炎性细胞与缺血性卒中的研究进展
Research Progress on Inflammatory Cells and Ischemic Stroke
DOI: 10.12677/acm.2024.1482374, PDF, HTML, XML,   
作者: 郑彤彤:济宁医学院临床医学院,山东 济宁;国 伟*:济宁市第一人民医院老年医学科,山东 济宁
关键词: 缺血性卒中急性脑梗死炎性细胞淋巴细胞/单核细胞比值(LMR)Ischemic Stroke Acute Cerebral Infarction Inflammatory Cells Lymphocyte/Monocyte Ratio (LMR)
摘要: 急性脑血管疾病包括急性出血性卒中和急性缺血性卒中。目前急性缺血性卒中是我国致死及致残的主要原因之一,亦是全球最常见的卒中类型。作为一种重要的病理机制,急性脑梗死发生后炎症免疫反应会被激活。最为常见的炎症指标是外周血中的白细胞、中性粒细胞、淋巴细胞、单核细胞。本文从神经炎症机制和中性粒细胞、单核细胞、淋巴细胞在发生缺血性卒中后的炎症反应以及炎症相关指标对脑梗死的预测作用进行综述。
Abstract: Acute cerebrovascular diseases include acute hemorrhagic stroke and acute ischemic stroke. At present, acute ischemic stroke is one of the main causes of death and disability in China, and it is also the most common type of stroke worldwide. As an important pathological mechanism, the inflammatory immune response is activated after acute cerebral infarction occurs. The most common inflammatory markers are white blood cells, neutrophils, lymphocytes, and monocytes in peripheral blood. This article reviews the mechanisms of neuroinflammation and the inflammatory responses of neutrophils, monocytes, and lymphocytes after ischemic stroke, as well as the predictive role of inflammation related indicators for cerebral infarction.
文章引用:郑彤彤, 国伟. 炎性细胞与缺血性卒中的研究进展[J]. 临床医学进展, 2024, 14(8): 1440-1448. https://doi.org/10.12677/acm.2024.1482374

1. 引言

急性缺血性卒中是我国最常见的卒中类型,占我国新发卒中的69.6%~72.8%,是全球致死及致残的主要原因之一[1] [2]。虽然急性脑梗死(Acute cerebral infarction, ACI)患者经过溶栓、血管介入、内科药物保守等治疗后,病情大部分可以得到缓解甚至痊愈,但部分患者会发生不同程度的神经功能损伤、造成日常生活受限等诸多问题[3]。根据最新数据提示,我国急性脑梗死患者住院期间(中位住院时间11 d),病死率为0.5%,并发症发生率为12.8% [4]。病后3个月的病死率为1.5%~3.2%,1年病死率为3.4%~6.0%,病后3个月致残率为14.6%~23.1%,1年致残率为13.9%~14.2% [5]-[8]。综上所述,此疾病不仅会对患者的身心健康造成比较严重的影响,而且加重了家庭负担(经济及精力)。

2. 急性脑梗死的病理机制

急性脑梗死以中老年患者多见,是由于大动脉粥样硬化、小动脉的闭塞、心源性栓塞等多种原因引起脑部血流突然中断或骤减,从而出现局部神经功能损伤。有研究证实,各种原因导致的颅内及颈部大动脉粥样硬化是ACI发生的主要病理学基础[9]。动脉粥样硬化是由多种因素导致的,如比年龄、性别、生活方式、环境、遗传及病理因素,动脉粥样硬化进展的一个主要诱因是免疫炎症反应,它参与了其形成的各个阶段。事实上,炎症介质可能同时将多种不同的危险因素与动脉粥样硬化联系起来[10]。其中单核细胞在血管的积聚已被广泛接受为动脉粥样硬化形成的一个关键的首要步骤,主要发生在疾病的早期[11]。综上,体现了在动脉粥样硬化的发病发展中炎症介质及免疫炎症反应的起到了非常重要的作用。当破坏了动脉血管内皮细胞时,血管内膜的完整性与通透性发生了改变,单核细胞结合受损血管内皮细胞表达的黏附分子,氧化的低密度脂蛋白(LDL)被A类清道夫受体(SRA)和CD36摄取后转化为泡沫细胞,之后炎性细胞因子被释放,促使更多单核细胞聚集该处,从而促进动脉粥样硬化斑块的形成[12] [13]。ACI的发生、发展与免疫炎症反应关系密切。多项研究也表明单核细胞数目在ACI后增加,其数目的升高是 ACI预后不良的独立危险因素[14] [15]

正常情况下,完整的血脑屏障将中枢神经系统(central nervous system, CNS)与外周免疫系统相互分离。在细胞之间的相互作用、溶质的调控、神经元活性、微环境稳态维持等方面完整的血脑屏障起着至关重要的作用。ACI发生后,血供突然中断或减少导致脑组织局部血流灌注低,缺血缺氧的脑组织受到不可逆转的损伤,可迅速引起脑水肿,并激活人体获得性免疫和固有免疫系统从而发生免疫炎症反应,所有免疫炎症反应机制都可能损伤血脑屏障的完整性并加大其渗透性,血脑屏障破坏后导致大量免疫细胞及分子流入CNS,与其固有免疫细胞相互作用,进一步加重脑损伤[16]。免疫炎症反应在脑卒中发生后的数秒至数分钟内被迅速启动,脑卒中后参与其全部病理进程,相关分子及细胞水平的级联反应导致脑部内皮细胞、胶质细胞、神经元的最终凋亡[17]。过度的炎症反应促使机体通过负反馈抑制外周免疫功能以此减少其对缺血性脑组织的再损伤,免疫炎症反应的抑制可能同时增加了脑卒中患者感染的发生率,并恶化患者的预后[18]

血常规检查是目前临床中广泛应用的三大常规检查之一,中性粒细胞、淋巴细胞计数与单核细胞计数都是血常规中常见的化验指标。有研究表明,中性粒细胞/淋巴细胞比值(NLR)对ACI的发生、发展以及预后有一定的关联性[19]。但许多研究主要集中在NLR上,多项研究证实ACI后淋巴细胞对与神经功能缺损具有相关性,对预后不良有预测作用[20] [21] [22]。T淋巴细胞在缺血性组中后期被募集,有证据表明,脑内淋巴细胞浸润是造成缺血性卒中后急性神经损伤的原因之一[23]。外周淋巴细胞浸润缺血性脑区,大多数亚群可损伤神经结构,促进神经元凋亡,加重ACI的临床预后[23],同时Liesz等人表明[24],在急性缺血性卒中的小鼠模型中,调节性T淋巴细胞依赖分泌IL-10的方式延迟病变扩展,它们还会降低早期缺血后炎症阶段的促炎因子水平,减轻迟发性脑损伤。淋巴细胞和单核细胞比值(LMR)是一种新型炎症相关指标,多项研究显示其与冠心病及多种恶性疾病有关[25] [26] [27],但是在脑血管病方面的相关报道较少。

3. 急性脑梗死后免疫细胞的变化

3.1. 单核细胞/巨噬细胞

ACI发生后,血脑屏障的完整性被破坏,小胶质细胞是缺血性脑损伤的第一反应者,其活动后释放相关因子发挥免疫炎症活性[28]。单核/巨噬细胞对缺血性脑损伤的主要影响取决于卒中后不同阶段单核/巨噬细胞呈现表型不同,但其在ACI进程中相互作用复杂,目前确切的作用机制尚不明确。根据目前研究发现单核/巨噬细胞在ACI后免疫反应中不同亚型间的平衡状态影响着其预后,比如其中的CD14+CD16+亚群与ACI急性期和亚急性期的脑组织损伤联系密切[29]。关于单核/巨噬细胞的亚型情况,目前定义通过经典激活途径产生的为M1型,可分泌促炎细胞因子参与卒中后的免疫炎症反应,通过替代激活途径产生的为M2型,其分泌的抗炎细胞因子具有抗炎及神经保护作用[30]。因此,对不同亚型在ACI不同时期的作用结果加以干预,如初期抑制单核/巨噬细胞的激活、极化及募集浸润可能对疾病预后有益。

单核细胞的功能比较复杂,随着病程的进展或在不同疾病状态中可发生显著变化,在机体正常及患病状态下,大脑均会募集单核细胞到脑血管,这些单核细胞可进一步浸润到脑实质,然而在疾病状态下,单核细胞及其分化成的巨细胞可以帮助脑组织再生和重塑,期间如果不加以控制,其可能会对脑组织和神经元造成炎症性损伤[31]。并且单核细胞趋化蛋白-1在大脑缺血性损伤发生后可将活化的淋巴细胞和单核细胞募集到大脑中[32]。研究发现,在ACI中,血流减慢及停滞会导致炎症反应,当炎症系统被激活时,相关细胞被活化,如单核细胞、淋巴细胞、胶质细胞,中性粒细胞等,炎症相关的代谢物及促炎细胞因子也被激活,促进炎症反应持续的发生,最后出现持续的组织损伤[33]。不仅如此,也有相关证据表明,在炎症性疾病中,单核细胞来源的细胞类型会发挥有害作用并加剧炎症反应,诱导组织进一步损伤[34]

3.2. 中性粒细胞

有研究发现中性粒细胞可以作为ACI预后的独立危险因素[35]。外周血中性粒细胞计数与脑梗死的梗死体积及严重程度呈正相关,与临床预后呈负相关[36] [37] [38]。在ACI中,中性粒细胞是基质金属蛋白酶(matrix metalloproteinase, MMP-9)的重要来源。在ACI早期MMP-9在血浆中的含量就明显增加[39] [40]。有研究表明,在ACI中,血脑屏障的破坏与MMP-9阳性的中性粒细胞有关[41]。脑缺血和再灌注后ROS的重要来源是中性粒细胞[42] [43]。ROS包括超氧阴离子自由基、羟基自由基及过氧化物等活性物质。在正常情况下,ROS作为氧化还原信号分子具有重要的生物学功能。然后在ACI时,过量产生的ROS最终会导致细胞死亡。

中性粒细胞与ACI后的炎性反应密切相关。炎症反应过程中,缺血组织会释放更多的细胞因子和趋化因子,使得缺血受损的脑组织中募集及浸润更多的白细胞[28]。在浸润到缺血区域的白细胞中,在脑组织损伤中起着重要作用的被认为是中性粒细胞,而且是ACI后首批进入大脑的细胞之一[44]。缺血性脑卒中发生数小时后,CNS中快速募集并大量浸润了外周循环中的中性粒细胞,它们在脑内微血管分布最多并最终在梗死细胞及其周围表达广泛。浸润的中性粒细胞局部通过蛋白水解酶的释放及其活性氧破坏血脑屏障,随着病程进展进一步破坏邻近血管、介导内皮损伤和卒中后出血性转化[45]。相关的临床试验结果表明,脑梗死面积与中性粒细胞在外周血中的水平呈正相关,中性粒细胞计数同时与ACI患者发生不良预后有关[46]。至此,目前有下面几种说法,在急性转移的过程中数量庞大的中性粒细胞可能会造成微小血管处的血管堵塞,导致血液供应在缺血部位脑组织进一步下降;另外,一系列的炎性因子因中性粒细胞的释放导致更为剧烈的炎性反应,使脑组织损伤进一步加重[47] [48]。除此之外,也有研究表明胞外网状结构物质在中性粒细胞活化时会被释放,这是中性粒细胞胞外陷阱网(NETS),有促炎与促凝的作用,与动脉粥样硬化发生、发展过程中血栓形成联系密切[49]。动脉粥样硬化斑块中不稳定的斑块破裂后可导致血小板聚集并活化,活化的血小板促使NETS的形成,NETS亦能促使血小板进一步聚集[50] [51]。综上所述,中性粒细胞与脑梗死中血栓的形成相关密切。血小板因动脉粥样硬化的不稳定斑块破裂而汇聚于缺血区并活化,促使NETS的形成,该物质反过来进一步促使血小板的聚集,加速脑梗死的发生。综上所述,中性粒细胞在ACI的发生、发展中起着举足轻重的作用。

3.3. 淋巴细胞

在ACI发生24小时内淋巴细胞即可在脑组织中被检测到,并且随疾病进展数量逐渐增加。相关研究表明,与短暂性脑缺血模型(transient middle cerebral artery occlusion, tMCAO)相比,永久性大脑中动脉闭塞脑缺血小鼠模型(permanent middle cerebral artery occlusion, pMCAO)中,在脑组织中的淋巴细胞出现时间更早,提示脑卒中的严重程度可能与淋巴细胞的浸润程度相关,同时也对脑灌注产生影响[52]。淋巴细胞进入CNS后,通过识别CNS内的抗原介导自身免疫炎症反应,后期在加重脑组织损伤的同时具有促进神经再生与损伤修复的作用[53]

T 淋巴细胞亚组中的CD8+、TCD4+淋巴细胞,两者的平衡影响了ACI后的免疫炎症反应,而且对改变细胞免疫功能与神经功能缺损产生一定的影响[54]。相关临床研究表明,ACI患者发展的严重程度及预后可能与外周血中淋巴细胞水平相关[55]。CD4 + T淋巴细胞中的调节性T细胞(regulatory T cells, Tregs)具有免疫抑制活性,其可以调控脑卒中后的二次脑损伤,维持人体内环境的免疫稳态[56]。此外,有研究发现动脉粥样硬化斑块的形成可通过Tregs细胞的免疫抑制活性阻断[57]。CD4 + T淋巴细胞亚群中的辅助性T细胞(helper T cells, Th),如Th17细胞可通过分泌相关介质增加中性粒细胞浸润,同时协同促进脑内胶质细胞表达趋化因子;减少脑梗死体积可通过特异性阻断IL-17A,并可改善神经系统的功能障碍[58]

卒中后免疫炎症反应亦有B淋巴细胞的参与[59]。在MCAO脑缺血模型中发现B淋巴细胞具有一定的神经保护功能[60]。同时也有研究发现,在ACI发生数周后,脑组织进入活化的B淋巴细胞,通过分泌抗体及改变形态,可能参与迟发性的认知功能障碍及神经系统慢性炎症[61]。虽然目前仍有关于淋巴细胞在脑缺血损伤后炎症反应中的作用的争议,但有研究发现较低水平的淋巴细胞计数与长期功能转归不良和早期神经系统功能改善较差有关[36]

4. 急性脑梗死后炎性细胞的预测作用

炎症是机体最基本和最显著的保护性反应之一,炎性介质将白细胞募集到炎症部位,同时激活血管内皮细胞并增加血管通透性,而最重要的炎性介质包括介导局部炎症反应的细胞因子和趋化因子,以及作用于其他系统(如心血管、神经和内分泌系统)的低水平炎症因子[62]。脑缺血后为清除受损脑组织,做好大脑修复准备,会引发较为严重的神经炎症反应。然而,脑卒中急性期产生的血脑屏障破坏及严重的神经炎症、神经损伤和神经系统预后恶化相关[63]。其中单核细胞作为重要的免疫细胞参与炎症反应[64]。而炎症反应中淋巴细胞具有维持免疫稳态及防御等相关作用[31]。LMR是淋巴细胞和单核细胞的比值,是整合了两种炎性指标后的新型免疫炎症标志物,能够反映机体的炎症状态和抵御炎症的能力。LMR作为一种炎症相关指标,多项研究显示低水平的LMR与冠心病和多种恶性肿瘤不良预后有关[25] [26] [27]。由于LMR与多种疾病相关,因此已成为当前研究风险评估及预后等的重要指标之一。但是在脑血管病方面的相关报道较少。

除此之外,对于卒中的急性神经炎症反应的细胞类型,包括不同淋巴细胞亚群的作用及小胶质细胞活化白细胞侵袭,尽管淋巴细胞在脑内浸润的数量较少,但它一直被认为是白细胞亚群中有效导致继发性脑损伤的细胞,但其如何深刻影响卒中预后的确切机制仍不明确[65]。仍有争议关于淋巴细胞在缺血性脑血管病中的作用。有研究认为在缺血性脑血管病中淋巴细胞作用较小[66],反之,有学者则认为在脑血管病中淋巴细胞起关键作用[67],对此,有学者将淋巴细胞和单核细胞整合为单一指标,发现其可能是反映ACI患者预后的新预测指标,认为淋巴细胞水平升高与ACI的良好预后高度相关,而首次卒中后预后不良的独立危险因素与较高的单核细胞计数有关[68]。综上,多项研究表明,ACI的发生、发展以及预后都有炎症免疫反应的重要参与,淋巴细胞、单核细胞、中性粒细胞、白细胞等均是常见的炎症免疫细胞,LMR是整合了两种炎性指标后的新型免疫炎症标志物,能够反映机体抵御炎症的能力及炎症状态,由于LMR与冠心病和多种恶性肿瘤不良预后有关[25] [26] [27]。但对ACI预后评估研究较少,结合上诉认为LMR可作为ACI预后评估的重要指标之一。

5. 小结

ACI发生后,多种机制参与疾病的发生、发展以及预后。ACI的主要病因被认为是颅内血管因动脉粥样硬化导致狭窄和闭塞,亦是一种慢性炎性反应的过程[69]。近年来有越来越多研究表明[70],在ACI的发展过程中,免疫炎症反应都在疾病的发生发展中起到了举足轻重的作用。同时,人体在ACI事件发生后,全身免疫状态受影响,导致脑卒中后不良事件的发生进而影响患者的预后。血液炎性标志物不仅可以相对直观地反应机体炎症状态,而且血液样本的便捷获取也为研究ACI中的外周血液学炎症标志物提供了方便。在应对急性脑梗死这一急性应急事件时,多种免疫细胞和炎症介质作用于病灶。在既往的研究中,主要集中在中性粒细胞与淋巴细胞比值上,且发现其在心血管及恶性肿瘤患者预后发挥重要预测作用。亦有众多研究提示淋巴细胞/单核细胞比值(LMR)在肿瘤和心血管疾病患者预后方面发挥重要预测作用。但是LMR在脑梗死方面的研究甚少。淋巴细胞/单核细胞比值(LMR)作为一种炎症指标,其方便、快捷、经济、实惠,如果能够早期及时明确其对ACI患者神经功能缺损程度的影响因素,在疾病的早期给与相关的治疗措施,有利于降低患者的致残率及死亡率,提高患者的生存质量。

NOTES

*通讯作者。

参考文献

[1] Ma, Q., Li, R., Wang, L., Yin, P., Wang, Y., Yan, C., et al. (2021) Temporal Trend and Attributable Risk Factors of Stroke Burden in China, 1990-2019: An Analysis for the Global Burden of Disease Study 2019. The Lancet Public Health, 6, e897-e906.
https://doi.org/10.1016/s2468-2667(21)00228-0
[2] Wang, W., Jiang, B., Sun, H., Ru, X., Sun, D., Wang, L., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China. Circulation, 135, 759-771.
https://doi.org/10.1161/circulationaha.116.025250
[3] 龙章玲, 胡晓. 阿司匹林和氯吡格雷在急性脑梗死中的应用进展[J]. 中国医药, 2019, 14(8): 1262-1265.
[4] Gu, H., Yang, X., Wang, C., Zhao, X., Wang, Y., Liu, L., et al. (2021) Clinical Characteristics, Management, and in-Hospital Outcomes in Patients with Stroke or Transient Ischemic Attack in China. JAMA Network Open, 4, e2120745.
https://doi.org/10.1001/jamanetworkopen.2021.20745
[5] Wang, M., Wang, C., Gu, H., Meng, X., Jiang, Y., Yang, X., et al. (2022) Sex Differences in Short-Term and Long-Term Outcomes among Patients with Acute Ischemic Stroke in China. Stroke, 53, 2268-2275.
https://doi.org/10.1161/strokeaha.121.037121
[6] Tu, W., Chao, B., Ma, L., Yan, F., Cao, L., Qiu, H., et al. (2021) Case-Fatality, Disability and Recurrence Rates after First-Ever Stroke: A Study from Bigdata Observatory Platform for Stroke of China. Brain Research Bulletin, 175, 130-135.
https://doi.org/10.1016/j.brainresbull.2021.07.020
[7] Tu, W., Wang, L., Yan, F., Peng, B., Hua, Y., Liu, M., et al. (2023) China Stroke Surveillance Report 2021. Military Medical Research, 10, Article No. 33.
https://doi.org/10.1186/s40779-023-00463-x
[8] Yang, T., Fan, K., Cao, Y., Yan, J. and Han, Z. (2020) Stroke Type, Etiology, Clinical Features and Prognosis of Diabetic Patients in Southern China. Clinical and Applied Thrombosis/Hemostasis, 26, 1-6.
https://doi.org/10.1177/1076029620973090
[9] 陈一丁, 姚伟峰, 万惠, 等. 2型糖尿病合并非酒精性脂肪性肝病的相关影响因素及其与颈动脉粥样硬化的关系研究[J]. 中国全科医学, 2013, 15(35): 4131-4134.
[10] Libby, P. (2021) Inflammation during the Life Cycle of the Atherosclerotic Plaque. Cardiovascular Research, 117, 2525-2536.
https://doi.org/10.1093/cvr/cvab303
[11] Cybulsky, M.I. and Gimbrone, M.A. (1991) Endothelial Expression of a Mononuclear Leukocyte Adhesion Molecule during Atherogenesis. Science, 251, 788-791.
https://doi.org/10.1126/science.1990440
[12] Tani, S., Matsumoto, M., Anazawa, T., Kawamata, H., Furuya, S., Takahashi, H., et al. (2011) Development of a Model for Prediction of Coronary Atherosclerotic Regression: Evaluation of High-Density Lipoprotein Cholesterol Level and Peripheral Blood Monocyte Count. Heart and Vessels, 27, 143-150.
https://doi.org/10.1007/s00380-011-0130-8
[13] Açıkgöz, S.K., Açıkgöz, E., Şensoy, B., et al. (2016) Monocyte to High-Density Lipoprotein Cholesterol Ratio Is Predictive of in-Hospital and Five-Year Mortality in ST-Segment Elevation Myocardial Infarction. Cardiology Journal, 23, 505-512.
[14] ElAli, A. and Jean LeBlanc, N. (2016) The Role of Monocytes in Ischemic Stroke Pathobiology: New Avenues to Explore. Frontiers in Aging Neuroscience, 8, Article 29.
https://doi.org/10.3389/fnagi.2016.00029
[15] Liberale, L., Montecucco, F., Bonaventura, A., Casetta, I., Seraceni, S., Trentini, A., et al. (2017) Monocyte Count at Onset Predicts Poststroke Outcomes during a 90-Day Follow-up. European Journal of Clinical Investigation, 47, 702-710.
https://doi.org/10.1111/eci.12795
[16] Jiang, X., Andjelkovic, A.V., Zhu, L., Yang, T., Bennett, M.V.L., Chen, J., et al. (2018) Blood-Brain Barrier Dysfunction and Recovery after Ischemic Stroke. Progress in Neurobiology, 163, 144-171.
https://doi.org/10.1016/j.pneurobio.2017.10.001
[17] Li, J., Ren, H., Wang, Y., Hoang, D.M., Li, Y. and Yao, X. (2022) Mechanism of Stat1 in the Neuronal Ca2+ Overload after Intracerebral Hemorrhage via the H3K27ac/Trpm7 Axis. Journal of Neurophysiology, 128, 253-262.
https://doi.org/10.1152/jn.00083.2022
[18] Orellana-Urzúa, S., Rojas, I., Líbano, L. and Rodrigo, R. (2020) Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Current Pharmaceutical Design, 26, 4246-4260.
https://doi.org/10.2174/1381612826666200708133912
[19] 高巍, 韩志君, 杜永胜, 等. 中性粒细胞/淋巴细胞比值与急性缺血性脑梗塞预后的关系[J]. 临床与病理杂志, 2014, 34(5): 509-513.
[20] Kleinschnitz, C., Kraft, P., Dreykluft, A., Hagedorn, I., Göbel, K., Schuhmann, M.K., et al. (2013) Regulatory T Cells Are Strong Promoters of Acute Ischemic Stroke in Mice by Inducing Dysfunction of the Cerebral Microvasculature. Blood, 121, 679-691.
https://doi.org/10.1182/blood-2012-04-426734
[21] Joo, S.P., Xie, W., Xiong, X., Xu, B. and Zhao, H. (2013) Ischemic Postconditioning Protects against Focal Cerebral Ischemia by Inhibiting Brain Inflammation While Attenuating Peripheral Lymphopenia in Mice. Neuroscience, 243, 149-157.
https://doi.org/10.1016/j.neuroscience.2013.03.062
[22] Ruhnau, J., Schulze, J., von Sarnowski, B., Heinrich, M., Langner, S., Pötschke, C., et al. (2016) Reduced Numbers and Impaired Function of Regulatory T Cells in Peripheral Blood of Ischemic Stroke Patients. Mediators of Inflammation, 2016, Article 2974605.
https://doi.org/10.1155/2016/2974605
[23] Feng, Y., Liao, S., Wei, C., Jia, D., Wood, K., Liu, Q., et al. (2017) Infiltration and Persistence of Lymphocytes during Late-Stage Cerebral Ischemia in Middle Cerebral Artery Occlusion and Photothrombotic Stroke Models. Journal of Neuroinflammation, 14, Article No. 248.
https://doi.org/10.1186/s12974-017-1017-0
[24] Liesz, A., Suri-Payer, E., Veltkamp, C., Doerr, H., Sommer, C., Rivest, S., et al. (2009) Regulatory T Cells Are Key Cerebroprotective Immunomodulators in Acute Experimental Stroke. Nature Medicine, 15, 192-199.
https://doi.org/10.1038/nm.1927
[25] Nishijima, T.F., Muss, H.B., Shachar, S.S., Tamura, K. and Takamatsu, Y. (2015) Prognostic Value of Lymphocyte-to-Monocyte Ratio in Patients with Solid Tumors: A Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 41, 971-978.
https://doi.org/10.1016/j.ctrv.2015.10.003
[26] Ji, H., Li, Y., Fan, Z., Zuo, B., Jian, X., Li, L., et al. (2017) Monocyte/Lymphocyte Ratio Predicts the Severity of Coronary Artery Disease: A Syntax Score Assessment. BMC Cardiovascular Disorders, 17, Article No. 90.
https://doi.org/10.1186/s12872-017-0507-4
[27] Zhu, J., Liu, C., Wang, L., Zhong, M., Tang, H. and Wang, H. (2017) Peripheral Blood Lymphocyte-to-Monocyte Ratio as a Prognostic Factor in Advanced Epithelial Ovarian Cancer: A Multicenter Retrospective Study. Journal of Cancer, 8, 737-743.
https://doi.org/10.7150/jca.17668
[28] Kim, J.Y., Park, J., Chang, J.Y., Kim, S. and Lee, J.E. (2016) Inflammation after Ischemic Stroke: The Role of Leukocytes and Glial Cells. Experimental Neurobiology, 25, 241-251.
https://doi.org/10.5607/en.2016.25.5.241
[29] Kaito, M., Araya, S., Gondo, Y., Fujita, M., Minato, N., Nakanishi, M., et al. (2013) Relevance of Distinct Monocyte Subsets to Clinical Course of Ischemic Stroke Patients. PLOS ONE, 8, e69409.
https://doi.org/10.1371/journal.pone.0069409
[30] Guruswamy, R. and ElAli, A. (2017) Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. International Journal of Molecular Sciences, 18, Article 496.
https://doi.org/10.3390/ijms18030496
[31] Zhao, M., Tuo, H., Wang, S. and Zhao, L. (2020) The Roles of Monocyte and Monocyte-Derived Macrophages in Common Brain Disorders. BioMed Research International, 2020, Article 9396021.
https://doi.org/10.1155/2020/9396021
[32] Dimitrijevic, O.B., Stamatovic, S.M., Keep, R.F. and Andjelkovic, A.V. (2005) Effects of the Chemokine CCL2 on Blood-Brain Barrier Permeability during Ischemia-Reperfusion Injury. Journal of Cerebral Blood Flow & Metabolism, 26, 797-810.
https://doi.org/10.1038/sj.jcbfm.9600229
[33] Tian, Z., Ji, X. and Liu, J. (2022) Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. International Journal of Molecular Sciences, 23, Article 6224.
https://doi.org/10.3390/ijms23116224
[34] Coillard, A. and Segura, E. (2019) In vivo Differentiation of Human Monocytes. Frontiers in Immunology, 10, Article 1907.
https://doi.org/10.3389/fimmu.2019.01907
[35] Grau, A.J., Boddy, A.W., Dukovic, D.A., Buggle, F., Lichy, C., Brandt, T., et al. (2004) Leukocyte Count as an Independent Predictor of Recurrent Ischemic Events. Stroke, 35, 1147-1152.
https://doi.org/10.1161/01.str.0000124122.71702.64
[36] Kim, J., Song, T., Park, J.H., Lee, H.S., Nam, C.M., Nam, H.S., et al. (2012) Different Prognostic Value of White Blood Cell Subtypes in Patients with Acute Cerebral Infarction. Atherosclerosis, 222, 464-467.
https://doi.org/10.1016/j.atherosclerosis.2012.02.042
[37] Buck, B.H., Liebeskind, D.S., Saver, J.L., Bang, O.Y., Yun, S.W., Starkman, S., et al. (2008) Early Neutrophilia Is Associated with Volume of Ischemic Tissue in Acute Stroke. Stroke, 39, 355-360.
https://doi.org/10.1161/strokeaha.107.490128
[38] Kumar, A.D., Boehme, A.K., Siegler, J.E., Gillette, M., Albright, K.C. and Martin-Schild, S. (2013) Leukocytosis in Patients with Neurologic Deterioration after Acute Ischemic Stroke Is Associated with Poor Outcomes. Journal of Stroke and Cerebrovascular Diseases, 22, e111-e117.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.08.008
[39] Kelly, P.J., Morrow, J.D., Ning, M., Koroshetz, W., Lo, E.H., Terry, E., et al. (2008) Oxidative Stress and Matrix Metalloproteinase-9 in Acute Ischemic Stroke. Stroke, 39, 100-104.
https://doi.org/10.1161/strokeaha.107.488189
[40] Heo, J.H., Lucero, J., Abumiya, T., Koziol, J.A., Copeland, B.R. and del Zoppo, G.J. (1999) Matrix Metalloproteinases Increase Very Early during Experimental Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 19, 624-633.
https://doi.org/10.1097/00004647-199906000-00005
[41] Rosell, A., Cuadrado, E., Ortega-Aznar, A., Hernández-Guillamon, M., Lo, E.H. and Montaner, J. (2008) MMP-9-Positive Neutrophil Infiltration Is Associated to Blood-Brain Barrier Breakdown and Basal Lamina Type IV Collagen Degradation during Hemorrhagic Transformation after Human Ischemic Stroke. Stroke, 39, 1121-1126.
https://doi.org/10.1161/strokeaha.107.500868
[42] Lindsberg, P.J., Sirén, A., Feuerstein, G.Z. and Hallenbeck, J.M. (1995) Antagonism of Neutrophil Adherence in the Deteriorating Stroke Model in Rabbits. Journal of Neurosurgery, 82, 269-277.
https://doi.org/10.3171/jns.1995.82.2.0269
[43] Zhang, R.L., Chopp, M., Jiang, N., Tang, W.X., Prostak, J., Manning, A.M., et al. (1995) Anti-Intercellular Adhesion Molecule-1 Antibody Reduces Ischemic Cell Damage after Transient but Not Permanent Middle Cerebral Artery Occlusion in the Wistar Rat. Stroke, 26, 1438-1443.
https://doi.org/10.1161/01.str.26.8.1438
[44] Neumann, J., Riek-Burchardt, M., Herz, J., Doeppner, T.R., König, R., Hütten, H., et al. (2014) Very-Late-Antigen-4 (VLA-4)-Mediated Brain Invasion by Neutrophils Leads to Interactions with Microglia, Increased Ischemic Injury and Impaired Behavior in Experimental Stroke. Acta Neuropathologica, 129, 259-277.
https://doi.org/10.1007/s00401-014-1355-2
[45] Perez-de-Puig, I., Miró-Mur, F., Ferrer-Ferrer, M., Gelpi, E., Pedragosa, J., Justicia, C., et al. (2014) Neutrophil Recruitment to the Brain in Mouse and Human Ischemic Stroke. Acta Neuropathologica, 129, 239-257.
https://doi.org/10.1007/s00401-014-1381-0
[46] 翟萌萌, 王建平, 余列, 等. 中性粒细胞与淋巴细胞比值对急性脑梗死患者预后的预测价值[J]. 中国脑血管病杂志, 2017, 14(2): 82-86.
[47] Jickling, G.C., Liu, D., Ander, B.P., Stamova, B., Zhan, X. and Sharp, F.R. (2015) Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow & Metabolism, 35, 888-901.
https://doi.org/10.1038/jcbfm.2015.45
[48] Kalimo, H., del Zoppo, G.J., Paetau, A. and Lindsberg, P.J. (2013) Polymorphonuclear Neutrophil Infiltration into Ischemic Infarctions: Myth or Truth? Acta Neuropathologica, 125, 313-316.
https://doi.org/10.1007/s00401-013-1098-5
[49] Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D.S., et al. (2004) Neutrophil Extracellular Traps Kill Bacteria. Science, 303, 1532-1535.
https://doi.org/10.1126/science.1092385
[50] Sørensen, O.E. and Borregaard, N. (2016) Neutrophil Extracellular Traps—The Dark Side of Neutrophils. Journal of Clinical Investigation, 126, 1612-1620.
https://doi.org/10.1172/jci84538
[51] Knight, J.S., Zhao, W., Luo, W., Subramanian, V., O’Dell, A.A., Yalavarthi, S., et al. (2013) Peptidylarginine Deiminase Inhibition Is Immunomodulatory and Vasculoprotective in Murine Lupus. Journal of Clinical Investigation, 123, 2981-2993.
https://doi.org/10.1172/jci67390
[52] Chu, H.X., Kim, H.A., Lee, S., Moore, J.P., Chan, C.T., Vinh, A., et al. (2013) Immune Cell Infiltration in Malignant Middle Cerebral Artery Infarction: Comparison with Transient Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 34, 450-459.
https://doi.org/10.1038/jcbfm.2013.217
[53] Becker, K.J., Kalil, A.J., Tanzi, P., Zierath, D.K., Savos, A.V., Gee, J.M., et al. (2011) Autoimmune Responses to the Brain after Stroke Are Associated with Worse Outcome. Stroke, 42, 2763-2769.
https://doi.org/10.1161/strokeaha.111.619593
[54] Yilmaz, G., Arumugam, T.V., Stokes, K.Y. and Granger, D.N. (2006) Role of T Lymphocytes and Interferon-γ in Ischemic Stroke. Circulation, 113, 2105-2112.
https://doi.org/10.1161/circulationaha.105.593046
[55] 黄铭娜, 任丽, 吴锡骅, 等. 急性脑梗死患者外周血T淋巴细胞、B淋巴细胞亚群和NK细胞的变化及临床意义[J]. 海南医学, 2019, 30(16): 2055-2057.
[56] Stubbe, T., Ebner, F., Richter, D., Engel, O.R., Klehmet, J., Royl, G., et al. (2012) Regulatory T Cells Accumulate and Proliferate in the Ischemic Hemisphere for up to 30 Days after MCAO. Journal of Cerebral Blood Flow & Metabolism, 33, 37-47.
https://doi.org/10.1038/jcbfm.2012.128
[57] Lichtman, A.H., Binder, C.J., Tsimikas, S. and Witztum, J.L. (2013) Adaptive Immunity in Atherogenesis: New Insights and Therapeutic Approaches. Journal of Clinical Investigation, 123, 27-36.
https://doi.org/10.1172/jci63108
[58] Bornstein, N.M., Aronovich, B., Korczyn, A.D., Shavit, S., Michaelson, D.M. and Chapman, J. (2001) Antibodies to Brain Antigens Following Stroke. Neurology, 56, 529-530.
https://doi.org/10.1212/wnl.56.4.529
[59] Ren, X., Akiyoshi, K., Dziennis, S., Vandenbark, A.A., Herson, P.S., Hurn, P.D., et al. (2011) Regulatory B Cells Limit CNS Inflammation and Neurologic Deficits in Murine Experimental Stroke. Journal of Neuroscience, 31, 8556-8563.
https://doi.org/10.1523/jneurosci.1623-11.2011
[60] Bodhankar, S., Chen, Y., Lapato, A., Vandenbark, A.A., Murphy, S.J., Saugstad, J.A., et al. (2014) Regulatory CD8+CD122+ T-Cells Predominate in CNS after Treatment of Experimental Stroke in Male Mice with Il-10-Secreting B-Cells. Metabolic Brain Disease, 30, 911-924.
https://doi.org/10.1007/s11011-014-9639-8
[61] Doyle, K.P., Quach, L.N., Solé, M., Axtell, R.C., Nguyen, T.V., Soler-Llavina, G.J., et al. (2015) B-Lymphocyte-Mediated Delayed Cognitive Impairment Following Stroke. The Journal of Neuroscience, 35, 2133-2145.
https://doi.org/10.1523/jneurosci.4098-14.2015
[62] Kuprash, D.V. and Nedospasov, S.A. (2016) Molecular and Cellular Mechanisms of Inflammation. Biochemistry (Moscow), 81, 1237-1239.
https://doi.org/10.1134/s0006297916110018
[63] Candelario-Jalil, E., Dijkhuizen, R.M. and Magnus, T. (2022) Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke, 53, 1473-1486.
https://doi.org/10.1161/strokeaha.122.036946
[64] Gertje, E.C., van Westen, D., Panizo, C., Mattsson-Carlgren, N. and Hansson, O. (2021) Association of Enlarged Perivascular Spaces and Measures of Small Vessel and Alzheimer Disease. Neurology, 96, e193-e202.
https://doi.org/10.1212/wnl.0000000000011046
[65] Benakis, C., Simats, A., Tritschler, S., Heindl, S., Besson-Girard, S., Llovera, G., et al. (2022) T Cells Modulate the Microglial Response to Brain Ischemia. eLife, 11, e82031.
https://doi.org/10.7554/elife.82031
[66] Xue, J., Huang, W., Chen, X., Li, Q., Cai, Z., Yu, T., et al. (2017) Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 650-657.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.010
[67] Kleinschnitz, C., Schwab, N., Kraft, P., Hagedorn, I., Dreykluft, A., Schwarz, T., et al. (2010) Early Detrimental T-Cell Effects in Experimental Cerebral Ischemia Are Neither Related to Adaptive Immunity nor Thrombus Formation. Blood, 115, 3835-3842.
https://doi.org/10.1182/blood-2009-10-249078
[68] Ren, H., Liu, X., Wang, L. and Gao, Y. (2017) Lymphocyte-to-Monocyte Ratio: A Novel Predictor of the Prognosis of Acute Ischemic Stroke. Journal of Stroke and Cerebrovascular Diseases, 26, 2595-2602.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.06.019
[69] Nguyen, G., Cercy, K., Johnson, C.O., et al. (2018) Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016. New England Journal of Medicine, 379, 2429-2437.
https://doi.org/10.1056/nejmoa1804492
[70] Ekker, M.S., Verhoeven, J.I., Vaartjes, I., van Nieuwenhuizen, K.M., Klijn, C.J.M. and de Leeuw, F. (2019) Stroke Incidence in Young Adults According to Age, Subtype, Sex, and Time Trends. Neurology, 92, e2444-e2454.
https://doi.org/10.1212/wnl.0000000000007533