[1]
|
金富强(2021). 动态决策中干扰性信息对老年人决策质量的影响. 硕士学位论文, 杭州: 杭州师范大学. https://link.cnki.net/doi/10.27076/d.cnki.ghzsc.2021.000525
|
[2]
|
徐鹏博(2021). 抑制控制训练对风险决策的影响及相关ERP研究. 硕士学位论文, 西安: 中国人民解放军空军军医大学. https://link.cnki.net/doi/10.27002/d.cnki.gsjyu.2021.000141
|
[3]
|
Allen, T. A., Morris, A. M., Stark, S. M., Fortin, N. J., & Stark, C. E. L. (2015). Memory for Sequences of Events Impaired in Typical Aging. Learning & Memory, 22, 138-148. https://doi.org/10.1101/lm.036301.114
|
[4]
|
Amer, T., Wynn, J. S., & Hasher, L. (2022). Cluttered Memory Representations Shape Cognition in Old Age. Trends in Cognitive Sciences, 26, 255-267. https://doi.org/10.1016/j.tics.2021.12.002
|
[5]
|
Biderman, N., Bakkour, A., & Shohamy, D. (2020). What Are Memories For? The Hippocampus Bridges Past Experience with Future Decisions. Trends in Cognitive Sciences, 24, 542-556. https://doi.org/10.1016/j.tics.2020.04.004
|
[6]
|
Boyle, P. A., Yu, L., Wilson, R. S., Gamble, K., Buchman, A. S., & Bennett, D. A. (2012). Poor Decision Making Is a Consequence of Cognitive Decline among Older Persons without Alzheimer’s Disease or Mild Cognitive Impairment. PLOS ONE, 7, e43647. https://doi.org/10.1371/journal.pone.0043647
|
[7]
|
Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking Time Seriously: A Theory of Socioemotional Selectivity. American Psychologist, 54, 165-181. https://doi.org/10.1037//0003-066x.54.3.165
|
[8]
|
Chen, H., Dix, A., Goh, J. O. S., Smolka, M. N., Thurm, F., & Li, S. (2021). Effects and Mechanisms of Information Saliency in Enhancing Value-Based Decision-Making in Younger and Older Adults. Neurobiology of Aging, 99, 86-98. https://doi.org/10.1016/j.neurobiolaging.2020.11.018
|
[9]
|
de Bruijn, A. G. M., Meijer, A., Königs, M., Oosterlaan, J., Smith, J., & Hartman, E. (2023). The Mediating Role of Neurocognitive Functions in the Relation between Physical Competencies and Academic Achievement of Primary School Children. Psychology of Sport and Exercise, 66, Article ID: 102390. https://doi.org/10.1016/j.psychsport.2023.102390
|
[10]
|
Del Missier, F., Mäntylä, T., & Bruine de Bruin, W. (2010). Executive Functions in Decision Making: An Individual Differences Approach. Thinking & Reasoning, 16, 69-97. https://doi.org/10.1080/13546781003630117
|
[11]
|
Eppinger, B., Hämmerer, D., & Li, S. (2011). Neuromodulation of Reward‐Based Learning and Decision Making in Human Aging. Annals of the New York Academy of Sciences, 1235, 1-17. https://doi.org/10.1111/j.1749-6632.2011.06230.x
|
[12]
|
Ester, E., & Weese, R. (2023). Temporally Dissociable Mechanisms of Spatial, Feature, and Motor Selection during Working Memory-Guided Behavior. Journal of Cognitive Neuroscience, 35, 2014-2027. https://doi.org/10.1162/jocn_a_02061
|
[13]
|
Glisky, E. L., Alexander, G. E., Hou, M., Kawa, K., Woolverton, C. B., Zigman, E. K. et al. (2021). Differences between Young and Older Adults in Unity and Diversity of Executive Functions. Aging, Neuropsychology, and Cognition, 28, 829-854. https://doi.org/10.1080/13825585.2020.1830936
|
[14]
|
Idowu, M. I., & Szameitat, A. J. (2023). Executive Function Abilities in Cognitively Healthy Young and Older Adults—A Cross-Sectional Study. Frontiers in Aging Neuroscience, 15, Article 976915. https://doi.org/10.3389/fnagi.2023.976915
|
[15]
|
Kreijns, K., Bijker, M., & Weidlich, J. (2020). A Rasch Analysis Approach to the Development and Validation of a Social Presence Measure. In M. Khine (Ed.), Rasch Measurement (pp. 197-221). Springer. https://doi.org/10.1007/978-981-15-1800-3_11
|
[16]
|
Lalla, A., Tarder-Stoll, H., Hasher, L., & Duncan, K. (2022). Aging Shifts the Relative Contributions of Episodic and Semantic Memory to Decision-Making. Psychology and Aging, 37, 667-680. https://doi.org/10.1037/pag0000700
|
[17]
|
Li, X., Wang, Y., Wang, W., Huang, W., Chen, K., Xu, K. et al. (2020). Age-Related Decline in the Topological Efficiency of the Brain Structural Connectome and Cognitive Aging. Cerebral Cortex, 30, 4651-4661. https://doi.org/10.1093/cercor/bhaa066
|
[18]
|
Liu, X., Ji, L., & Peng, H. (2021). The Impacts of Task Relevance and Cognitive Load on Adults’ Decision Information Search. Aging, Neuropsychology, and Cognition, 28, 78-96. https://doi.org/10.1080/13825585.2020.1712320
|
[19]
|
Marquez-Ramos, F., Alarcon, D., Amian, J. G., Fernandez-Portero, C., Arenilla-Villalba, M. J., & Sanchez-Medina, J. (2023). Risk Decision Making and Executive Function among Adolescents and Young Adults. Behavioral Sciences, 13, Article 142. https://doi.org/10.3390/bs13020142
|
[20]
|
Mayr, U., & Kliegl, R. (2000). Complex Semantic Processing in Old Age: Does It Stay or Does It Go? Psychology and Aging, 15, 29-43. https://doi.org/10.1037//0882-7974.15.1.29
|
[21]
|
Mishra, R., Singh, R., & Jaikumar, S. (2021). Executive Functions of Bop Consumers: Research Propositions, Conceptual Framework and Implications for Marketing Strategies for Bop Markets. Journal of Global Marketing, 34, 249-269. https://doi.org/10.1080/08911762.2021.1926035
|
[22]
|
Molins, F., Martínez-Tomás, C., & Serrano, M. Á. (2022). Implicit Negativity Bias Leads to Greater Loss Aversion and Learning during Decision-Making. International Journal of Environmental Research and Public Health, 19, Article 17037. https://doi.org/10.3390/ijerph192417037
|
[23]
|
Murphy, D. H., & Castel, A. D. (2021). Age-Related Similarities and Differences in the Components of Semantic Fluency: Analyzing the Originality and Organization of Retrieval from Long-Term Memory. Aging, Neuropsychology, and Cognition, 28, 748-761. https://doi.org/10.1080/13825585.2020.1817844
|
[24]
|
O’Brien, E. L., & Hess, T. M. (2020). Differential Focus on Probability and Losses between Young and Older Adults in Risky Decision-Making. Aging, Neuropsychology, and Cognition, 27, 532-552. https://doi.org/10.1080/13825585.2019.1642442
|
[25]
|
Pachur, T., Mata, R., & Hertwig, R. (2017). Who Dares, Who Errs? Disentangling Cognitive and Motivational Roots of Age Differences in Decisions under Risk. Psychological Science, 28, 504-518. https://doi.org/10.1177/0956797616687729
|
[26]
|
Peeters, G., Romero-Ortuno, R., Lawlor, B., Kenny, R. A., & McHugh Power, J. (2020). Clustering of Behavioral Changes and Their Associations with Cognitive Decline in Older Adults. Journal of the American Medical Directors Association, 21, 1689-1695.e1. https://doi.org/10.1016/j.jamda.2020.05.063
|
[27]
|
Peters, E., Hess, T. M., Västfjäll, D., & Auman, C. (2007). Adult Age Differences in Dual Information Processes: Implications for the Role of Affective and Deliberative Processes in Older Adults’ Decision Making. Perspectives on Psychological Science, 2, 1-23. https://doi.org/10.1111/j.1745-6916.2007.00025.x
|
[28]
|
Peterson, N., & Cheng, J. (2022). Decision Experience in Hyperchoice: The Role of Numeracy and Age Differences. Current Psychology, 41, 5399-5411. https://doi.org/10.1007/s12144-020-01041-3
|
[29]
|
Podestà, F. (2021). Combining Process Tracing and Synthetic Control Method: Bridging Two Ways for Making Causal Inference in Case Studies. FBK-IRVAPP Working Papers.
|
[30]
|
Ramscar, M., Hendrix, P., Love, B., & Baayen, R. H. (2014). Learning Is Not Decline: The Mental Lexicon as a Window into Cognition across the Lifespan. The Mental Lexicon, 8, 450-481. https://doi.org/10.1075/ml.8.3.08ram
|
[31]
|
Sugiura, M. (2016). Functional Neuroimaging of Normal Aging: Declining Brain, Adapting Brain. Ageing Research Reviews, 30, 61-72. https://doi.org/10.1016/j.arr.2016.02.006
|
[32]
|
Thevenot, C., Dewi, J., Bagnoud, J., Wolfer, P., Fayol, M., & Castel, C. (2019). The Use of Automated Procedures by Older Adults with High Arithmetic Skills during Addition Problem Solving. Psychology and Aging, 35, 411-420. https://doi.org/10.1037/pag0000431
|
[33]
|
van Ede, F., Chekroud, S. R., Stokes, M. G., & Nobre, A. C. (2019). Concurrent Visual and Motor Selection during Visual Working Memory Guided Action. Nature Neuroscience, 22, 477-483. https://doi.org/10.1038/s41593-018-0335-6
|
[34]
|
Vistamehr, A., & Neptune, R. R. (2021). Differences in Balance Control between Healthy Younger and Older Adults during Steady-State Walking. Journal of Biomechanics, 128, Article ID: 110717. https://doi.org/10.1016/j.jbiomech.2021.110717
|
[35]
|
West, R. L. (1996). An Application of Prefrontal Cortex Function Theory to Cognitive Aging. Psychological Bulletin, 120, 272-292. https://doi.org/10.1037/0033-2909.120.2.272
|
[36]
|
Wilson, J. M., Sevi, B., Strough, J., & Shook, N. J. (2022). Age Differences in Risk Taking: Now You See Them, Now You Don’t. Aging, Neuropsychology, and Cognition, 29, 651-665. https://doi.org/10.1080/13825585.2021.1885608
|
[37]
|
Wolfe, K. (2021). Age Differences in Risk-Taking Behaviour: The Role of Risk Preference and Cognitive Ability. Master’s Thesis, University of Essex.
|
[38]
|
Wood, S. A., Liu, P., Hanoch, Y., & Estevez-Cores, S. (2016). Importance of Numeracy as a Risk Factor for Elder Financial Exploitation in a Community Sample. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71, 978-986. https://doi.org/10.1093/geronb/gbv041
|
[39]
|
Yu, L., Mottola, G., Barnes, L. L., Han, S. D., Wilson, R. S., Bennett, D. A. et al. (2021). Correlates of Susceptibility to Scams in Community-Dwelling Older Black Adults. Gerontology, 67, 729-739. https://doi.org/10.1159/000515326
|