[1]
|
Nishi, Y. (2001) Lithium Ion Secondary Batteries; Past 10 Years and the Future. Journal of Power Sources, 100, 101-106. https://doi.org/10.1016/s0378-7753(01)00887-4
|
[2]
|
Yoshino, A. (2012) The Birth of the Lithium‐Ion Battery. Angewandte Chemie International Edition, 51, 5798-5800. https://doi.org/10.1002/anie.201105006
|
[3]
|
Zeng, X., Li, M., Abd El‐Hady, D., Alshitari, W., Al‐Bogami, A.S., Lu, J., et al. (2019) Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 9, Article ID: 1900161. https://doi.org/10.1002/aenm.201900161
|
[4]
|
Hosaka, T., Shimamura, T., Kubota, K. and Komaba, S. (2018) Polyanionic Compounds for Potassium‐Ion Batteries. The Chemical Record, 19, 735-745. https://doi.org/10.1002/tcr.201800143
|
[5]
|
Chao, D., Zhou, W., Xie, F., Ye, C., Li, H., Jaroniec, M., et al. (2020) Roadmap for Advanced Aqueous Batteries: From Design of Materials to Applications. Science Advances, 6, eaba4098. https://doi.org/10.1126/sciadv.aba4098
|
[6]
|
Faegh, E., Ng, B., Hayman, D. and Mustain, W.E. (2020) Practical Assessment of the Performance of Aluminium Battery Technologies. Nature Energy, 6, 21-29. https://doi.org/10.1038/s41560-020-00728-y
|
[7]
|
Bai, R., Yang, J., Li, G., Luo, J. and Tang, W. (2021) Rechargeable Aqueous Aluminum-FeFe(CN)6 Battery with Artificial Interphase through Deep Eutectic Solution. Energy Storage Materials, 41, 41-50. https://doi.org/10.1016/j.ensm.2021.05.025
|
[8]
|
Jia, B., Thang, A.Q., Yan, C., Liu, C., Lv, C., Zhu, Q., et al. (2022) Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook. Small, 18, Article ID: 2107773. https://doi.org/10.1002/smll.202107773
|
[9]
|
Zhao, Q., Zachman, M.J., Al Sadat, W.I., Zheng, J., Kourkoutis, L.F. and Archer, L. (2018) Solid Electrolyte Interphases for High-Energy Aqueous Aluminum Electrochemical Cells. Science Advances, 4, eaau8131. https://doi.org/10.1126/sciadv.aau8131
|
[10]
|
He, S., Wang, J., Zhang, X., Chen, J., Wang, Z., Yang, T., et al. (2019) A High‐Energy Aqueous Aluminum‐Manganese Battery. Advanced Functional Materials, 29, Article ID: 1905228. https://doi.org/10.1002/adfm.201905228
|
[11]
|
Wu, C., Gu, S., Zhang, Q., Bai, Y., Li, M., Yuan, Y., et al. (2019) Electrochemically Activated Spinel Manganese Oxide for Rechargeable Aqueous Aluminum Battery. Nature Communications, 10, Article No. 73. https://doi.org/10.1038/s41467-018-07980-7
|
[12]
|
Yan, C., Lv, C., Wang, L., Cui, W., Zhang, L., Dinh, K.N., et al. (2020) Architecting a Stable High-Energy Aqueous Al-Ion Battery. Journal of the American Chemical Society, 142, 15295-15304. https://doi.org/10.1021/jacs.0c05054
|
[13]
|
Yang, J., Gong, W. and Geng, F. (2023) Defect Modulation in Cobalt Manganese Oxide Sheets for Stable and High‐ Energy Aqueous Aluminum‐Ion Batteries. Advanced Functional Materials, 33, Article ID: 2301202. https://doi.org/10.1002/adfm.202301202
|
[14]
|
Joseph, J., Nerkar, J., Tang, C., Du, A., O’Mullane, A.P. and Ostrikov, K. (2019) Reversible Intercalation of Multivalent Al3+ Ions into Potassium‐Rich Cryptomelane Nanowires for Aqueous Rechargeable Al‐Ion Batteries. ChemSusChem, 12, 3670-3670. https://doi.org/10.1002/cssc.201902126
|
[15]
|
Joseph, J., Fernando, J.F.S., Sayeed, M.A., Tang, C., Golberg, D., Du, A., et al. (2020) Exploring Aluminum‐Ion Insertion into Magnesium‐Doped Manjiroite (MnO2) Nanorods in Aqueous Solution. ChemElectroChem, 8, 1048-1054. https://doi.org/10.1002/celc.202001408
|
[16]
|
Li, R., Xu, C., Wu, X., Zhang, J., Yuan, X., Wang, F., et al. (2022) Aluminum-Ion Storage Reversibility in a Novel Spinel Al2/3Li1/3Mn2O4 Cathode for Aqueous Rechargeable Aluminum Batteries. Energy Storage Materials, 53, 514-522. https://doi.org/10.1016/j.ensm.2022.09.034
|
[17]
|
Kumar, S., Satish, R., Verma, V., Ren, H., Kidkhunthod, P., Manalastas, W., et al. (2019) Investigating FeVO4 as a Cathode Material for Aqueous Aluminum-Ion Battery. Journal of Power Sources, 426, 151-161. https://doi.org/10.1016/j.jpowsour.2019.03.119
|
[18]
|
De, P., Halder, J., Priya, S., Srivastava, A.K. and Chandra, A. (2023) Two-dimensional V2O5 Nanosheets as an Advanced Cathode Material for Realizing Low-Cost Aqueous Aluminum-Ion Batteries. ACS Applied Energy Materials, 6, 753-762. https://doi.org/10.1021/acsaem.2c02979
|
[19]
|
Kim, J., Kim, M., Selvamani, T., Tak, Y. and Lee, G. (2022) Multi‐Ionic Capacity of Zn-Al/V6O13 Systems Enable Fast‐Charging and Ultra‐Stable Aqueous Aluminium‐Ion Batteries. ChemElectroChem, 9, e202200964. https://doi.org/10.1002/celc.202200964
|
[20]
|
Cai, Y., Kumar, S., Chua, R., Verma, V., Yuan, D., Kou, Z., et al. (2020) Bronze-Type Vanadium Dioxide Holey Nanobelts as High Performing Cathode Material for Aqueous Aluminium-Ion Batteries. Journal of Materials Chemistry A, 8, 12716-12722. https://doi.org/10.1039/d0ta03986a
|
[21]
|
Wang, Y., Shi, X., Wang, J., Liu, X. and Lu, X. (2021) Nanobelt-Like Vanadium Dioxide with Three-Dimensional Interconnected Tunnel Structure Enables Ultrafast Al-Ion Storage. Materials Today Energy, 19, Article ID: 100578. https://doi.org/10.1016/j.mtener.2020.100578
|
[22]
|
He, X., Li, Z., Wang, Y., Xu, W., Zhang, Q., Wang, X., et al. (2022) A High-Purity Ago Cathode Active Material for High-Performance Aqueous Ago-Al Batteries. Journal of Power Sources, 551, Article ID: 232151. https://doi.org/10.1016/j.jpowsour.2022.232151
|
[23]
|
Simonov, A., De Baerdemaeker, T., Boström, H.L.B., Ríos Gómez, M.L., Gray, H.J., Chernyshov, D., et al. (2020) Hidden Diversity of Vacancy Networks in Prussian Blue Analogues. Nature, 578, 256-260. https://doi.org/10.1038/s41586-020-1980-y
|
[24]
|
Liu, S., Pan, G.L., Li, G.R. and Gao, X.P. (2015) Copper Hexacyanoferrate Nanoparticles as Cathode Material for Aqueous Al-Ion Batteries. Journal of Materials Chemistry A, 3, 959-962. https://doi.org/10.1039/c4ta04644g
|
[25]
|
Li, X., Wu, A., Gao, C., Li, Z. and Lee, S.W. (2023) Copper Hexacyanoferrate as a Long-Life Cathode for Aqueous Aluminum Ion Batteries. Materials Today Energy, 31, Article ID: 101205. https://doi.org/10.1016/j.mtener.2022.101205
|
[26]
|
Zhou, A., Jiang, L., Yue, J., Tong, Y., Zhang, Q., Lin, Z., et al. (2019) Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN)6 Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & Interfaces, 11, 41356-41362. https://doi.org/10.1021/acsami.9b14149
|
[27]
|
Wang, D., Lv, H., Hussain, T., Yang, Q., Liang, G., Zhao, Y., et al. (2021) A Manganese Hexacyanoferrate Framework with Enlarged Ion Tunnels and Two‐species Redox Reaction for Aqueous Al-Ion Batteries. Nano Energy, 84, Article ID: 105945. https://doi.org/10.1016/j.nanoen.2021.105945
|
[28]
|
Wang, F., Yu, F., Wang, X., Chang, Z., Fu, L., Zhu, Y., et al. (2016) Aqueous Rechargeable Zinc/aluminum Ion Battery with Good Cycling Performance. ACS Applied Materials & Interfaces, 8, 9022-9029. https://doi.org/10.1021/acsami.5b06142
|
[29]
|
Yan, L., Zeng, X., Zhao, S., Jiang, W., Li, Z., Gao, X., et al. (2021) 9, 10-Anthraquinone/K2CuFe(CN)6: A Highly Compatible Aqueous Aluminum-Ion Full-Battery Configuration. ACS Applied Materials & Interfaces, 13, 8353-8360. https://doi.org/10.1021/acsami.0c20543
|
[30]
|
Kumar, S., Verma, V., Arora, H., Manalastas, W. and Srinivasan, M. (2020) Rechargeable Al-Metal Aqueous Battery Using NaMnHCF as a Cathode: Investigating the Role of Coated-Al Anode Treatments for Superior Battery Cycling Performance. ACS Applied Energy Materials, 3, 8627-8635. https://doi.org/10.1021/acsaem.0c01240
|
[31]
|
Gao, Y., Yang, H., Wang, X., Bai, Y., Zhu, N., Guo, S., et al. (2020) The Compensation Effect Mechanism of Fe-Ni Mixed Prussian Blue Analogues in Aqueous Rechargeable Aluminum‐Ion Batteries. ChemSusChem, 13, 732-740. https://doi.org/10.1002/cssc.201903067
|
[32]
|
Ru, Y., Zheng, S., Xue, H. and Pang, H. (2020) Potassium Cobalt Hexacyanoferrate Nanocubic Assemblies for High-Performance Aqueous Aluminum Ion Batteries. Chemical Engineering Journal, 382, Article ID: 122853. https://doi.org/10.1016/j.cej.2019.122853
|
[33]
|
Pan, W., Wang, Y., Zhang, Y., Kwok, H.Y.H., Wu, M., Zhao, X., et al. (2019) A Low-Cost and Dendrite-Free Rechargeable Aluminium-Ion Battery with Superior Performance. Journal of Materials Chemistry A, 7, 17420-17425. https://doi.org/10.1039/c9ta05207k
|
[34]
|
Nandi, S. and Das, S.K. (2019) Realizing a Low-Cost and Sustainable Rechargeable Aqueous Aluminum-Metal Battery with Exfoliated Graphite Cathode. ACS Sustainable Chemistry & Engineering, 7, 19839-19847. https://doi.org/10.1021/acssuschemeng.9b05185
|
[35]
|
Smajic, J., Alazmi, A., Wehbe, N. and Costa, P.M.F.J. (2021) Electrode-Electrolyte Interactions in an Aqueous Aluminum-Carbon Rechargeable Battery System. Nanomaterials, 11, Article 3235. https://doi.org/10.3390/nano11123235
|
[36]
|
Smajic, J., Hasanov, B.E., Alazmi, A., Emwas, A., Wehbe, N., Genovese, A., et al. (2021) Aqueous Aluminum‐Carbon Rechargeable Batteries. Advanced Materials Interfaces, 9, Article ID: 2101733. https://doi.org/10.1002/admi.202101733
|
[37]
|
Krishnamoorthy, M. and Jha, N. (2019) Oxygen-Rich Hierarchical Porous Graphene as an Excellent Electrode for Supercapacitors, Aqueous Al-Ion Battery, and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 7, 8475-8489. https://doi.org/10.1021/acssuschemeng.9b00233
|