[1]
|
Caneschi, A., Gatteschi, D., Sessoli, R., Barra, A.L., Brunel, L.C. and Guillot, M. (1991) Alternating Current Susceptibility, High Field Magnetization, and Millimeter Band EPR Evidence for a Ground S=10 State in [Mn12O12-(Ch3COO)16(H2O)4].2CH3COOH.4H2O. Journal of the American Chemical Society, 113, 5873-5874. https://doi.org/10.1021/ja00015a057
|
[2]
|
Sessoli, R., Tsai, H.L., Schake, A.R., Wang, S., Vincent, J.B., Folting, K., et al. (1993) High-Spin Molecules: [Mn12O12(O2CR)16(H2O)4]. Journal of the American Chemical Society, 115, 1804-1816. https://doi.org/10.1021/ja00058a027
|
[3]
|
Rinehart, J.D. and Long, J.R. (2011) Exploiting Single-Ion Anisotropy in the Design of F-Element Single-Molecule Magnets. Chemical Science, 2, Article 2078. https://doi.org/10.1039/c1sc00513h
|
[4]
|
Liu, K., Shi, W. and Cheng, P. (2015) Toward Heterometallic Single-Molecule Magnets: Synthetic Strategy, Structures and Properties of 3d-4f Discrete Complexes. Coordination Chemistry Reviews, 289, 74-122. https://doi.org/10.1016/j.ccr.2014.10.004
|
[5]
|
Chakraborty, A., Goura, J., Kalita, P., Swain, A., Rajaraman, G. and Chandrasekhar, V. (2018) Heterometallic 3d-4f Single Molecule Magnets Containing Diamagnetic Metal Ions. Dalton Transactions, 47, 8841-8864. https://doi.org/10.1039/c8dt01883a
|
[6]
|
Li, G., Tang, H., Gao, R., Wang, Y., Sun, X. and Zhang, K. (2023) Tuning Quantum Tunneling in Isomorphic {MII2DyIII2} “Butterfly” System via 3d-4f Magnetic Interaction. Crystal Growth & Design, 23, 1575-1580. https://doi.org/10.1021/acs.cgd.2c01198
|
[7]
|
Peng, Y. and Powell, A.K. (2021) What Do 3d-4f Butterflies Tell Us? Coordination Chemistry Reviews, 426, Article 213490. https://doi.org/10.1016/j.ccr.2020.213490
|
[8]
|
Oyarzabal, I., Echenique-Errandonea, E., San Sebastián, E., Rodríguez-Diéguez, A., Seco, J.M. and Colacio, E. (2021) Synthesis, Structural Features and Physical Properties of a Family of Triply Bridged Dinuclear 3d-4f Complexes. Magnetochemistry, 7, Article 22. https://doi.org/10.3390/magnetochemistry7020022
|
[9]
|
Yin, J., Chen, C., Zhuang, G., Zheng, J., Zheng, X. and Kong, X. (2020) Anion-Dependent Assembly of 3d-4f Heterometallic Clusters Ln5Cr2 and Ln8Cr4. Inorganic Chemistry, 59, 1959-1966. https://doi.org/10.1021/acs.inorgchem.9b03308
|
[10]
|
Salerno, E.V., Kampf, J.W., Pecoraro, V.L. and Mallah, T. (2021) Magnetic Properties of Two Gdiiifeiii4 Metallacrowns and Strategies for Optimizing the Magnetocaloric Effect of This Topology. Inorganic Chemistry Frontiers, 8, 2611-2623. https://doi.org/10.1039/d1qi00207d
|
[11]
|
Gómez-Coca, S., Aravena, D., Morales, R. and Ruiz, E. (2015) Large Magnetic Anisotropy in Mononuclear Metal Complexes. Coordination Chemistry Reviews, 289, 379-392. https://doi.org/10.1016/j.ccr.2015.01.021
|
[12]
|
Vaidya, S., Upadhyay, A., Singh, S.K., Gupta, T., Tewary, S., Langley, S.K., et al. (2015) A Synthetic Strategy for Switching the Single Ion Anisotropy in Tetrahedral Co(Ii) Complexes. Chemical Communications, 51, 3739-3742. https://doi.org/10.1039/c4cc08305a
|
[13]
|
Habib, F., Luca, O.R., Vieru, V., Shiddiq, M., Korobkov, I., Gorelsky, S.I., et al. (2013) Influence of the Ligand Field on Slow Magnetization Relaxation versus Spin Crossover in Mononuclear Cobalt Complexes. Angewandte Chemie International Edition, 52, 11290-11293. https://doi.org/10.1002/anie.201303005
|
[14]
|
Zhao, L., Wu, J., Xue, S. and Tang, J. (2012) A Linear 3d-4f Tetranuclear Coiii2dyiii2 Single-Molecule Magnet: Synthesis, Structure, and Magnetic Properties. Chemistry—An Asian Journal, 7, 2419-2423. https://doi.org/10.1002/asia.201200548
|
[15]
|
Liu, C., Zhang, D., Hao, X. and Zhu, D. (2014) Trinuclear [CoIII2-LnIII] (Ln=Tb, Dy) Single-Ion Magnets with Mixed 6-Chloro-2-Hydroxypyridine and Schiff Base Ligands. Chemistry—An Asian Journal, 9, 1847-1853. https://doi.org/10.1002/asia.201402001
|
[16]
|
Zhao, F.H., Li, H., Che, Y.X., Zheng, J.M., Vieru, V., Chibotaru, L.F., Grandjean, F. and Long, G.J. (2014) Synthesis, Structure, and Magnetic Properties of Dy2Co2L10(bipy)2 and Ln2Ni2L10(bipy)2, Ln = La, Gd, Tb, Dy, and Ho: Slow Magnetic Relaxation in Dy2Co2L10(bipy)2 and Dy2Ni2L10(bipy)2. Inorganic Chemistry Journal, 53, 9785-9799.
|
[17]
|
Zhang, Y., Guo, Z., Xie, S., Li, H., Zhu, W., Liu, L., et al. (2015) Tuning the Origin of Magnetic Relaxation by Substituting the 3D or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds. Inorganic Chemistry, 54, 10316-10322. https://doi.org/10.1021/acs.inorgchem.5b01763
|
[18]
|
Li, X., Min, F., Wang, C., Lin, S., Liu, Z. and Tang, J. (2015) Utilizing 3d-4f Magnetic Interaction to Slow the Magnetic Relaxation of Heterometallic Complexes. Inorganic Chemistry, 54, 4337-4344. https://doi.org/10.1021/acs.inorgchem.5b00019
|
[19]
|
Liu, J., Wu, J., Huang, G., Chen, Y., Jia, J., Ungur, L., et al. (2015) Desolvation-Driven 100-Fold Slow-Down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process. Scientific Reports, 5, Article No. 16621. https://doi.org/10.1038/srep16621
|
[20]
|
Huang, G., Ruan, Z., Zheng, J., Wu, J., Chen, Y., Li, Q., et al. (2018) Enhancing Single-Molecule Magnet Behavior of Linear CoII-DyIIIcoII Complex by Introducing Bulky Diamagnetic Moiety. Science China Chemistry, 61, 1399-1404. https://doi.org/10.1007/s11426-018-9310-y
|
[21]
|
Costes, J., Novitchi, G., Vieru, V., Chibotaru, L.F., Duhayon, C., Vendier, L., et al. (2018) Effects of the Exchange Coupling on Dynamic Properties in a Series of CoGdCo Complexes. Inorganic Chemistry, 58, 756-768. https://doi.org/10.1021/acs.inorgchem.8b02921
|
[22]
|
Liu, Y., Chen, Y., Liu, J., Chen, W., Huang, G., Wu, S., et al. (2019) Cyanometallate-Bridged Didysprosium Single-Molecule Magnets Constructed with Single-Ion Magnet Building Block. Inorganic Chemistry, 59, 687-694. https://doi.org/10.1021/acs.inorgchem.9b02948
|
[23]
|
Wang, H., Yin, C., Hu, Z., Chen, Y., Pan, Z., Song, Y., et al. (2019) Regulation of Magnetic Relaxation Behavior by Replacing 3d Transition Metal Ions in [M2Dy2] Complexes Containing Two Different Organic Chelating Ligands. Dalton Transactions, 48, 10011-10022. https://doi.org/10.1039/c9dt00774a
|
[24]
|
Langley, S.K., Chilton, N.F., Ungur, L., Moubaraki, B., Chibotaru, L.F. and Murray, K.S. (2012) Heterometallic Tetranuclear [LnIII2CoIII2] Complexes Including Suppression of Quantum Tunneling of Magnetization in the [DyIII2CoIII2] Single Molecule Magnet. Inorganic Chemistry, 51, 11873-11881. https://doi.org/10.1021/ic301784m
|
[25]
|
Langley, S.K., Ungur, L., Chilton, N.F., Moubaraki, B., Chibotaru, L.F. and Murray, K.S. (2014) Single-Molecule Magnetism in a Family of {CoIII2DyIII2} Butterfly Complexes: Effects of Ligand Replacement on the Dynamics of Magnetic Relaxation. Inorganic Chemistry, 53, 4303-4315. https://doi.org/10.1021/ic4029645
|
[26]
|
Langley, S.K., Chilton, N.F., Moubaraki, B. and Murray, K.S. (2013) Single-Molecule Magnetism in Three Related {CoIII2DyIII2}-Acetylacetonate Complexes with Multiple Relaxation Mechanisms. Inorganic Chemistry, 52, 7183-7192. https://doi.org/10.1021/ic400789k
|
[27]
|
Langley, S.K., Le, C., Ungur, L., Moubaraki, B., Abrahams, B.F., Chibotaru, L.F., et al. (2015) Heterometallic 3d-4f Single-Molecule Magnets: Ligand and Metal Ion Influences on the Magnetic Relaxation. Inorganic Chemistry, 54, 3631-3642. https://doi.org/10.1021/acs.inorgchem.5b00219
|
[28]
|
Vignesh, K.R., Langley, S.K., Murray, K.S. and Rajaraman, G. (2017) Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {CoIII2LnIII2} (Ln=Dy, Tb, Ho) “Butterfly” Complexes. Inorganic Chemistry, 56, 2518-2532. https://doi.org/10.1021/acs.inorgchem.6b02720
|
[29]
|
Mondal, K.C., Sundt, A., Lan, Y., Kostakis, G.E., Waldmann, O., Ungur, L., et al. (2012) Coexistence of Distinct Single-Ion and Exchange-Based Mechanisms for Blocking of Magnetization in a CoII2DyIII2 Single-Molecule Magnet. Angewandte Chemie International Edition, 51, 7550-7554. https://doi.org/10.1002/anie.201201478
|
[30]
|
Peng, Y., Mereacre, V., Anson, C.E. and Powell, A.K. (2017) The Role of Coordinated Solvent on Co(II) Ions in Tuning the Single Molecule Magnet Properties in a {CoII2DyIII2} System. Dalton Transactions, 46, 5337-5343. https://doi.org/10.1039/c7dt00548b
|
[31]
|
Li, J., Wei, R., Pu, T., Cao, F., Yang, L., Han, Y., et al. (2017) Tuning Quantum Tunnelling of Magnetization through 3d-4f Magnetic Interactions: An Alternative Approach for Manipulating Single-Molecule Magnetism. Inorganic Chemistry Frontiers, 4, 114-122. https://doi.org/10.1039/c6qi00407e
|
[32]
|
Li, S., Xiong, J., Yuan, Q., Zhu, W., Gong, H., Wang, F., et al. (2021) Effect of the Transition Metal Ions on the Single-Molecule Magnet Properties in a Family of Air-Stable 3d-4f Ion-Pair Compounds with Pentagonal Bipyramidal Ln(III) Ions. Inorganic Chemistry, 60, 18990-19000. https://doi.org/10.1021/acs.inorgchem.1c02828
|
[33]
|
Xu, G., Gamez, P., Tang, J., Clérac, R., Guo, Y. and Guo, Y. (2012) MIIIDyIII3(M=FeIII, CoIII) Complexes: Three-Blade Propellers Exhibiting Slow Relaxation of Magnetization. Inorganic Chemistry, 51, 5693-5698. https://doi.org/10.1021/ic300126q
|
[34]
|
Li, Q., Peng, Y., Qian, J., Yan, T., Du, L. and Zhao, Q. (2019) A Family of Planar Hexanuclear CoIII4LnIII2 Clusters with Lucanidae-Like Arrangement and Single-Molecule Magnet Behavior. Dalton Transactions, 48, 12880-12887. https://doi.org/10.1039/c9dt02103e
|
[35]
|
Chandrasekhar, V., Pandian, B.M., Azhakar, R., Vittal, J.J. and Clerac, R. (2007) Linear Trinuclear Mixed-Metal CoII-GdIII-CoII Single-Molecule Magnet: [L2Co2Gd][NO3]·2CHCl3 (LH3 = (S)P[N(Me)NCH-C6H3-2-OH-3-OMe]3). Inorganic Chemistry Journal, 46, 5140-5142.
|
[36]
|
Zou, L., Zhao, L., Guo, Y., Yu, G., Guo, Y., Tang, J., et al. (2011) A Dodecanuclear Heterometallic Dysprosium-Cobalt Wheel Exhibiting Single-Molecule Magnet Behaviour. Chemical Communications, 47, Article 8659. https://doi.org/10.1039/c1cc12405f
|
[37]
|
Stati, D., van Leusen, J., Ahmed, N., Kravtsov, V.C., Kögerler, P. and Baca, S.G. (2022) A {CoIII2DyIII4} Single-Molecule Magnet with an Expanded Core Structure. Crystal Growth & Design, 23, 395-402. https://doi.org/10.1021/acs.cgd.2c01085
|
[38]
|
Sheikh, J.A., Jena, H.S. and Konar, S. (2022) Co3Gd4 Cage as Magnetic Refrigerant and Co3Dy3 Cage Showing Slow Relaxation of Magnetisation. Molecules, 27, Article 1130. https://doi.org/10.3390/molecules27031130
|
[39]
|
Zheng, J., Zhang, Y., Shen, Y., Zhang, X., Liu, B. and Zhang, J. (2021) A Series of Zero-Dimensional Co(II)-Ln(III) Heterometallic Complexes Derived from 2,3-Dichlorobenzoate and 2,2’-Bipyridine: Syntheses, Structures and Magnetic Properties. Inorganica Chimica Acta, 527, Article 120550. https://doi.org/10.1016/j.ica.2021.120550
|
[40]
|
Yu, S., Wang, H., Chen, Z., Zou, H., Hu, H., Zhu, Z., et al. (2021) Two Decanuclear Dyiiixcoii10-x (X=2,4) Nanoclusters: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 60, 4904-4914. https://doi.org/10.1021/acs.inorgchem.0c03814
|
[41]
|
Li, D., Li, Y., Tello Yepes, D.F., Zhang, X., Li, Y. and Yao, J. (2021) Hexanuclear Co4Dy2, Zn4Dy2, and Co4Dy2 Complexes with Defect Tetracubane Cores: Syntheses, Structures, and Magnetic Properties. Chemistry—An Asian Journal, 16, 2545-2551. https://doi.org/10.1002/asia.202100571
|
[42]
|
Biswas, M., Sañudo, E.C. and Ray, D. (2021) Carboxylate-Decorated Aggregation of Octanuclear Co4Ln4 (Ln=Dy, Ho, Yb) Complexes from Ligand-Controlled Hydrolysis: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 60, 11129-11139. https://doi.org/10.1021/acs.inorgchem.1c01070
|
[43]
|
Yang, P., Yu, S., Quan, L., Hu, H., Liu, D., Liang, Y., et al. (2020) Structure and Magnetic Properties of Two Discrete 3d-4f Heterometallic Complexes. ChemistrySelect, 5, 9946-9951. https://doi.org/10.1002/slct.202002611
|
[44]
|
Wang, Y., Yuan, Z., Ren, H., Xu, W., Xu, J., Zhang, H., et al. (2020) Structures and Magnetic Properties of Two Hexanuclear [Co2Ln4] Complexes. Inorganica Chimica Acta, 511, Article 119786. https://doi.org/10.1016/j.ica.2020.119786
|
[45]
|
Wang, R., Wang, H., Wang, J., Bai, F., Ma, Y., Li, L., et al. (2020) The Different Magnetic Relaxation Behaviors in [Fe(CN)6]3− or [Co(CN)6]3− Bridged 3d-4f Heterometallic Compounds. CrystEngComm, 22, 2998-3004. https://doi.org/10.1039/d0ce00039f
|
[46]
|
Lun, H., Kong, X., Long, L. and Zheng, L. (2020) Trigonal Bipyramidal CoIII2Dy3cluster Exhibiting Single-Molecule Magnet Behavior. Dalton Transactions, 49, 2421-2425. https://doi.org/10.1039/c9dt04600c
|
[47]
|
Lun, H., Du, M., Wang, D., Kong, X., Long, L. and Zheng, L. (2020) Double-Propeller-like Heterometallic 3d-4f Clusters Ln18Co7. Inorganic Chemistry, 59, 7900-7904. https://doi.org/10.1021/acs.inorgchem.0c00613
|
[48]
|
Zhou, H., Dong, R., Wang, Z., Wu, L., Liu, Y. and Shen, X. (2019) The Influence of d-f Coupling on Slow Magnetic Relaxation in NiIILnIIIMIII (Ln=Gd, Tb, Dy; M=Cr, Fe, Co) Clusters. European Journal of Inorganic Chemistry, 2019, 2361-2367. https://doi.org/10.1002/ejic.201900263
|
[49]
|
Zhang, H., Du, Y., Yang, H., Zhuang, M., Li, D. and Dou, J. (2019) A New Family of {Co4Ln8} Metallacrowns with a Butterfly-Shaped Structure. Inorganic Chemistry Frontiers, 6, 1904-1908. https://doi.org/10.1039/c9qi00661c
|
[50]
|
Xin, Y., Wang, J., Zychowicz, M., Zakrzewski, J.J., Nakabayashi, K., Sieklucka, B., et al. (2019) Dehydration-Hydration Switching of Single-Molecule Magnet Behavior and Visible Photoluminescence in a Cyanido-Bridged DyIIICoIII Framework. Journal of the American Chemical Society, 141, 18211-18220. https://doi.org/10.1021/jacs.9b09103
|
[51]
|
Wong, J.W.L., Demeshko, S., Dechert, S. and Meyer, F. (2019) Heterometallic Ru2Co2 [2×2] Grid with Localized Single Molecule Magnet Behavior. Inorganic Chemistry, 58, 13337-13345. https://doi.org/10.1021/acs.inorgchem.9b02214
|
[52]
|
Wei, R., Liu, T., Li, J., Zhang, X., Chen, Y. and Zhang, Y. (2019) Tuning the Magnetization Dynamic Properties of Nd⋅⋅⋅Fe and Nd⋅⋅⋅Co Single-Molecular Magnets by Introducing 3d-4f Magnetic Interactions. Chemistry—An Asian Journal, 14, 2029-2035. https://doi.org/10.1002/asia.201900139
|
[53]
|
Roy, S., Hari, N. and Mohanta, S. (2019) Synthesis, Crystal Structures, Magnetic Properties, and Fluorescence of Two Heptanuclear CoIII4LnIII3 Compounds (Ln=GdIII, DyIII): Multiple Relaxation Dynamics in the DyIII Analogue. European Journal of Inorganic Chemistry, 2019, 3411-3423. https://doi.org/10.1002/ejic.201900383
|
[54]
|
Rosado Piquer, L., Dey, S., Castilla-Amorós, L., Teat, S.J., Cirera, J., Rajaraman, G., et al. (2019) Microwave Assisted Synthesis of Heterometallic 3d-4f M4Ln Complexes. Dalton Transactions, 48, 12440-12450. https://doi.org/10.1039/c9dt02567g
|
[55]
|
Patrascu, A.A., Briganti, M., Soriano, S., Calancea, S., Allão Cassaro, R.A., Totti, F., et al. (2019) SMM Behavior Tuned by an Exchange Coupling LEGO Approach for Chimeric Compounds: First 2p-3d-4f Heterotrispin Complexes with Different Metal Ions Bridged by One Aminoxyl Group. Inorganic Chemistry, 58, 13090-13101. https://doi.org/10.1021/acs.inorgchem.9b01998
|
[56]
|
Lutsenko, I.A., Kiskin, M.A., Nikolaevskii, S.A., Starikova, A.A., Efimov, N.N., Khoroshilov, A.V., et al. (2019) Ferromagnetically Coupled Molecular Complexes with a CoII2GdIII Pivalate Core: Synthesis, Structure, Magnetic Properties and Thermal Stability. ChemistrySelect, 4, 14261-14270. https://doi.org/10.1002/slct.201904585
|
[57]
|
Acharya, J., Swain, A., Chakraborty, A., Kumar, V., Kumar, P., Gonzalez, J.F., et al. (2019) Slow Magnetic Relaxation in Dinuclear CoIIYIII Complexes. Inorganic Chemistry, 58, 10725-10735. https://doi.org/10.1021/acs.inorgchem.9b00864
|
[58]
|
Zhao, S., Zhu, X., Wang, X., Cao, Y., Li, Q., Qin, S., et al. (2023) Catalytic Water Oxidation Mediated by Copper-Triazolylpyridine Complexes. Applied Organometallic Chemistry, 37, e7198. https://doi.org/10.1002/aoc.7198
|
[59]
|
Wang, H., Yu, C., Ye, S., Chen, Y., Liu, X., Wu, Y., et al. (2023) Modulating the Structural Topologies from Star-Shape to Cross-Shape for Co-Dy Heterometallic Complexes with Slow Magnetic Relaxation Behavior. CrystEngComm, 25, 726-737. https://doi.org/10.1039/d2ce01381a
|
[60]
|
Li, G., Tang, H., Gao, R., Wang, Y., Sun, X. and Zhang, K. (2023) Tuning Quantum Tunneling in Isomorphic {MII2DyIII2} “Butterfly” System via 3d-4f Magnetic Interaction. Crystal Growth & Design, 23, 1575-1580. https://doi.org/10.1021/acs.cgd.2c01198
|
[61]
|
Liu, Y., Shi, D. and Xu, F. (2022) Design of Molecular Magnetic Materials Based on a New Family of Mixed-Lanthanide Co-Ln Clusters by the Use of the 1,3-Bis[tris(hydroxymethyl)-methylamino]propane ligand. Polyhedron, 217, Article 115754. https://doi.org/10.1016/j.poly.2022.115754
|
[62]
|
Ahmed, N. and Uddin Ansari, K. (2022) Experimental and Theoretical Insights into Co-Ln Magnetic Exchange and the Rare Slow-Magnetic Relaxation Behavior of [CoII2Pr]2+ in a Series of Linear [CoII2Ln]2+ Complexes. Dalton Transactions, 51, 4122-4134. https://doi.org/10.1039/d1dt03573h
|
[63]
|
Modak, R., Sikdar, Y., Thuijs, A.E., Christou, G. and Goswami, S. (2016) CoII4, CoII7, and a Series of CoII2LnIII (LnIII =NdIII, SmIII, GdIII, TbIII, DyIII) Coordination Clusters: Search for Single Molecule Magnets. Inorganic Chemistry, 55, 10192-10202. https://doi.org/10.1021/acs.inorgchem.6b01402
|
[64]
|
Wang, Y., Du, C., Zhao, L., Zhang, X., Wang, D., Sha, J., et al. (2020) Two Hexanuclear [Co2III-Ln4III] Clusters Including a [Co2III-Dy4III] Single Molecule Magnet. Inorganic Chemistry Communications, 116, Article 107913. https://doi.org/10.1016/j.inoche.2020.107913
|
[65]
|
Zhang, J., Ren, Y., Li, J., Liu, B. and Dong, Y. (2018) Syntheses, Structures, and Magnetic Properties of Two Series of 3d-4f Heterometallic Coordination Polymers Derived from Pyrazine-2, 3-dicarboxylic Acid. European Journal of Inorganic Chemistry, 2018, 1099-1106. https://doi.org/10.1002/ejic.201701394
|
[66]
|
Yang, J., Tian, Y., Tao, J., Chen, P., Li, H., Zhang, Y., et al. (2018) Modulation of the Coordination Environment around the Magnetic Easy Axis Leads to Significant Magnetic Relaxations in a Series of 3d-4f Schiff Complexes. Inorganic Chemistry, 57, 8065-8077. https://doi.org/10.1021/acs.inorgchem.8b00056
|
[67]
|
Shao, F., Zhuang, J., Chen, M., Wang, N., Shi, H., Tong, J., et al. (2018) Facile and Environmentally Friendly Synthesis of Six Heterometallic Dumbbell-Shaped MII5LnIII4 (M=Co, Ni; L =Eu, Gd, Dy) Clusters as Cryogenic Magnetic Coolants and Molecular Magnets. Dalton Transactions, 47, 16850-16854. https://doi.org/10.1039/c8dt04153a
|
[68]
|
Majee, M.C., Towsif Abtab, S.M., Mondal, D., Maity, M., Weselski, M., Witwicki, M., et al. (2018) Synthesis and Magneto-Structural Studies on a New Family of Carbonato Bridged 3d-4f Complexes Featuring a [CoII3LnIII3(Co3)] (Ln=La, Gd, Tb, Dy and Ho) Core: Slow Magnetic Relaxation Displayed by the Cobalt(II)-Dysprosium(III) Analogue. Dalton Transactions, 47, 3425-3439. https://doi.org/10.1039/c7dt04389a
|
[69]
|
Liu, M., Yuan, J., Wang, B., Wu, S., Zhang, Y., Liu, C., et al. (2018) Spontaneous Resolution of Chiral Co(III)Dy(III) Single-Molecule Magnet Based on an Achiral Flexible Ligand. Crystal Growth & Design, 18, 7611-7617. https://doi.org/10.1021/acs.cgd.8b01410
|
[70]
|
Li, H., Sun, J., Yang, M., Sun, Z., Tang, J., Ma, Y., et al. (2018) Functionalized Nitronyl Nitroxide Biradicals for the Construction of 3d-4f Heterometallic Compounds. Inorganic Chemistry, 57, 9757-9765. https://doi.org/10.1021/acs.inorgchem.7b03186
|
[71]
|
Fan, S., Xu, S., Zheng, X., Yan, Z., Kong, X., Long, L., et al. (2018) Four 3d-4f Heterometallic Ln45M7 Clusters Protected by Mixed Ligands. CrystEngComm, 20, 2120-2125. https://doi.org/10.1039/c8ce00173a
|
[72]
|
Chen, S., Mereacre, V., Zhao, Z., Zhang, W., Zhang, M. and He, Z. (2018) Targeted Replacement: Systematic Studies of Dodecanuclear {MIII6LnIII6} Coordination Clusters (M=Cr, Co; Ln=Dy, Y). Dalton Transactions, 47, 7456-7462. https://doi.org/10.1039/c8dt01289j
|
[73]
|
Wu, H., Li, M., Zhang, S., Ke, H., Zhang, Y., Zhuang, G., et al. (2017) Magnetic Interaction Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {NIII2DyIII2} and {CoII2DyIII2} Tetranuclear Complexes. Inorganic Chemistry, 56, 11387-11397. https://doi.org/10.1021/acs.inorgchem.7b01840
|
[74]
|
Vignesh, K.R., Langley, S.K., Murray, K.S. and Rajaraman, G. (2017) Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear {TmIII4DyIII4} (Tm=Co and Cr) Single-Molecule Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling. Chemistry—A European Journal, 23, 1654-1666. https://doi.org/10.1002/chem.201604835
|
[75]
|
Palacios, M.A., Nehrkorn, J., Suturina, E.A., Ruiz, E., Gómez-Coca, S., Holldack, K., et al. (2017) Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Single-Molecule Magnet (SMM) Behavior in a Family of CoIIYIII Dinuclear Complexes with Easy-Plane Anisotropy. Chemistry—A European Journal, 23, 11649-11661. https://doi.org/10.1002/chem.201702099
|
[76]
|
Funes, A.V., Carrella, L., Rechkemmer, Y., van Slageren, J., Rentschler, E. and Alborés, P. (2017) Synthesis, Structural Characterization and Magnetic Behaviour of a Family of [CoIII2LnIII2] Butterfly Compounds. Dalton Transactions, 46, 3400-3409. https://doi.org/10.1039/c6dt04713k
|
[77]
|
Funes, A.V., Carrella, L., Rentschler, E. and Alborés, P. (2014) {CoIII2DyIII2} Single Molecule Magnet with Two Resolved Thermal Activated Magnetization Relaxation Pathways at Zero Field. Dalton Transsactions, 43, 2361-2364. https://doi.org/10.1039/c3dt52765d
|
[78]
|
Zhang, H., Liu, R., Zhang, J., Li, Y. and Liu, W. (2016) Chair-Like [LnIII4CoIII2] (Ln=Dy, Eu, Gd, Tb) Clusters Including a [DyIII4CoIII2] Single Molecule Magnet. CrystEngComm, 18, 8246-8252. https://doi.org/10.1039/c6ce01589a
|
[79]
|
Novitchi, G., Shova, S., Lan, Y., Wernsdorfer, W. and Train, C. (2016) Verdazyl Radical, a Building Block for a Six-Spin-Center 2p-3d-4f Single-Molecule Magnet. Inorganic Chemistry, 55, 12122-12125. https://doi.org/10.1021/acs.inorgchem.6b02380
|
[80]
|
Goura, J., Brambleby, J., Topping, C.V., Goddard, P.A., Suriya Narayanan, R., Bar, A.K., et al. (2016) Heterometallic Trinuclear {CoIII2LnIII} (Ln=Gd, Tb, Ho and Er) Complexes in a Bent Geometry. Field-Induced Single-Ion Magnetic Behavior of the ErIII and TbIII Analogues. Dalton Transactions, 45, 9235-9249. https://doi.org/10.1039/c5dt03871e
|
[81]
|
Langley, S.K., Chilton, N.F., Moubaraki, B. and Murray, K.S. (2015) Single-Molecule Magnetism in {CoIII2DyIII2}-Amine-Polyalcohol-Acetylacetonate Complexes: Effects of Ligand Replacement at the DyIII Sites on the Dynamics of Magnetic Relaxation. Inorganic Chemistry Frontiers, 2, 867-875. https://doi.org/10.1039/c5qi00076a
|
[82]
|
Goura, J., Brambleby, J., Goddard, P. and Chandrasekhar, V. (2015) A Single-Ion Magnet Based on a Heterometallic CoIII2DyIII Complex. Chemistry—A European Journal, 21, 4926-4930. https://doi.org/10.1002/chem.201406021
|
[83]
|
Xie, Q., Wu, S., Shi, W., Liu, C., Cui, A. and Kou, H. (2014) Heterodinuclear MII–LnIII Single Molecule Magnets Constructed from Exchange-Coupled Single Ion Magnets. Dalton Transactions, 43, Article 11309. https://doi.org/10.1039/c4dt00740a
|
[84]
|
Tian, C., Yuan, D., Han, Y., Li, Z., Lin, P. and Du, S. (2014) Synthesis, Structures, and Magnetic Properties of a Series of New Heterometallic Hexanuclear Co2Ln4(Ln=Eu, Gd, Tb and Dy) Clusters. Inorganic Chemistry Frontiers, 1, 695-704. https://doi.org/10.1039/c4qi00116h
|
[85]
|
Sheikh, J.A., Goswami, S. and Konar, S. (2014) Modulating the Magnetic Properties by Structural Modification in a Family of Co-Ln (Ln=Gd, Dy) Molecular Aggregates. Dalton Transactions, 43, 14577-14585. https://doi.org/10.1039/c4dt01791a
|
[86]
|
Towatari, M., Nishi, K., Fujinami, T., Matsumoto, N., Sunatsuki, Y., Kojima, M., Mochida, N., Ishida, T., Re, N. and Mrozinski, J. (2013) Syntheses, Structures, and Magnetic Properties of Acetato-and Diphenolato-Bridged 3d-4f Binuclear Complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = ZnII, CuII, NiII, CoII; Ln = LaIII, GdIII, TbIII, DyIII; 3-MeOsaltn = N,N′-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = Acetato; hfac = Hexafluoroacetylacetonato; x = 0 or 1). Inorganic Chemistry Journal, 52, 6160-6178.
|
[87]
|
Langley, S.K., Chilton, N.F., Moubaraki, B. and Murray, K.S. (2013) Anisotropy Barrier Enhancement via Ligand Substitution in Tetranuclear {CoIII2LnIII2} Single Molecule Magnets. Chemical Communications, 49, Article 6965. https://doi.org/10.1039/c3cc44037k
|
[88]
|
Colacio, E., Ruiz, J., Ruiz, E., Cremades, E., Krzystek, J., Carretta, S., et al. (2013) Slow Magnetic Relaxation in a CoII-YIII Single-Ion Magnet with Positive Axial Zero-Field Splitting. Angewandte Chemie International Edition, 52, 9130-9134. https://doi.org/10.1002/anie.201304386
|
[89]
|
Peng, J., Zhang, Q., Kong, X., Zheng, Y., Ren, Y., Long, L., et al. (2012) High-Nuclearity 3d-4f Clusters as Enhanced Magnetic Coolers and Molecular Magnets. Journal of the American Chemical Society, 134, 3314-3317. https://doi.org/10.1021/ja209752z
|
[90]
|
Yamaguchi, T., Costes, J., Kishima, Y., Kojima, M., Sunatsuki, Y., Bréfuel, N., et al. (2010) Face-Sharing Heterotrinuclear MII-LnIII-MII (M=Mn, Fe, Co, Zn; Ln=La, Gd, Tb, Dy) Complexes: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 49, 9125-9135. https://doi.org/10.1021/ic100460w
|
[91]
|
Chandrasekhar, V., Pandian, B.M., Vittal, J.J. and Clerac, R. (2009) Synthesis, structure, and magnetism of heterobimetallic trinuclear complexes {[L2Co2Ln][X]} [Ln = Eu, X = Cl; Ln = Tb, Dy, Ho, X = NO3; LH3 = (S)P[N(Me)N=CH-C6H3-2-OH-3-OMe]3]: A 3d-4f family of single-molecule magnets. Inorganic Chemistry Journal, 48, 1148-1157.
|
[92]
|
Zou, H., Sheng, L., Liang, F., Chen, Z. and Zhang, Y. (2015) Experimental and Theoretical Investigations of Four 3d-4f Butterfly Single-Molecule Magnets. Dalton Transactions, 44, 18544-18552. https://doi.org/10.1039/c5dt03368c
|