, 2018: 214.
[10] Bäck, M., Yurdagul, A., Tabas, I., Öörni, K. and Kovanen, P.T. (2019) Inflammation and Its Resolution in Atherosclerosis: Mediators and Therapeutic Opportunities. Nature Reviews Cardiology, 16, 389-406.
https://doi.org/10.1038/s41569-019-0169-2
[11] Simon, T.G., Trejo, M.E.P., McClelland, R., Bradley, R., Blaha, M.J., Zeb, I., et al. (2018) Circulating Interleukin-6 Is a Biomarker for Coronary Atherosclerosis in Nonalcoholic Fatty Liver Disease: Results from the Multi-Ethnic Study of Atherosclerosis. International Journal of Cardiology, 259, 198-204.
https://doi.org/10.1016/j.ijcard.2018.01.046
[12] Ji, M., Mao, L., Wei, Y., Zhu, B., Zhai, Y., Zhou, X., et al. (2024) The Anti-Atherosclerotic Effects of Buyang Huanwu Decoction through M1 and M2 Macrophage Polarization in an ApoE Knockout Mouse Model. Journal of Physiological Investigation, 67, 79-87.
https://doi.org/10.4103/ejpi.ejpi-d-23-00040
[13] Kong, P., Cui, Z., Huang, X., Zhang, D., Guo, R. and Han, M. (2022) Inflammation and Atherosclerosis: Signaling Pathways and Therapeutic Intervention. Signal Transduction and Targeted Therapy, 7, Article No. 131.
https://doi.org/10.1038/s41392-022-00955-7
[14] Obare, L.M., Temu, T., Mallal, S.A. and Wanjalla, C.N. (2024) Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circulation Research, 134, 1515-1545.
https://doi.org/10.1161/circresaha.124.323891
[15] Guo, S., Wang, L., Cao, K., Li, Z., Song, M., Huang, S., et al. (2024) Endothelial Nucleotide-Binding Oligomerization Domain-Like Receptor Protein 3 Inflammasome Regulation in Atherosclerosis. Cardiovascular Research, 120, 883-898.
https://doi.org/10.1093/cvr/cvae071
[16] Xing, Y. and Lin, X. (2024) Challenges and Advances in the Management of Inflammation in Atherosclerosis. Journal of Advanced Research.
https://doi.org/10.1016/j.jare.2024.06.016
[17] Caocci, M., Niu, M., Fox, H.S. and Burdo, T.H. (2024) HIV Infection Drives Foam Cell Formation via NLRP3 Inflammasome Activation. International Journal of Molecular Sciences, 25, Article 2367.
https://doi.org/10.3390/ijms25042367
[18] Haupeltshofer, S., Mencl, S., Szepanowski, R.D., Hansmann, C., Casas, A.I., Abberger, H., et al. (2024) Delayed Plasma Kallikrein Inhibition Fosters Post-Stroke Recovery by Reducing Thrombo-Inflammation. Journal of Neuroinflammation, 21, Article No. 155.
https://doi.org/10.1186/s12974-024-03149-w
[19] Rayes, J. and Brill, A. (2024) Hot under the Clot: Venous Thrombogenesis Is an Inflammatory Process. Blood, 144, 477-489.
https://doi.org/10.1182/blood.2023022522
[20] Ridker, P.M. (2017) How Common Is Residual Inflammatory Risk? Circulation Research, 120, 617-619.
https://doi.org/10.1161/circresaha.116.310527
[21] Ridker, P.M., Lei, L., Louie, M.J., Haddad, T., Nicholls, S.J., Lincoff, A.M., et al. (2024) Inflammation and Cholesterol as Predictors of Cardiovascular Events among 13 970 Contemporary High-Risk Patients with Statin Intolerance. Circulation, 149, 28-35.
https://doi.org/10.1161/circulationaha.123.066213
[22] Peng, A., Zhang, B., Wang, S., Feng, Y., Liu, S., Liu, C., et al. (2023) Comparison of the Value of Various Complex Indexes of Blood Cell Types and Lipid Levels in Coronary Heart Disease. Frontiers in Cardiovascular Medicine, 10, Article 1284491.
https://doi.org/10.3389/fcvm.2023.1284491
[23] Dziedzic, E.A., Gąsior, J.S., Tuzimek, A., Paleczny, J., Junka, A., Dąbrowski, M., et al. (2022) Investigation of the Associations of Novel Inflammatory Biomarkers—systemic Inflammatory Index (SII) and Systemic Inflammatory Response Index (SIRI)—With the Severity of Coronary Artery Disease and Acute Coronary Syndrome Occurrence. International Journal of Molecular Sciences, 23, Article 9553.
https://doi.org/10.3390/ijms23179553
[24] Dziedzic, E.A., Gąsior, J.S., Tuzimek, A. and Kochman, W. (2023) Blood Count-Derived Inflammatory Markers and Acute Complications of Ischemic Heart Disease in Elderly Women. Journal of Clinical Medicine, 12, Article 1369.
https://doi.org/10.3390/jcm12041369
[25] Wang, L., Li, X., Liu, M., Zhou, H. and Shao, J. (2024) Association between Monocyte-To-Lymphocyte Ratio and Prostate Cancer in the U.S. Population: A Population-Based Study. Frontiers in Cell and Developmental Biology, 12, Article 1372731.
https://doi.org/10.3389/fcell.2024.1372731
[26] Wang, S., Pan, X., Jia, B. and Chen, S. (2023) Exploring the Correlation between the Systemic Immune Inflammation Index (SII), Systemic Inflammatory Response Index (SIRI), and Type 2 Diabetic Retinopathy. Diabetes, Metabolic Syndrome and Obesity, 16, 3827-3836.
https://doi.org/10.2147/dmso.s437580
[27] Kong, F., Huang, J., Xu, C., Huang, T., Wen, G. and Cheng, W. (2023) System Inflammation Response Index: A Novel Inflammatory Indicator to Predict All-Cause and Cardiovascular Disease Mortality in the Obese Population. Diabetology & Metabolic Syndrome, 15, Article No. 195.
https://doi.org/10.1186/s13098-023-01178-8
[28] Su, G., Zhang, Y., Xiao, R., Zhang, T. and Gong, B. (2021) Systemic Immune-Inflammation Index as a Promising Predictor of Mortality in Patients with Acute Coronary Syndrome: A Real-World Study. Journal of International Medical Research, 49, 1-9.
https://doi.org/10.1177/03000605211016274
[29] Fan, W., Zhang, Y., Gao, X., Liu, Y., Shi, F., Liu, J., et al. (2021) The Prognostic Value of a Derived Neutrophil-Lymphocyte Ratio in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Clinical and Applied Thrombosis/Hemostasis, 27, 1-11.
https://doi.org/10.1177/10760296211034579
[30] Hayıroğlu, M.İ., Çınar, T., Çinier, G., Pay, L., Yumurtaş, A.Ç., Tezen, O., et al. (2022) Evaluating Systemic Immune‐inflammation Index in Patients with Implantable Cardioverter Defibrillator for Heart Failure with Reduced Ejection Fraction. Pacing and Clinical Electrophysiology, 45, 188-195.
https://doi.org/10.1111/pace.14436
[31] Ozkan, E., Erdogan, A., Karagoz, A. and Tanboğa, I.H. (2023) Comparison of Systemic Immune-Inflammation Index and Naples Prognostic Score for Prediction Coronary Artery Severity Patients Undergoing Coronary Computed Tomographic Angiography. Angiology, 75, 62-71.
https://doi.org/10.1177/00033197231170979
[32] Karakayali, M., Altunova, M., Yakisan, T., Aslan, S., Omar, T., Artac, I., et al. (2024) A Relação entre o Índice de Imuno-Inflamação Sistêmica e Isquemia com Artérias Coronárias Não Obstrutivas em Pacientes Submetidos à Angiografia Coronária. Arquivos Brasileiros de Cardiologia, 121, e20230540.
https://doi.org/10.36660/abc.20230540
[33] Li, Q., Ma, X., Shao, Q., Yang, Z., Wang, Y., Gao, F., et al. (2022) Prognostic Impact of Multiple Lymphocyte-Based Inflammatory Indices in Acute Coronary Syndrome Patients. Frontiers in Cardiovascular Medicine, 9, Article 811790.
https://doi.org/10.3389/fcvm.2022.811790
[34] Fan, W., Wei, C., Liu, Y., Sun, Q., Tian, Y., Wang, X., et al. (2022) The Prognostic Value of Hematologic Inflammatory Markers in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Clinical and Applied Thrombosis/Hemostasis, 28, 1-13.
https://doi.org/10.1177/10760296221146183
[35] Liu, Y., Ye, T., Chen, L., Jin, T., Sheng, Y., Wu, G., et al. (2021) Systemic Immune-Inflammation Index Predicts the Severity of Coronary Stenosis in Patients with Coronary Heart Disease. Coronary Artery Disease, 32, 715-720.
https://doi.org/10.1097/mca.0000000000001037
[36] Tuzimek, A., Dziedzic, E., Beck, J. and Kochman, W. (2024) Correlations between Acute Coronary Syndrome and Novel Inflammatory Markers (Systemic Immune-Inflammation Index, Systemic Inflammation Response Index, and Aggregate Index of Systemic Inflammation) in Patients with and without Diabetes or Prediabetes. Journal of Inflammation Research, 17, 2623-2632.
https://doi.org/10.2147/jir.s454117
[37] Nidorf, S.M., Eikelboom, J.W., Budgeon, C.A. and Thompson, P.L. (2013) Low-Dose Colchicine for Secondary Prevention of Cardiovascular Disease. Journal of the American College of Cardiology, 61, 404-410.
https://doi.org/10.1016/j.jacc.2012.10.027
[38] Ridker, P.M., Libby, P., MacFadyen, J.G., Thuren, T., Ballantyne, C., Fonseca, F., et al. (2018) Modulation of the Interleukin-6 Signalling Pathway and Incidence Rates of Atherosclerotic Events and All-Cause Mortality: Analyses from the Canakinumab Anti-Inflammatory Thrombosis Outcomes Study (CANTOS). European Heart Journal, 39, 3499-3507.
https://doi.org/10.1093/eurheartj/ehy310
[39] Tardif, J., Kouz, S., Waters, D.D., Bertrand, O.F., Diaz, R., Maggioni, A.P., et al. (2019) Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. New England Journal of Medicine, 381, 2497-2505.
https://doi.org/10.1056/nejmoa1912388
[40] Nidorf, S.M., Fiolet, A.T.L., Eikelboom, J.W., Schut, A., Opstal, T.S.J., Bax, W.A., et al. (2019) The Effect of Low-Dose Colchicine in Patients with Stable Coronary Artery Disease: The Lodoco2 Trial Rationale, Design, and Baseline Characteristics. American Heart Journal, 218, 46-56.
https://doi.org/10.1016/j.ahj.2019.09.011
[41] Madanchi, M., Young, M., Tersalvi, G., Maria Cioffi, G., Attinger-Toller, A., Cuculi, F., et al. (2024) The Impact of Colchicine on Patients with Acute and Chronic Coronary Artery Disease. European Journal of Internal Medicine, 125, 1-9.
https://doi.org/10.1016/j.ejim.2024.01.004
[42] Raju, N.C., Yi, Q., Nidorf, M., Fagel, N.D., Hiralal, R. and Eikelboom, J.W. (2011) Effect of Colchicine Compared with Placebo on High Sensitivity C-Reactive Protein in Patients with Acute Coronary Syndrome or Acute Stroke: A Pilot Randomized Controlled Trial. Journal of Thrombosis and Thrombolysis, 33, 88-94.
https://doi.org/10.1007/s11239-011-0637-y
[43] Sun, M., Dubé, M., Hennessy, T., Schultz, C.J., Barhdadi, A., Rhainds, D., et al. (2022) Low-dose Colchicine and High-Sensitivity C-Reactive Protein After Myocardial Infarction: A Combined Analysis Using Individual Patient Data from the COLCOT and Lodoco-Mi Studies. International Journal of Cardiology, 363, 20-22.
https://doi.org/10.1016/j.ijcard.2022.06.028
[44] Guedeney, P., Claessen, B.E., Kalkman, D.N., Aquino, M., Sorrentino, S., Giustino, G., et al. (2019) Residual Inflammatory Risk in Patients with Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention. Journal of the American College of Cardiology, 73, 2401-2409.
https://doi.org/10.1016/j.jacc.2019.01.077
[45] Ridker, P.M., Everett, B.M., Thuren, T., MacFadyen, J.G., Chang, W.H., Ballantyne, C., et al. (2017) Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New England Journal of Medicine, 377, 1119-1131.
https://doi.org/10.1056/nejmoa1707914
[46] Abbate, A., Wohlford, G.F., Del Buono, M.G., Chiabrando, J.G., Markley, R., Turlington, J., et al. (2021) Interleukin-1 Blockade with Anakinra and Heart Failure Following ST-Segment Elevation Myocardial Infarction: Results from a Pooled Analysis of the VCUART Clinical Trials. European Heart JournalCardiovascular Pharmacotherapy, 8, 503-510.
https://doi.org/10.1093/ehjcvp/pvab075
[47] Ridker, P.M. and Rane, M. (2021) Interleukin-6 Signaling and Anti-Interleukin-6 Therapeutics in Cardiovascular Disease. Circulation Research, 128, 1728-1746.
https://doi.org/10.1161/circresaha.121.319077
[48] Takahashi, M. (2021) NLRP3 Inflammasome as a Key Driver of Vascular Disease. Cardiovascular Research, 118, 372-385.
https://doi.org/10.1093/cvr/cvab010
[49] Ridker, P.M. (2021) From RESCUE to ZEUS: Will Interleukin-6 Inhibition with Ziltivekimab Prove Effective for Cardiovascular Event Reduction? Cardiovascular Research, 117, e138-e140.
https://doi.org/10.1093/cvr/cvab231
[50] Nidorf, S.M., Fiolet, A.T.L., Mosterd, A., Eikelboom, J.W., Schut, A., Opstal, T.S.J., et al. (2020) Colchicine in Patients with Chronic Coronary Disease. New England Journal of Medicine, 383, 1838-1847.
https://doi.org/10.1056/nejmoa2021372
[51] Imazio, M., Agrimi, C., Cescon, L., Panzolli, G., Collini, V. and Sinagra, G. (2024) Colchicine for the Treatment of the Spectrum of Cardiovascular Diseases: Current Evidence and Ongoing Perspectives. Journal of Cardiovascular Medicine, 25, 653-663.
https://doi.org/10.2459/jcm.0000000000001647
[52] Dasgeb, B., Kornreich, D., McGuinn, K., Okon, L., Brownell, I. and Sackett, D.L. (2018) Colchicine: An Ancient Drug with Novel Applications. British Journal of Dermatology, 178, 350-356.
https://doi.org/10.1111/bjd.15896
[53] Zemer, D., Pras, M., Sohar, E., Modan, M., Cabili, S. and Gafni, J. (1986) Colchicine in the Prevention and Treatment of the Amyloidosis of Familial Mediterranean Fever. New England Journal of Medicine, 314, 1001-1005.
https://doi.org/10.1056/nejm198604173141601
[54] Goldfinger, S.E. (1971) Treatment of Gout. New England Journal of Medicine, 285, 1303-1306.
https://doi.org/10.1056/nejm197112022852306
[55] Adler, Y., Finkelstein, Y., Guindo, J., Rodriguez de la Serna, A., Shoenfeld, Y., Bayes-Genis, A., et al. (1998) Colchicine Treatment for Recurrent Pericarditis. Circulation, 97, 2183-2185.
https://doi.org/10.1161/01.cir.97.21.2183
[56] Nidorf, S.M., Ben-Chetrit, E. and Ridker, P.M. (2024) Low-dose Colchicine for Atherosclerosis: Long-Term Safety. European Heart Journal, 45, 1596-1601.
https://doi.org/10.1093/eurheartj/ehae208
[57] Fiolet, A.T.L., Opstal, T.S.J., Mosterd, A., Eikelboom, J.W., Jolly, S.S., Keech, A.C., et al. (2021) Efficacy and Safety of Low-Dose Colchicine in Patients with Coronary Disease: A Systematic Review and Meta-Analysis of Randomized Trials. European Heart Journal, 42, 2765-2775.
https://doi.org/10.1093/eurheartj/ehab115
[58] Akl, E., Sahami, N., Labos, C., Genest, J., Zgheib, A., Piazza, N., et al. (2024) Meta-Analysis of Randomized Trials: Efficacy and Safety of Colchicine for Secondary Prevention of Cardiovascular Disease. Journal of Interventional Cardiology, 2024, Article ID: 8646351.
https://doi.org/10.1155/2024/8646351
[59] Phelps, P. (2008) Polymorphonuclear Leukocyte Motility in Vitro: IV. Colchicine Inhibition of Chemotactic Activity Formation after Phagocytosis of Urate Crystals. Arthritis & Rheumatology, 58, S25-S33.
https://doi.org/10.1002/art.23357
[60] Cronstein, B.N., Molad, Y., Reibman, J., Balakhane, E., Levin, R.I. and Weissmann, G. (1995) Colchicine Alters the Quantitative and Qualitative Display of Selectins on Endothelial Cells and Neutrophils. Journal of Clinical Investigation, 96, 994-1002.
https://doi.org/10.1172/jci118147
[61] Cronstein, B.N. and Sunkureddi, P. (2013) Mechanistic Aspects of Inflammation and Clinical Management of Inflammation in Acute Gouty Arthritis. JCR: Journal of Clinical Rheumatology, 19, 19-29.
https://doi.org/10.1097/rhu.0b013e31827d8790
[62] Li, Y., Zhang, Y., Lu, J., Yin, Y., Xie, J. and Xu, B. (2021) Anti‐Inflammatory Mechanisms and Research Progress of Colchicine in Atherosclerotic Therapy. Journal of Cellular and Molecular Medicine, 25, 8087-8094.
https://doi.org/10.1111/jcmm.16798
[63] Byrne, R.A., Rossello, X., Coughlan, J.J., Barbato, E., Berry, C., Chieffo, A., et al. (2023) 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. European Heart Journal, 44, 3720-3826.
https://doi.org/10.1093/eurheartj/ehad191
[64] 中华医学会心血管病学分会. 中国慢性冠脉综合征患者诊断及管理指南[J]. 中华心血管病杂志, 2024, 52(6): 589-614.
[65] Virani, S.S., Newby, L.K., Arnold, S.V., Bittner, V., Brewer, L.C., Demeter, S.H., et al. (2023) 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation, 148, e9-e119.
https://doi.org/10.1161/cir.0000000000001168
[66] Gomez-Delgado, F., Raya-Cruz, M., Katsiki, N., Delgado-Lista, J. and Perez-Martinez, P. (2024) Residual Cardiovascular Risk: When Should We Treat It? European Journal of Internal Medicine, 120, 17-24.
https://doi.org/10.1016/j.ejim.2023.10.013
[67] Burger, P.M., Dorresteijn, J.A.N., Fiolet, A.T.L., Koudstaal, S., Eikelboom, J.W., Nidorf, S.M., et al. (2023) Individual Lifetime Benefit from Low-Dose Colchicine in Patients with Chronic Coronary Artery Disease. European Journal of Preventive Cardiology, 30, 1950-1962.
https://doi.org/10.1093/eurjpc/zwad221
[68] Yoshida, S., Sumichika, Y., Saito, K., Matsumoto, H., Temmoku, J., Fujita, Y., et al. (2023) Effectiveness of Colchicine or Canakinumab in Japanese Patients with Familial Mediterranean Fever: A Single-Center Study. Journal of Clinical Medicine, 12, Article 6272.
https://doi.org/10.3390/jcm12196272
[69] Virani, S.S., Newby, L.K., Arnold, S.V., Bittner, V., Brewer, L.C., Demeter, S.H., et al. (2023) 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 82, 833-955.
https://doi.org/10.1016/j.jacc.2023.04.003
[70] 中华医学会心血管病学分会. 非ST段抬高型急性冠脉综合征诊断和治疗指南(2024) [J]. 中华心血管病杂志, 2024, 52(6): 615-646.