免疫细胞在骨质疏松症中的作用:一项孟德尔随机化研究
Role of Immune Cells in Osteoporosis: A Mendelian Randomization Study
DOI: 10.12677/acm.2024.1482370, PDF, HTML, XML,   
作者: 田龙龙, 李 霞*:青岛西海岸新区人民医院风湿免疫科,山东 青岛;高 扬:青岛西海岸新区人民医院感染科,山东 青岛
关键词: 骨质疏松免疫细胞孟德尔随机化因果关系Osteoporosis Immune Cells Mendelian Randomization Causality
摘要: 目的:采用双向孟德尔随机化(Mendelian Randomization, MR)分析探讨免疫细胞与骨质疏松(Osteoporosis, OP)的因果关系,为进一步阐明OP的发生发展提供方向,并指导临床治疗。方法:使用全基因组关联分析(GWAS)数据库的公开数据,运用逆方差加权法(IVW),MR-Egger,加权中位数法,简单模式法(Simple mode),加权模式法(Weighted mode)进行MR分析,评估免疫细胞与骨质疏松的因果关系。结果:MR分析表明有11种免疫细胞表型在IVW和WM两种MR方法均有显著因果影响,其中(CD25 on CD45RA + CD4 not Treg、CD86 on myeloid DC、EM CD4 + AC、IgD on unsw mem) 4个免疫细胞表型对OP的发生成正相关,(CD16 +% monocyte, CD25 on CD4 +、HLA DR + NK% CD3 – lymphocyte, HLA DR + NK% NK、IgD + CD24 +% B cell, Memory B cell% B cell, SSC − A on monocyte) 7个免疫细胞表型对OP的发生成负相关。反向MR分析表明,OP可使(HLA DR + + monocyte% monocyte, HLA DR + + monocyte% leukocyte, HLA DR + + monocyte Absolute Count)三种免疫细胞下降。结论:MR分析结果显示有11种免疫细胞表型对OP均有显著因果影响,反向MR研究显示OP对3种免疫细胞表型有因果影响。
Abstract: Objective: To investigate the causal relationship between immune cells and osteoporosis (OP) by Mendelian Randomization (MR) analysis, and to provide direction for further elucidating the occurrence and development of OP and guiding clinical treatment. Methods: MR analysis was performed using public data from the genome-wide association analysis (GWAS) database using inverse variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode to assess the causal relationship between immune cells and osteoporosis. Results: MR analysis showed that 11 immune cell phenotypes had significant causal effects in IVW and WM MR methods, of which 4 immune cell phenotypes (CD25 on CD45RA + CD4 not Treg, CD86 on myeloid DC, EM CD4 + AC, IgD on unsw mem) were positively correlated with the occurrence of OP, and 7 immune cell phenotypes (CD16 +% monocyte, CD25 on CD4 +, HLA DR + NK% CD3 − lymphocyte, HLA DR + NK% NK, IgD + CD24 +% B cell, Memory B cell% B cell, SSC − A on monocyte) were negatively correlated with the occurrence of OP. Reverse MR analysis showed that OP decreased three immune cells (HLA DR + + monocyte% monocyte, HLA DR + + monocyte% leukocyte, HLA DR + + monocyte Absolute Count). Conclusion: MR analysis showed that 11 immune cell phenotypes had a significant causal effect on OP, and reverse MR study showed that OP had a causal effect on 3 immune cell phenotypes.
文章引用:田龙龙, 高扬, 李霞. 免疫细胞在骨质疏松症中的作用:一项孟德尔随机化研究[J]. 临床医学进展, 2024, 14(8): 1412-1420. https://doi.org/10.12677/acm.2024.1482370

1. 引言

骨质疏松症(Osteoporosis, OP)是一种常见的全身性骨骼疾病,其以骨量下降和骨显微结构破坏为特征。我国现在正步入老龄化社会阶段,研究表明,至2050年。我国骨量减少或骨质疏松患者将达到2.21亿,将对我国医疗事业造成巨大挑战[1] [2]

先前研究表明各种免疫细胞通过直接或间接机制调控成骨细胞和破骨细胞,例如T淋巴细胞的特定亚型表达肿瘤坏死因子α (TNF-α),其可增加成骨细胞凋亡,并通过B淋巴细胞产生的NK-κB配体受体激动剂(RANKL)间接刺激破骨细胞产生,从而导致骨质流失[3] [4]。有研究表明在生理条件下,B淋巴细胞可产生骨保护素(OPG),从而抑制破骨细胞分化,在炎症条件下活化的B淋巴细胞可分泌RANKL,从而激活破骨细胞[5]-[7]。然而,由于观察性研究的局限性,很难避免影响观察结局的反向因果关系及测量误差,导致一些研究出现不一致的结果。

孟德尔随机化(MR)是一种评估观察到的可改变的暴露因素与临床相关结果相关联的因果关系的一种分析方法[8]。由于受孕时单核苷酸多态性(SNP)分配给后代遵循孟德尔随机化分配法则,并且这一过程总是先于疾病发生,因此MR分析不容易受到观察性研究的局限性[9] [10]。在本研究中,我们进行了双样本MR分析,以确定免疫细胞与OP间的因果关系。

2. 材料和方法

基于两样本的MR分析,我们评估了731个免疫细胞与OP之间的因果关系。OP相关数据是从全基因组关联分析(GWAS)数据库中收集的,该数据集包括了484,598名欧洲参与者,共有9,587,836个SNP [11]。免疫细胞数据也是从GWAS数据库中获得[12],共有731中免疫细胞表型,包括118种绝对细胞计数(AC),389种反映表面抗原水平的中位荧光强度(MFI),32种形态参数(MP),192种相对细胞计数(RC)。以上所有数据均从公共数据库中收集并用于分析,无需伦理批准。

MR分析是根据单核苷酸多态性(SNP)可作为暴露因素的工具变量(IV)来评估暴露因素是否会一直影响结果的方法。因此工具变量必须满足以下三个关键的假设:1) SNP与暴露因素直接相关;2) SNP与其他可能影响暴露因素与结果的混杂因素无关;3) SNP只能通过暴露因素影响结果。

在本研究中,我们使用与731种免疫细胞表型相关的SNP作为IV进行分析。根据最近的研究,每个免疫细胞与SNP的关联性设置为1 × 105 (设置距离为10,000 kb,r2为0.001),去除连锁不平衡的SNP,并剔除掉F统计量 < 10的低相关性SNP,保留高相关性的SNP作进一步分析。

为了评估免疫细胞对OP的因果关系,我们使用了五种MR统计方法,包括逆方差加权法(IVW),MR-Egger,加权中位数法,简单模式法(Simple mode),加权模式法(Weighted mode) [13]-[15],使用Q检验评估所选IV间的异质性,并使用漏斗图表示,P > 0.05表示数据间不存在异质性。使用Egger-intercept方法检验IV间是否存在水平多效性,P > 0.05表示IV间不存在多效性。为了检验单个SNP对因果效应的影响,我们进行了“留一法”分析。

以上方法均通过R4.4.1软件实现(http://www.Rproject.org)。

3. 结果

3.1. 免疫细胞表型对OP的因果关系

为了探讨免疫细胞表型对OP的因果影响,我们进行了两样本的MR分析,以IVW方法为主要分析方法,发现有显著影响意义(P < 0.05)的免疫细胞表型37种,其中IVW方法和Weighted median方法同时有显著意义的免疫表型有11个(图1)。其中T淋巴细胞组3个,单核细胞组2个,NK细胞组2个,B淋巴细胞组3个,树突细胞组1个。11个表型中有4个免疫细胞表型对OP的发生成正相关,CD25 on CD45RA+ CD4 not Treg,IVW的优势比(OR),值为1.024,95% CI = 1.006 to 1.043, P = 0.009, WM (OR = 1.029, 95% CI = 1.001 to 1.057, P = 0.042)。CD86 on myeloid DC, IVW (OR = 1.029, 95% CI = 1.005 to 1.054, P = 0.017),WM (OR = 1.047, 95% CI = 1.014 to 1.082, P = 0.005)。EM CD4+ AC, IVW (OR = 1.016, 95% CI = 1.002 to 1.029, P = 0.022),WM (OR = 1.022, 95% CI = 1.001 to 1.042, P = 0.037),IgD on unsw mem, IVW (OR = 1.025, 95% CI = 1.007 to 1.045, P = 0.008),WM (OR = 1.032, 95% CI = 1.006 to 1.058, P = 0.015)。我们发现有7个免疫细胞表型与OP发生呈负相关。CD16+ monocyte %monocyte, IVW (OR = 0.948, 95% CI = 0.916 to 0.980, P = 0.002),WM (OR = 0.942, 95% CI = 0.901 to 0.985, P = 0.008)。CD25 on CD4+, IVW (OR = 0.980, 95% CI = 0.963 to 0.997, P = 0.025),WM (OR = 0.976, 95% CI = 0.954 to 0.998, P = 0.034)。HLA DR+ NK %CD3− lymphocyte, IVW (OR = 0.974, 95% CI = 0.952 to 0.997, P = 0.026),WM (OR = 0.965, 95% CI = 0.935 to 0.995, P = 0.023)。HLA DR+ NK %NK, IVW (OR = 0.963, 95% CI = 0.940 to 0.987, P = 0.002),WM (OR = 0.965, 95% CI = 0.937 to 0.994, P = 0.019)。IgD+ CD24+ %B cell, IVW (OR = 0.968, 95% CI = 0.938 to 1.000, P = 0.047),WM (OR = 0.954, 95% CI = 0.913 to 0.997, P = 0.037)。Memory B cell %B cell, IVW (OR = 0.975, 95% CI = 0.956 to 0.995, P = 0.014),WM (OR = 0.966, 95% CI = 0.938 to 0.995, P = 0.023)。SSC-A on monocyte, IVW (OR = 0.974, 95% CI = 0.957 to 0.990, P = 0.002),WM (OR = 0.965, 95% CI = 0.943 to 0.987, P = 0.002)。同时。我们使用MR-Egger方法和Egger-intercept方法排除异质性和水平多效性,散点图证明了结果的稳健性(图2)。

Figure 1. Relationship between immune cells and risk of osteoporosis in MR analysis. OR, odds ratio; CI, confidence interval

1. MR分析中免疫细胞与骨质疏松发生风险的关系。OR,优势比;CI,可信区间

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J)

(K)

Figure 2. Scatter plots indicate the causal relationship between immune cells and osteoporosis, of which four immune cells (A)~(D) are positively correlated with the occurrence and development of osteoporosis; seven immune cells (E)~(K) are negatively correlated with the occurrence and development of osteoporosis

2. 散点图表明免疫细胞和骨质疏松的因果关系,其中(A)~(D)四种免疫细胞与骨质疏松发生发展成正相关;(E)~(K)七种免疫细胞与骨质疏松的发生发展成负相关

3.2. OP与免疫细胞的因果关系

此外,我们进行了反向MR分析,探索了OP与免疫细胞的因果关系,以IVW方法为主要分析方法,发现OP对3中免疫细胞有显著影响意义(P < 0.05),我们发现OP可减少这三种免疫细胞的水平。HLA DR++ monocyte %monocyte (OR = 0.645, 95% CI = 0.437 to 0.952, P = 0.027),HLA DR++ monocyte %leukocyte (OR = 0.650, 95% CI = 0.440 to 0.960, P = 0.030),HLA DR++ monocyte Absolute Count (OR = 0.650, 95% CI = 0.428 to 0.994, P = 0.047)。使用MR-Egger方法和Egger-intercept方法排除异质性和水平多效性,散点图证明了结果的稳健性(图3)。

(A) (B)

(C)

Figure 3. Scatter plot shows that osteoporosis can decrease these three immune cells

3. 散点图表明骨质疏松可使此三种免疫细胞下降

4. 讨论

本研究使用孟德尔随机化分析评估了731种免疫细胞表型对OP发生发展的潜在因果关系。我们研究发现CD25 on CD45RA+ CD4 not Treg、CD86 on myeloid DC、EM CD4+ AC、IgD on unsw mem四种免疫细胞表型对OP发生发展正相关,CD16+ monocyte %monocyte、CD25 on CD4+、HLA DR+ NK %CD3− lymphocyte、HLA DR+ NK %NK、IgD+ CD24+ %B cell、Memory B cell %B cell、SSC-A on monocyte七种免疫细胞表型对OP发生发展负相关。我们所做的所有发现可能会提高我们对OP生物学机制的理解,并可能阐明免疫细胞作为OP发展风险因素的潜在作用。

最近一些年,随着人们对免疫系统了解的深入,人们越来越认识到免疫系统在人类骨质疏松症的发展中起着重要作用。B淋巴细胞是体液适应性免疫系统中最重要的组成部分,有研究表明,B淋巴细胞产生的骨保护素(OPG)大约占骨髓中OPG总量的一半,在B淋巴细胞敲除的小鼠中,其骨髓缺乏OPG,更易出现骨质疏松症[16] [17]。然而,也有研究表明,在炎症环境中,B淋巴细胞会分泌RANKL,从而刺激破骨细胞的活化导致骨质疏松症[5] [6] [18]。此外,在炎症环境中的B淋巴细胞通过增加趋化因子CXC配体12 (CXCL12)分泌粒细胞集落刺激因子(C-CSF),导致破骨细胞祖细胞的增殖[19]。研究表面,中性粒细胞可上调活化T细胞核因子来增强破骨细胞分化,从而促进骨质疏松[20]

虽然目前研究表明免疫细胞对骨质疏松的发生发展有影响,但具体生物学机制尚不明确。以往的观察性研究由于其局限性,很难排除反向因果关系、测量误差等混杂因素对OP的影响。此外,近年来随机对照试验的实施也较为困难,因此我们认为MR分析是评估OP因果关系的更好方法,因为MR分析的结果较少受到上述混杂因素的干扰。

5. 结论

基于公开数据,我们探索了731个免疫细胞表型与OP的因果关系,结果显示有37种免疫细胞表型对OP有因果影响(P < 0.05),其中有11种免疫细胞表型在IVW和WM两种MR方法均有显著因果影响。反向MR研究显示OP对3种免疫细胞表型有因果影响(P < 0.05)。

NOTES

*通讯作者。

参考文献

[1] 周坤, 林剑, 莫亚峰, 等. 成骨细胞介导的相关信号通路在老年骨质疏松症中的研究进展[J]. 中国骨质疏松杂志, 2023, 29(8): 1203-1207, 1219
[2] 刘雅利, 封俨宸, 党雪, 等. 免疫细胞介导的炎症与骨质疏松症的机制与作用途径[J]. 中国骨质疏松杂志, 2024, 30(6): 863-868
[3] Pietschmann, P., Grisar, J., Thien, R., Willheim, M., Kerschan-Schindl, K., Preisinger, E., et al. (2001) Immune Phenotype and Intracellular Cytokine Production of Peripheral Blood Mononuclear Cells from Postmenopausal Patients with Osteoporotic Fractures. Experimental Gerontology, 36, 1749-1759.
https://doi.org/10.1016/s0531-5565(01)00125-5
[4] Fischer, V. and Haffner-Luntzer, M. (2022) Interaction between Bone and Immune Cells: Implications for Postmenopausal Osteoporosis. Seminars in Cell & Developmental Biology, 123, 14-21.
https://doi.org/10.1016/j.semcdb.2021.05.014
[5] Weitzmann, M.N. (2013) The Role of Inflammatory Cytokines, the RANKL/OPG Axis, and the Immunoskeletal Interface in Physiological Bone Turnover and Osteoporosis. Scientifica, 2013, Article ID: 125705.
https://doi.org/10.1155/2013/125705
[6] Weitzmann, M.N., Li, Y., Terauchi, M., Vikulina, T. and Roser-Page, S. (2015) B Cell Production of Both OPG and RANKL Is Significantly Increased in Aged Mice. The Open Bone Journal, 6, 8-17.
https://doi.org/10.2174/1876525401406010008
[7] Ono, T., Hayashi, M., Sasaki, F. and Nakashima, T. (2020) RANKL Biology: Bone Metabolism, the Immune System, and Beyond. Inflammation and Regeneration, 40, Article No. 2.
https://doi.org/10.1186/s41232-019-0111-3
[8] Birney, E. (2021) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302.
https://doi.org/10.1101/cshperspect.a041302
[9] Sekula, P., Del Greco M, F., Pattaro, C. and Köttgen, A. (2016) Mendelian Randomization as an Approach to Assess Causality Using Observational Data. Journal of the American Society of Nephrology, 27, 3253-3265.
https://doi.org/10.1681/asn.2016010098
[10] Zhang, Y., Fang, Y., Xu, N., Tian, L., Min, X., Chen, G., et al. (2023) The Causal Effects of Age at Menarche, Age at First Live Birth, and Estradiol Levels on Systemic Lupus Erythematosus: A Two-Sample Mendelian Randomization Analysis. Lupus, 32, 928-935.
https://doi.org/10.1177/09612033231180358
[11] Dönertaş, H.M., Fabian, D.K., Fuentealba, M., Partridge, L. and Thornton, J.M. (2021) Common Genetic Associations between Age-Related Diseases. Nature Aging, 1, 400-412.
https://doi.org/10.1038/s43587-021-00051-5
[12] Orrù, V., Steri, M., Sidore, C., Marongiu, M., Serra, V., Olla, S., et al. (2020) Complex Genetic Signatures in Immune Cells Underlie Autoimmunity and Inform Therapy. Nature Genetics, 52, 1036-1045.
https://doi.org/10.1038/s41588-020-0684-4
[13] Burgess, S., Small, D.S. and Thompson, S.G. (2015) A Review of Instrumental Variable Estimators for Mendelian Randomization. Statistical Methods in Medical Research, 26, 2333-2355.
https://doi.org/10.1177/0962280215597579
[14] Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314.
https://doi.org/10.1002/gepi.21965
[15] Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998.
https://doi.org/10.1093/ije/dyx102
[16] Walsh, M.C. and Choi, Y. (2014) Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond. Frontiers in Immunology, 5, Article 511.
https://doi.org/10.3389/fimmu.2014.00511
[17] Li, Y., Toraldo, G., Li, A., Yang, X., Zhang, H., Qian, W., et al. (2007) B Cells and T Cells Are Critical for the Preservation of Bone Homeostasis and Attainment of Peak Bone Mass in Vivo. Blood, 109, 3839-3848.
https://doi.org/10.1182/blood-2006-07-037994
[18] Onal, M., Xiong, J., Chen, X., Thostenson, J.D., Almeida, M., Manolagas, S.C., et al. (2012) Receptor Activator of Nuclear Factor κB Ligand (RANKL) Protein Expression by B Lymphocytes Contributes to Ovariectomy-Induced Bone Loss. Journal of Biological Chemistry, 287, 29851-29860.
https://doi.org/10.1074/jbc.m112.377945
[19] Zhang, Z., Yuan, W., Deng, J., Wang, D., Zhang, T., Peng, L., et al. (2020) Granulocyte Colony Stimulating Factor (G-CSF) Regulates Neutrophils Infiltration and Periodontal Tissue Destruction in an Experimental Periodontitis. Molecular Immunology, 117, 110-121.
https://doi.org/10.1016/j.molimm.2019.11.003
[20] Agidigbi, T.S. and Kim, C. (2019) Reactive Oxygen Species in Osteoclast Differentiation and Possible Pharmaceutical Targets of Ros-Mediated Osteoclast Diseases. International Journal of Molecular Sciences, 20, Article 3576.
https://doi.org/10.3390/ijms20143576