[1]
|
Kolev, S.K. and Tsonev, T.T. (2022) Aluminized Enhanced Blast Explosive Based on Polysiloxane Binder. Propellants, Explosives, Pyrotechnics, 47, e202100195. https://doi.org/10.1002/prep.202100195
|
[2]
|
仝远, 李德贵, 聂源, 等. 钨合金破片对屏蔽B炸药撞击起爆数值模拟[J]. 空天防御, 2021, 4(3): 70-75.
|
[3]
|
仝远, 聂源, 李德贵, 等. 爆炸驱动下独立结构破片初速分析[J]. 空天防御, 2024, 7(2): 42-46.
|
[4]
|
Sundaram, D.S., Puri, P. and Yang, V. (2016) A General Theory of Ignition and Combustion of Nano and Micron-Sized Aluminum Particles. Combustion and Flame, 169, 94-109. https://doi.org/10.1016/j.combustflame.2016.04.005
|
[5]
|
Schoenitz, M., Chen, C.M. and Dreizin, E.L. (2009) Oxidation of Aluminum Particles in the Presence of Wate. The Journal of Physical Chemistry B, 113, 5136-5140. https://doi.org/10.1021/jp807801m
|
[6]
|
Trunov, M.A., Schoenitz, M., Zhu, X. and Dreizin, E.L. (2005) Effect of Polymorphic Phase Transformations in Film on Oxidation Kinetics of Aluminum Powder. Combustion and Flame, 140, 310-318. https://doi.org/10.1016/j.combustflame.2004.10.010
|
[7]
|
Trunov, M.A., Schoenitz, M. and Dreizin, E.L. (2006) Effect of Polymorphic Phase Transformations in Alumina Layer on Ignition of Aluminium Particle. Combustion Theory and Modelling, 10, 603-623. https://doi.org/10.1080/13647830600578506
|
[8]
|
Yang, H. and Yoon, W. (2010) Modeling of Aluminum Particle Combustion with Emphasis on the Oxide Effects and Variable Transport Properties. Journal of Mechanical Science and Technology, 24, 909-921. https://doi.org/10.1007/s12206-010-0209-7
|
[9]
|
Bocanegra, P.E. and Davidenko, D., Sarou-Kanian, V., Chauveau, C. and Gkalp, I. (2010) Experimental and Numerical Studies on the Burning of Aluminum Micro and Nanoparticle Clouds in Air. Experimental Thermal and Fluid Science, 34, 299-307. https://doi.org/10.1016/j.expthermflusci.2009.10.009
|
[10]
|
Liu, M., Yu, W. and Li, S. (2023) Effect of Aluminum-Based Additives on the Ignition Performance of Ammonium Perchlorate-Based Composite Solid Propellants. Acta Astronautica, 204, 321-330. https://doi.org/10.1016/j.actaastro.2023.01.010
|
[11]
|
Ohkura, Y., Rao, P.M. and Zheng, X. (2011) Flash Ignition of Al Nanoparticles: Mechanism and Applications. Combustion and Flame, 158, 2544-2548. https://doi.org/10.1016/j.combustflame.2011.05.012
|
[12]
|
Levitas, V.I., Pantoya, M.L. and Dean, S. (2014) Melt Dispersion Mechanism for Fast Reaction of Aluminum Nano-and Micron-Scale Particles: Flame Propagation and SEM Studies. Combustion and Flame, 161, 1668-1677. https://doi.org/10.1016/j.combustflame.2013.11.021
|
[13]
|
Mutlu, M., Kang, J.H., Raza, S., Schoen, D., Zheng, X., Kik, P.G. and Brongersma, M.L. (2018) Thermoplasmonic Ignition of Metal Nanoparticles. Nano Letters, 18, 1699-1706. https://doi.org/10.1021/acs.nanolett.7b04739
|
[14]
|
Zakiyyan, N., Mathai, C., McFarland, J., Gangopadhyay, S. and Maschmann, M.R. (2022) Spallation of Isolated Aluminum Nanoparticles by Rapid Photothermal Heating. ACS Applied Materials & Interfaces, 14, 55277-55284. https://doi.org/10.1021/acsami.2c18678
|
[15]
|
Moussa, R.B., Proust, C., Guessasma, M., Saleh, K. and Fortin, J. (2017) Physical Mechanisms Involved into the Flame Propagation Process Through Aluminum Dust-Air Clouds: A Review. Journal of Loss Prevention in the Process Industries, 45, 9-28. https://doi.org/10.1016/j.jlp.2016.11.010
|
[16]
|
邹祥瑞, 王宁飞, 石保禄, 等. 铝颗粒云燃烧研究进展[J]. 推进技术, 2021, 42(12): 2641-2651.
|
[17]
|
李鑫, 赵凤起, 郝海霞, 等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报, 2014, 35(5): 640-647.
|
[18]
|
周禹男, 刘建忠, 王架皓, 等. 铝颗粒氧化机理与燃烧理论研究进展[J]. 兵器材料科学与工程, 2017, 40(2): 122-129.
|
[19]
|
Wang, H., Ren, H., Yan, T., Li, Y. and Zhao, W. (2021) A Latent Highly Activity Energetic Fuel: Thermal Stability and Interfacial Reaction Kinetics of Selected Fluoropolymer Encapsulated Sub-Micron Sized Al Particles. Scientific Reports, 11, Article No. 738. https://doi.org/10.1038/s41598-020-80865-2
|
[20]
|
Jacob, R.J., Hill, K.J., Yang, Y., Pantoya, M.L. and Zachariah, M.R. (2019) Pre-Stressing Aluminum Nanoparticles as a Strategy to Enhance Reactivity of Nanothermite Composites. Combustion and Flame, 205, 33-40. https://doi.org/10.1016/j.combustflame.2019.03.024
|
[21]
|
Kim, D.W., Kwon, G.H. and Kim, K.T. (2017) Synthesis of Nickel Nanoparticle-Adsorbed Aluminum Powders for Energetic Applications. Journal of Powder Materials, 24, 242-247. https://doi.org/10.4150/KPMI.2017.24.3.242
|
[22]
|
Zhao, B., Sun, S., Luo, Y. and Cheng, Y. (2020) Fabrication of Polytetrafluoroethylene Coated Micron Aluminium with Enhanced Oxidation. Materials, 13, Article 3384. https://doi.org/10.3390/ma13153384
|
[23]
|
Wang, J., Zhang, L., Mao, Y. and Gong, F. (2020) An Effective Way to Enhance Energy Output and Combustion Characteristics of Al/PTFE. Combustion and Flame, 214, 419-425. https://doi.org/10.1016/j.combustflame.2020.01.008
|
[24]
|
Chen, S., Yu, H., Zhang, W., Shen, R., Guo, W., Deluca, L.T., Wang, H. and Ye, Y. (2020) Sponge-Like Al/PVDF Films with Laser Sensitivity and High Combustion Performance Prepared by Rapid Phase Inversion. Chemical Engineering Journal, 396, Article 124962. https://doi.org/10.1016/j.cej.2020.124962
|
[25]
|
Levitas, V.I., Dikici, B. and Pantoya, M.L. (2011) Toward Design of the Pre-Stressed Nano-and Microscale Aluminum Particles Covered by Oxide Shell. Combustion and Flame, 158, 1413-1417. https://doi.org/10.1016/j.combustflame.2010.12.002
|
[26]
|
Bello, M.N., Williams, A.M., Levitas, V.I., Tamura, N., Unruh, D.K., Warzywoda, J. and Pantoya, M.L. (2019) Highly Reactive Energetic Films by Pre-Stressing Nano-Aluminum Particles. RSC Advances, 9, 40607-40617. https://doi.org/10.1039/C9RA04871E
|
[27]
|
Hill, K.J., Tamura, N., Levitas, V.I. and Pantoya, M.L. (2018) Impact Ignition and Combustion of Micron-Scale Aluminum Particles Pre-Stressed with Different Quenching Rates. Journal of Applied Physics, 124, Article 115903. https://doi.org/10.1063/1.5044546
|
[28]
|
Levitas, V.I., McCollum, J., Pantoya, M.L. and Tamura, N. (2015) Internal Stresses in Pre-Stressed Micron-Scale Aluminum Core-Shell Particles and Their Improved Reactivity. Journal of Applied Physics, 118, Article 094305. https://doi.org/10.1063/1.4929642
|
[29]
|
Levitas, V.I., McCollum, J. and Pantoya, M. (2015) Pre-Stressing Micron-Scale Aluminum Core-Shell Particles to Improve Reactivity. Scientific Reports, 5, Article 7879. https://doi.org/10.1038/srep07879
|
[30]
|
Levitas, V.I., McCollum, J., Pantoya, M.L. and Tamura, N. (2016) Stress Relaxation in Pre-Stressed Aluminum Core-Shell Particles: X-Ray Diffraction Study, Modeling, and Improved Reactivity. Combustion and Flame, 170, 30-36. https://doi.org/10.1016/j.combustflame.2016.05.012
|
[31]
|
Shafirovich, E., Mukasyan, A., Thiers, L., Varma, A., Legrand, B., Chauveau, C. and Gkalp, I. (2002) Ignition and Combustion of Al Particles Clad by Ni. Combustion Science and Technology, 174, 125-140. https://doi.org/10.1080/713712997
|
[32]
|
Shafirovich, E., Bocanegra, P. E., Chauveau, C., Gkalp, I., Goldshleger, U., Rosenband, V. and Gany, A. (2005) Ignition of Single Nickel-Coated Aluminum Particles. Proceedings of the Combustion Institute, 30, 2055-2062. https://doi.org/10.1016/j.proci.2004.08.107
|
[33]
|
Andrzejak, T.A., Shafirovich, E. and Varma, A. (2007) Ignition Mechanism of Nickel-Coated Aluminum Particles. Combustion and Flame, 150, 60-70. https://doi.org/10.1016/j.combustflame.2007.03.004
|
[34]
|
Lee, S., Noh, K., Lim, J. and Yoon, W. (2016) Thermo-Physical Characteristics of Nickel-Coated Aluminum Powder as a Function of Particle Size and Oxidant. Chinese Journal of Mechanical Engineering, 29, 1244-1255. https://doi.org/10.3901/CJME.2016.0811.092
|
[35]
|
Kim, S., Lim, J., Lee, S. and Jeong, J. and Yoon, W. (2018) Study on the Ignition Mechanism of Ni-Coated Aluminum Particles in Air. Combustion and Flame, 198, 24-39. https://doi.org/10.1016/j.combustflame.2018.07.010
|
[36]
|
Moris K. (2011) Review: Reaction Synthesis Processing of Ni-Al Intermetallic Materials. Materials Science and Engineering: A, 299, 1-15. https://doi.org/10.1016/S0921-5093(00)01407-6
|
[37]
|
Shahravan, A., Desai, T. and Matsoukas, T. (2014) Passivation of Aluminum Nanoparticles by Plasma-Enhanced Chemical Vapor Deposition for Energetic Nanomaterials. ACS Applied Materials & Interfaces, 6, 7942-7947. https://doi.org/10.1021/am5012707
|
[38]
|
Kwon, G.H., Kim, K.T., Kim, D.W., Choe, J., Yun, J.Y. and Kim, J. (2019) Synthesis and Exothermic Reactions of Ultra-Fine Snowman-Shaped Particles with Directly Bonded Ni/Al Interfaces. Applied Surface Science, 476, 481-485. https://doi.org/10.1016/j.apsusc.2019.01.068
|
[39]
|
Chen, Y., Zhang, J., Zhu, J., Xiang, N., Zhang, H. and Zhou, Z. (2022) High Energy Al@Ni Preparation of Core-Shell Particles by Adjusting Nickel Layer Thickness. Vacuum, 205, Article 111344. https://doi.org/10.1016/j.vacuum.2022.111344
|
[40]
|
Kim, D.W., Kim, K.T., Kwon, G.H., Song, K. and Son, I. (2019) Self-Propagating Heat Synthetic Reactivity of Fine Aluminum Particles via Spontaneously Coated Nickel Layer. Scientific Reports, 9, Article 1033. https://doi.org/10.1038/s41598-018-36760-y
|
[41]
|
Zhang, J., Zhao, F., Li, H., Yuan, Z., Zhang, M., Yang, Y., Pei, Q., Wang, Y. Chen, X. and Qin, Z. (2023) Improving Ignition and Combustion Performance of Al@ Ni in CMDB Propellants: Effect of Nickel Coating. Chemical Engineering Journal, 456, Article 141010. https://doi.org/10.1016/j.cej.2022.141010
|
[42]
|
Andrzejak, T.A., Shafirovich, E. and Varma, A. (2008) Ignition of Iron-Coated and Nickel-Coated Aluminum Particles under Normal and Reduced-Gravity Conditions. Journal of Propulsion and Power, 24, 805-813. https://doi.org/10.2514/1.34034
|
[43]
|
Wang, C., Zou, X., Yin, S., Wang, J., Li, Y., Wang, N. and Shi, B. (2022) Improvement of Ignition and Combustion Performance of Micro-Aluminum Particles by Double-Shell Nickel-Phosphorus Alloy Coating. Chemical Engineering Journal, 433, Article 133585. https://doi.org/10.1016/j.cej.2021.133585
|
[44]
|
Lee, H., Kim, J.H., Kang, S., Deshmukh, P.R., Sohn, Y., Hyun, H.S. and Shin, W.G. (2020) Ignition of Nickel Coated Aluminum Agglomerates using Shock Tube. Combustion and Flame, 221, 160-169. https://doi.org/10.1016/j.combustflame.2020.07.021
|
[45]
|
Gonchukova, N.O. (2004) Calculation of Stresses in Amorphous Nickel-Phosphorus Coatings on Metallic Substrates. Glass Physics and Chemistry, 30, 356-358. https://doi.org/10.1023/B:GPAC.0000038597.05195.0c
|
[46]
|
Ali, R., Ali, F., Zahoor, A., Shahid, R.N., Tariq, N.U.H., Ali, G., Ullah, S., Shah, A. and Awais, H.B. (2022) Preparation and Oxidation of Aluminum Powders with Surface Alumina Replaced by Iron Coating. Journal of Energetic Materials, 40, 243-257. https://doi.org/10.1080/07370652.2020.1859647
|
[47]
|
Du, R., Hu, M., Xie, C. and Zeng, D. (2012) Preparation of Fe/Al Composites with Enhanced Thermal Properties by Chemical Liquid Deposition Methods. Propellants, Explosives, Pyrotechnics, 37, 597-604. https://doi.org/10.1002/prep.201100053
|
[48]
|
Cheng, Z., Chu, X., Zhao, W., Yin, J., Dai, B., Zhong, H., Xu, J. and Jiang, Y. (2020) Controllable Synthesis of Cu/Al Energetic Nanocomposites with Excellent Heat Release and Combustion Performance. Applied Surface Science, 513, Article 145704. https://doi.org/10.1016/j.apsusc.2020.145704
|
[49]
|
Cheng, Z., Chu, X., Yin, J., Dai, B., Zhao, W., Jiang, Y., Xu, J., Zhong, H., Zhao, P. and Zhang, L. (2020) Formation of Composite Fuels by Coating Aluminum Powder with a Cobalt Nanocatalyst: Enhanced Heat Release and Catalytic Performance. Chemical Engineering Journal, 385, Article 123859. https://doi.org/10.1016/j.cej.2019.123859
|
[50]
|
Okamoto, H. (2004) Al-Ni (Aluminum-Nickel). Journal of Phase Equilibria and Diffusion, 25, 394-394. https://doi.org/10.1007/s11669-004-0163-0
|
[51]
|
Jiang, H., Bi, M., Zhang, J., Zhao, F., Wang, J., Sun, F., Xiao, Q. and Gao W. (2022) Explosion Hazard and Prevention of Al-Ni Mechanical Alloy Powders. Journal of Loss Prevention in the Process Industries, 75, Article 104714. https://doi.org/10.1016/j.jlp.2021.104714
|
[52]
|
Sharma, A., Lee, H. and Ahn, B. (2022) Microstructure and Reactivity of Cryomilled Al-Ni Energetic Material with Nanoscale Lamellar Structure. Journal of Materials Science, 57, 17957-17966. https://doi.org/10.1007/s10853-022-07429-9
|
[53]
|
程志鹏. 核壳纳米金属/Al复合粉末的制备及其性能研究[D]: [博士学位论文]. 南京: 南京理工大学, 2008.
|
[54]
|
Sankanit, P., Uthaisangsuk, V. and Pandee, P. (2021) Tensile Properties of Hypoeutectic Al-Ni alloys: Experiments and FE Simulations. Journal of Alloys and Compounds, 889, Article 161664. https://doi.org/10.1016/j.jallcom.2021.161664
|
[55]
|
Turlo, V., Politano, O. and Baras, F. (2015) Dissolution Process at Solid/Liquid Interface in Nanometric Metallic Multilayers: Molecular Dynamics Simulations Versus Diffusion Modeling. Acta Materialia, 99, 363-372. https://doi.org/10.1016/j.actamat.2015.07.076
|