认知老化对老年人风险决策恶化的影响
The Effect of Cognitive Aging on the Deterioration of Risky Decision Making in Older Adults
DOI: 10.12677/ap.2024.148591, PDF, HTML, XML,    科研立项经费支持
作者: 冯培仪*, 柳凯月*, 蔡月霞, 汤嘉欣, 全 鹏:广东医科大学人文与管理学院心理学系,广东 东莞
关键词: 风险决策认知老化Risky Decision Making Cognitive Aging
摘要: 随着我国进入老龄化社会,老年人的风险决策能力恶化越来越受到研究者的重视。认知老化是指学习能力、信息搜索能力、记忆能力、执行功能和计算能力等认知能力随着自然衰老而下降。认知老化是老年人风险决策恶化的危险因素。具体来说,认知老化使老年人更难做出理性决策,从而降低了决策的质量。未来的研究方向应重点关注整合各种认知领域,并进一步探索个体层面的领域特定规律。
Abstract: With the aging population in China, researchers are increasingly paying attention to the deterioration of risk decision-making abilities among older adults. Cognitive aging refers to the decline in cognitive abilities such as learning, information retrieval, memory, executive function, and calculation ability as a result of natural aging. Cognitive aging is a risk factor for the deterioration of risk decision-making among older adults. Specifically, cognitive aging makes it more difficult for older adults to make rational decisions, thereby reducing the quality of their decision-making. Future research directions should focus on integrating various cognitive domains and further exploring domain-specific regularities at the individual level.
文章引用:冯培仪, 柳凯月, 蔡月霞, 汤嘉欣, 全鹏 (2024). 认知老化对老年人风险决策恶化的影响. 心理学进展, 14(8), 632-637. https://doi.org/10.12677/ap.2024.148591

1. 引言

老年人的风险决策对他们的生活影响深远。随着年龄的增长,老年人面临着各种健康、金融和社会方面的挑战,这些挑战会影响他们的风险决策,并最终影响他们的生活质量。随着我国进入老龄化社会,老年人的风险决策能力恶化越来越受到研究者的重视。

为了解释老年人的风险决策恶化,研究者提出了“额叶衰老假说”(West, 1996)、“神经调节理论”(Eppinger et al., 2011)、“社会情绪选择性理论”(Carstensen et al., 1999)、“流体智力与晶体智力理论”(Peters et al., 2007)、“知识效应理论”(Ramscar et al., 2014)等假设。风险决策的影响因素包括认知能力、风险偏好、情绪、动机等。以美国的医疗保险为例子,美国的医疗保险可以为受益人(大多为65岁以上老年人)提供购买保险以支付医药费的机会,但是类似的购买方案过多,据2019年统计,受益人平均有48种不同可供选择的方案,但是73%的老年人认为这样的选择过于复杂,“要是我有一张由医疗保险提供的卡,就能降低医药费是最好的”。因此,推测衰老导致的认知能力下降可能是决策质量下降的主要影响因素(Pachur et al., 2017)。大部分老年人存在认知能力下降的趋势,即认知老化(Wilson, Sevi, Strough, & Shook, 2022)。认知老化是指老年人的认知能力存在一般性下降,并有部分认知能力得到了保持或者增强(Li et al., 2020; Sugiura, 2016)。认知老化是风险决策质量下降的危险因素(Pachur, Mata, & Hertwig, 2017)。因此,研究老年人风险决策恶化的风险因素有重大的社会意义。

2. 学习能力

老年学习能力呈现下降趋势(Wilson, Sevi, Strough, & Shook, 2022),对于老年人的风险决策有着相当大的影响。基于时间顺序记忆表征任务中项目–项目关联的显式序列学习已经显示出随着年龄的增长而下降(Allen, Morris, Stark, Fortin, & Stark, 2015)。高能力老年人的内隐学习与年轻人无异,但低能力老年人难以发生内隐学习(Vistamehr & Neptune, 2021)。在内隐学习下可能会出现厌恶产生更多损失的消极偏见而导致做出不太理性的决定(Molins, Martínez-Tomás, & Serrano, 2022)。虽然老年人的外显学习能力下降,内隐学习能力变化不明确,但内隐学习能力与自身能力高低有关,该效应在老年人身上更为明显,且没有明确的研究表明,老年人的外显或内隐学习能力的下降会导致其风险决策质量恶化。现有研究更多地关注于学习与认知之间的关系,较少对于学习能力下降与风险决策之间相关的影响关系。

3. 信息搜索能力

在风险决策中,决策者需从题干以及以往经验中,搜索出与决策有关的新/旧信息。新信息也称向外信息搜索能力,依赖于信息识别和筛选;旧信息也称向内信息搜索能力,包括记忆能力和联想能力。在决策前,老年人相比于年轻人会进行更少的向外信息搜索,却花费更多的时间(Liu, Ji, & Peng, 2021),因此更倾向于考虑更少的信息以及更简单的决策策略(Podestà, 2021)。且老年人向内的信息搜索能力也有所下降。老年人在固定的时间间隔内回忆起的项目数量始终少于年轻人。由于受两个外在因素(选择集的复杂性和决策任务的难度)和两个内在因素(偏好的不确定性和决策的目标)的影响(Peterson & Cheng, 2022),老年人在做出复杂选择情况下的决定,会较简单选择的情况,有更多的不满和后悔。

全局变慢假说认为,与年龄相关的认知变慢是导致检索缺陷的原因(Mayr & Kliegl, 2000);聚类切换假说认为,记忆检索是一个动态过程,首先是对语义类别的搜索,其次是对类别内的单词的搜索和回忆(Peeters, Romero-Ortuno, Lawlor, Kenny, & McHugh Power, 2020);线索维持假说认为,记忆检索是个体使用特定的检索线索来获取记忆的动态过程(Ester & Weese, 2023)。

总体而言,在决策中老年人无论向内还是向外的信息搜索能力相比于年轻人都较低。老年人的向外搜索能力会通过降低搜索次数、降低搜索目标数量而导致下降;老年人的向内搜索能力是由于认知速度变慢、记忆检索中的动态切换速度下降以及根据线索获取记忆困难的原因导致下降的。

4. 记忆能力

更好的记忆会带来更高质量的决策。情景记忆、语义记忆、工作记忆较差的老年人与更高的欺诈易感性有关,而欺诈易感性是风险决策能力的一种表现(Yu et al., 2021)。当决策任务复杂且有时间限制时,工作记忆下降会严重损害老年人的决策质量(O’Brien & Hess, 2020),这可能是因为老年人在回忆过程中更倾向于在局部和全局线索之间频繁地切换有关(van Ede, Chekroud, Stokes, & Nobre, 2019)。衰老导致的工作记忆容量减少可能会导致检索线索之间的切换增加,从而导致老年人的决策恶化。情景记忆在做出基于价值的选择中发挥着重要作用(Biderman, Bakkour, & Shohamy, 2020),但会随着年龄的增加而衰退。相比于年轻人,老年人具有更为混乱的记忆表征(Amer, Wynn, & Hasher, 2022),在情景记忆任务中更加依赖语义记忆进行决策(Lalla, Tarder-Stoll, Hasher, & Duncan, 2022),他们更多地依赖自动发生、消耗能量更少的语义记忆来指导决策以补偿情景记忆的缺失(Murphy & Castel, 2021),或使用过去单一的熟悉经验简单地决策(Amer, Wynn, & Hasher, 2022),因此在情景熟悉,与长期生活经验相关的情况下进行简单的决策,可能会为老年人带来好处。老年人由于工作记忆下降,利用情景记忆会产生混乱的表征,更多地依赖语义记忆,但语义记忆具有极大的局限性,因此记忆下降的老年人进行风险决策具有极大的危险性。

5. 执行能力

执行功能包括抑制、刷新、转换三种子成分(de Bruijn et al., 2023; Glisky et al., 2021)。老年执行功能下降影响复杂决策的能力,主要表现在低抑制控制力以及刷新能力下降(Idowu & Szameitat, 2023)。刷新功能参与了工作记忆表征的主动修正和监控。而抑制功能是主动抑制反应或想法,或者在面对干扰时保持个体的注意力集中在目标相关的信息上,在面临压力或认知负荷增加时,抑制功能会更低,更易做出不理性决策(Mishra, Singh, & Jaikumar, 2021)。在转换功能中,具有更强转换能力的个体能够更好地在相关的概率判断之间来回切换,便于在不同的概率判断之间进行比较,并增加他们识别相关判断的可能性,且拥有适当的心态和认知资源,风险决策战略更稳定,对不同选项的评价更全面系统(Del Missier, Mäntylä, & Bruine de Bruin, 2010)。如果老年人的转换功能受损,意味着他们在接受信息或转变目标时出现困难会做出不一致的风险评估,从而影响他们的决策质量。执行功能越差的人越有可能做出冒险决定,更强的执行控制能力与更有利的决策相关,老化衰退的执行功能会导致老年人做出更不利的风险决策(Marquez-Ramos et al., 2023)。

6. 计算能力

计算能力是通过对信息数据进行处理,实现目标结果的输出。决策通常涉及数字信息的处理,而计算能力较低会导致老年人更难做出理性决策(Wood, Liu, Hanoch, & Estevez-Cores, 2016)。

在此之前的研究呈两种不同的结果,一些发现老年人的计算能力低于年轻人会导致决策恶化,一些研究又发现成年人的计算能力对决策结果影响没有年龄差异(Kreijns, Bijker, & Weidlich, 2020)。任务难度单一简单时老年人与年轻人决策质量无明显差异,而任务难度稍难时则显示出差异(Wolfe, 2021)。若计算能力一般的老年人在难度差异较大的任务中决策质量具有较大差异,对难度较大的表现出较低满意度,而高计算能力者则在不同难度下均保持相对稳定的决策质量(Peterson & Cheng, 2022)。这些差异存在的原因可能是因为控制因素单一且实验因素混合,还存在其他中介因素,如参与者的选择程序与动机等。

检索模型理论认为,老年人更经常地从长时记忆中检索算术;自动计算过程模型理论认为,老年人因比年轻人经历更多,运用计算能力的时间更长,因此他们会拥有更有效的自动化和无意识计算过程(Thevenot et al., 2019)。部分研究发现,老年人与年轻人的决策质量没有差异可能是因为老年人经常运用并形成了自动计算程序弥补了认知老化的缺陷。而决策质量出现年龄差异可能是因为老年人并不熟悉该决策的计算过程且任务难度较大,需要在长时记忆中进行检索算术。

7. 结语

风险决策需要理解、学习、信息搜索、记忆、计算等认知因素的综合发挥作用。纵向研究表明,决策能力在整个成年期保持相对稳定,直到晚年才有所下降(Boyle et al., 2012)。

老年人希望可以耗费较少的努力就可以作出较好的决策。当决策复杂时,与年龄相关的流动推理能力、工作记忆、执行能力以及计算能力下降会损害老年人的决策质量。我们应帮助老年人简单化决策的模式,减少决策中的干扰信息(金富强,2021),增强决策信息以降低老年人计算的认知需求(Chen et al., 2021),对老年人进行抑制控制训练形成自动化程序(徐鹏博,2021),以较少地调用老年人的认知能力和较少地消耗老年人的身心能量,让他们更好地理解事件本身且更为理性地进行决策,从而提高决策质量和老年人的决策满意度。

致 谢

向各基金、各位导师所提供的帮助和支持,以及所有给予转载和引用权的资料、文献所有者,表示感谢。

基金项目

广东省哲学社会科学规划项目(GD23XXL07),广东省高等学校科研平台及科研项目和教育科学规划(特色创新项目) (2023WTSCX034),广东医科大学科研培育基金(GDMUZ2023009)。

NOTES

*共同第一作者。

参考文献

[1] 金富强(2021). 动态决策中干扰性信息对老年人决策质量的影响. 硕士学位论文, 杭州: 杭州师范大学.
https://link.cnki.net/doi/10.27076/d.cnki.ghzsc.2021.000525
[2] 徐鹏博(2021). 抑制控制训练对风险决策的影响及相关ERP研究. 硕士学位论文, 西安: 中国人民解放军空军军医大学.
https://link.cnki.net/doi/10.27002/d.cnki.gsjyu.2021.000141
[3] Allen, T. A., Morris, A. M., Stark, S. M., Fortin, N. J., & Stark, C. E. L. (2015). Memory for Sequences of Events Impaired in Typical Aging. Learning & Memory, 22, 138-148.
https://doi.org/10.1101/lm.036301.114
[4] Amer, T., Wynn, J. S., & Hasher, L. (2022). Cluttered Memory Representations Shape Cognition in Old Age. Trends in Cognitive Sciences, 26, 255-267.
https://doi.org/10.1016/j.tics.2021.12.002
[5] Biderman, N., Bakkour, A., & Shohamy, D. (2020). What Are Memories For? The Hippocampus Bridges Past Experience with Future Decisions. Trends in Cognitive Sciences, 24, 542-556.
https://doi.org/10.1016/j.tics.2020.04.004
[6] Boyle, P. A., Yu, L., Wilson, R. S., Gamble, K., Buchman, A. S., & Bennett, D. A. (2012). Poor Decision Making Is a Consequence of Cognitive Decline among Older Persons without Alzheimer’s Disease or Mild Cognitive Impairment. PLOS ONE, 7, e43647.
https://doi.org/10.1371/journal.pone.0043647
[7] Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking Time Seriously: A Theory of Socioemotional Selectivity. American Psychologist, 54, 165-181.
https://doi.org/10.1037//0003-066x.54.3.165
[8] Chen, H., Dix, A., Goh, J. O. S., Smolka, M. N., Thurm, F., & Li, S. (2021). Effects and Mechanisms of Information Saliency in Enhancing Value-Based Decision-Making in Younger and Older Adults. Neurobiology of Aging, 99, 86-98.
https://doi.org/10.1016/j.neurobiolaging.2020.11.018
[9] de Bruijn, A. G. M., Meijer, A., Königs, M., Oosterlaan, J., Smith, J., & Hartman, E. (2023). The Mediating Role of Neurocognitive Functions in the Relation between Physical Competencies and Academic Achievement of Primary School Children. Psychology of Sport and Exercise, 66, Article ID: 102390.
https://doi.org/10.1016/j.psychsport.2023.102390
[10] Del Missier, F., Mäntylä, T., & Bruine de Bruin, W. (2010). Executive Functions in Decision Making: An Individual Differences Approach. Thinking & Reasoning, 16, 69-97.
https://doi.org/10.1080/13546781003630117
[11] Eppinger, B., Hämmerer, D., & Li, S. (2011). Neuromodulation of Reward‐Based Learning and Decision Making in Human Aging. Annals of the New York Academy of Sciences, 1235, 1-17.
https://doi.org/10.1111/j.1749-6632.2011.06230.x
[12] Ester, E., & Weese, R. (2023). Temporally Dissociable Mechanisms of Spatial, Feature, and Motor Selection during Working Memory-Guided Behavior. Journal of Cognitive Neuroscience, 35, 2014-2027.
https://doi.org/10.1162/jocn_a_02061
[13] Glisky, E. L., Alexander, G. E., Hou, M., Kawa, K., Woolverton, C. B., Zigman, E. K. et al. (2021). Differences between Young and Older Adults in Unity and Diversity of Executive Functions. Aging, Neuropsychology, and Cognition, 28, 829-854.
https://doi.org/10.1080/13825585.2020.1830936
[14] Idowu, M. I., & Szameitat, A. J. (2023). Executive Function Abilities in Cognitively Healthy Young and Older Adults—A Cross-Sectional Study. Frontiers in Aging Neuroscience, 15, Article 976915.
https://doi.org/10.3389/fnagi.2023.976915
[15] Kreijns, K., Bijker, M., & Weidlich, J. (2020). A Rasch Analysis Approach to the Development and Validation of a Social Presence Measure. In M. Khine (Ed.), Rasch Measurement (pp. 197-221). Springer.
https://doi.org/10.1007/978-981-15-1800-3_11
[16] Lalla, A., Tarder-Stoll, H., Hasher, L., & Duncan, K. (2022). Aging Shifts the Relative Contributions of Episodic and Semantic Memory to Decision-Making. Psychology and Aging, 37, 667-680.
https://doi.org/10.1037/pag0000700
[17] Li, X., Wang, Y., Wang, W., Huang, W., Chen, K., Xu, K. et al. (2020). Age-Related Decline in the Topological Efficiency of the Brain Structural Connectome and Cognitive Aging. Cerebral Cortex, 30, 4651-4661.
https://doi.org/10.1093/cercor/bhaa066
[18] Liu, X., Ji, L., & Peng, H. (2021). The Impacts of Task Relevance and Cognitive Load on Adults’ Decision Information Search. Aging, Neuropsychology, and Cognition, 28, 78-96.
https://doi.org/10.1080/13825585.2020.1712320
[19] Marquez-Ramos, F., Alarcon, D., Amian, J. G., Fernandez-Portero, C., Arenilla-Villalba, M. J., & Sanchez-Medina, J. (2023). Risk Decision Making and Executive Function among Adolescents and Young Adults. Behavioral Sciences, 13, Article 142.
https://doi.org/10.3390/bs13020142
[20] Mayr, U., & Kliegl, R. (2000). Complex Semantic Processing in Old Age: Does It Stay or Does It Go? Psychology and Aging, 15, 29-43.
https://doi.org/10.1037//0882-7974.15.1.29
[21] Mishra, R., Singh, R., & Jaikumar, S. (2021). Executive Functions of Bop Consumers: Research Propositions, Conceptual Framework and Implications for Marketing Strategies for Bop Markets. Journal of Global Marketing, 34, 249-269.
https://doi.org/10.1080/08911762.2021.1926035
[22] Molins, F., Martínez-Tomás, C., & Serrano, M. Á. (2022). Implicit Negativity Bias Leads to Greater Loss Aversion and Learning during Decision-Making. International Journal of Environmental Research and Public Health, 19, Article 17037.
https://doi.org/10.3390/ijerph192417037
[23] Murphy, D. H., & Castel, A. D. (2021). Age-Related Similarities and Differences in the Components of Semantic Fluency: Analyzing the Originality and Organization of Retrieval from Long-Term Memory. Aging, Neuropsychology, and Cognition, 28, 748-761.
https://doi.org/10.1080/13825585.2020.1817844
[24] O’Brien, E. L., & Hess, T. M. (2020). Differential Focus on Probability and Losses between Young and Older Adults in Risky Decision-Making. Aging, Neuropsychology, and Cognition, 27, 532-552.
https://doi.org/10.1080/13825585.2019.1642442
[25] Pachur, T., Mata, R., & Hertwig, R. (2017). Who Dares, Who Errs? Disentangling Cognitive and Motivational Roots of Age Differences in Decisions under Risk. Psychological Science, 28, 504-518.
https://doi.org/10.1177/0956797616687729
[26] Peeters, G., Romero-Ortuno, R., Lawlor, B., Kenny, R. A., & McHugh Power, J. (2020). Clustering of Behavioral Changes and Their Associations with Cognitive Decline in Older Adults. Journal of the American Medical Directors Association, 21, 1689-1695.e1.
https://doi.org/10.1016/j.jamda.2020.05.063
[27] Peters, E., Hess, T. M., Västfjäll, D., & Auman, C. (2007). Adult Age Differences in Dual Information Processes: Implications for the Role of Affective and Deliberative Processes in Older Adults’ Decision Making. Perspectives on Psychological Science, 2, 1-23.
https://doi.org/10.1111/j.1745-6916.2007.00025.x
[28] Peterson, N., & Cheng, J. (2022). Decision Experience in Hyperchoice: The Role of Numeracy and Age Differences. Current Psychology, 41, 5399-5411.
https://doi.org/10.1007/s12144-020-01041-3
[29] Podestà, F. (2021). Combining Process Tracing and Synthetic Control Method: Bridging Two Ways for Making Causal Inference in Case Studies. FBK-IRVAPP Working Papers.
[30] Ramscar, M., Hendrix, P., Love, B., & Baayen, R. H. (2014). Learning Is Not Decline: The Mental Lexicon as a Window into Cognition across the Lifespan. The Mental Lexicon, 8, 450-481.
https://doi.org/10.1075/ml.8.3.08ram
[31] Sugiura, M. (2016). Functional Neuroimaging of Normal Aging: Declining Brain, Adapting Brain. Ageing Research Reviews, 30, 61-72.
https://doi.org/10.1016/j.arr.2016.02.006
[32] Thevenot, C., Dewi, J., Bagnoud, J., Wolfer, P., Fayol, M., & Castel, C. (2019). The Use of Automated Procedures by Older Adults with High Arithmetic Skills during Addition Problem Solving. Psychology and Aging, 35, 411-420.
https://doi.org/10.1037/pag0000431
[33] van Ede, F., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2019). Concurrent Visual and Motor Selection during Visual Working Memory Guided Action. Nature Neuroscience, 22, 477-483.
https://doi.org/10.1038/s41593-018-0335-6
[34] Vistamehr, A., & Neptune, R. R. (2021). Differences in Balance Control between Healthy Younger and Older Adults during Steady-State Walking. Journal of Biomechanics, 128, Article ID: 110717.
https://doi.org/10.1016/j.jbiomech.2021.110717
[35] West, R. L. (1996). An Application of Prefrontal Cortex Function Theory to Cognitive Aging. Psychological Bulletin, 120, 272-292.
https://doi.org/10.1037/0033-2909.120.2.272
[36] Wilson, J. M., Sevi, B., Strough, J., & Shook, N. J. (2022). Age Differences in Risk Taking: Now You See Them, Now You Don’t. Aging, Neuropsychology, and Cognition, 29, 651-665.
https://doi.org/10.1080/13825585.2021.1885608
[37] Wolfe, K. (2021). Age Differences in Risk-Taking Behaviour: The Role of Risk Preference and Cognitive Ability. Master’s Thesis, University of Essex.
[38] Wood, S. A., Liu, P., Hanoch, Y., & Estevez-Cores, S. (2016). Importance of Numeracy as a Risk Factor for Elder Financial Exploitation in a Community Sample. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71, 978-986.
https://doi.org/10.1093/geronb/gbv041
[39] Yu, L., Mottola, G., Barnes, L. L., Han, S. D., Wilson, R. S., Bennett, D. A. et al. (2021). Correlates of Susceptibility to Scams in Community-Dwelling Older Black Adults. Gerontology, 67, 729-739.
https://doi.org/10.1159/000515326