[1]
|
Perkins, J., Hayashi, T., Peakall, R., Flematti, G.R. and Bohman, B. (2023) The Volatile Chemistry of Orchid Pollination. Natural Product Reports, 40, 819-839. https://doi.org/10.1039/d2np00060a
|
[2]
|
Wong, D.C.J., Pichersky, E. and Peakall, R. (2023) Many Different Flowers Make a Bouquet: Lessons from Specialized Metabolite Diversity in Plant-Pollinator Interactions. Current Opinion in Plant Biology, 73, Article 102332. https://doi.org/10.1016/j.pbi.2022.102332
|
[3]
|
Marone, D., Mastrangelo, A.M., Borrelli, G.M., Mores, A., Laidò, G., Russo, M.A., et al. (2022) Specialized Metabolites: Physiological and Biochemical Role in Stress Resistance, Strategies to Improve Their Accumulation, and New Applications in Crop Breeding and Management. Plant Physiology and Biochemistry, 172, 48-55. https://doi.org/10.1016/j.plaphy.2021.12.037
|
[4]
|
Lim, P.T., Goh, B.H. and Lee, W. (2022) Taxol: Mechanisms of Action against Cancer, an Update with Current Research. In: Swamy, M.K., Pullaiah, T. and Chen, Z.-S., Eds., Paclitaxel, Academic Press, 47-71. https://doi.org/10.1016/b978-0-323-90951-8.00007-2
|
[5]
|
Xiong, X., Gou, J., Liao, Q., Li, Y., Zhou, Q., Bi, G., et al. (2021) The Taxus Genome Provides Insights into Paclitaxel Biosynthesis. Nature Plants, 7, 1026-1036. https://doi.org/10.1038/s41477-021-00963-5
|
[6]
|
张发光, 曲戈, 孙周通, 马军安. 从化学合成到生物合成——天然产物全合成新趋势[J]. 合成生物学, 2021, 2(5): 674-696.
|
[7]
|
Lai, M.J. and Lan, E.I. (2019) Photoautotrophic Synthesis of Butyrate by Metabolically Engineered Cyanobacteria. Biotechnology and Bioengineering, 116, 893-903. https://doi.org/10.1002/bit.26903
|
[8]
|
Voigt, C.A. (2020) Synthetic Biology 2020-2030: Six Commercially-Available Products That Are Changing Our World. Nature Communications, 11, Article No. 6379. https://doi.org/10.1038/s41467-020-20122-2
|
[9]
|
Kharissova, O.V., Kharisov, B.I., Oliva González, C.M., Méndez, Y.P. and López, I. (2019) Greener Synthesis of Chemical Compounds and Materials. Royal Society Open Science, 6, Article 191378. https://doi.org/10.1098/rsos.191378
|
[10]
|
Wang, J., Liu, J. and Yu, S. (2019) Recycling Valuable Elements from the Chemical Synthesis Process of Nanomaterials: A Sustainable View. ACS Materials Letters, 1, 541-548. https://doi.org/10.1021/acsmaterialslett.9b00283
|
[11]
|
Hansen, C.C., Sørensen, M., Bellucci, M., Brandt, W., Olsen, C.E., Goodger, J.Q.D., et al. (2022) Recruitment of Distinct UDP‐Glycosyltransferase Families Demonstrates Dynamic Evolution of Chemical Defense within Eucalyptus L’Hér. New Phytologist, 237, 999-1013. https://doi.org/10.1111/nph.18581
|
[12]
|
Scherlach, K. and Hertweck, C. (2021) Mining and Unearthing Hidden Biosynthetic Potential. Nature Communications, 12, Article No. 3864. https://doi.org/10.1038/s41467-021-24133-5
|
[13]
|
Singh, K.S., van der Hooft, J.J.J., van Wees, S.C.M. and Medema, M.H. (2022) Integrative Omics Approaches for Biosynthetic Pathway Discovery in Plants. Natural Product Reports, 39, 1876-1896. https://doi.org/10.1039/d2np00032f
|
[14]
|
Zhao, K. and Rhee, S.Y. (2022) Omics-Guided Metabolic Pathway Discovery in Plants: Resources, Approaches, and Opportunities. Current Opinion in Plant Biology, 67, Article 102222. https://doi.org/10.1016/j.pbi.2022.102222
|
[15]
|
Shen, S., Zhan, C., Yang, C., Fernie, A.R. and Luo, J. (2023) Metabolomics-Centered Mining of Plant Metabolic Diversity and Function: Past Decade and Future Perspectives. Molecular Plant, 16, 43-63. https://doi.org/10.1016/j.molp.2022.09.007
|
[16]
|
Jiang, B., Gao, L., Wang, H., Sun, Y., Zhang, X., Ke, H., et al. (2024) Characterization and Heterologous Reconstitution of Taxus Biosynthetic Enzymes Leading to Baccatin III. Science, 383, 622-629. https://doi.org/10.1126/science.adj3484
|
[17]
|
Li, J., Mutanda, I., Wang, K., Yang, L., Wang, J. and Wang, Y. (2019) Chloroplastic Metabolic Engineering Coupled with Isoprenoid Pool Enhancement for Committed Taxanes Biosynthesis in Nicotiana benthamiana. Nature Communications, 10, Article No. 4850. https://doi.org/10.1038/s41467-019-12879-y
|
[18]
|
Wang, Y., Huang, J., Tian, T., Yan, Y., Chen, Y., Yang, J., et al. (2022) Discovery and Engineering of the Cocaine Biosynthetic Pathway. Journal of the American Chemical Society, 144, 22000-22007. https://doi.org/10.1021/jacs.2c09091
|
[19]
|
Wang, S., Liu, L., Mi, X., Zhao, S., An, Y., Xia, X., et al. (2021) Multi‐Omics Analysis to Visualize the Dynamic Roles of Defense Genes in the Response of Tea Plants to Gray Blight. The Plant Journal, 106, 862-875. https://doi.org/10.1111/tpj.15203
|
[20]
|
Wang, N. and Huo, Y. (2022) Using Genome and Transcriptome Analysis to Elucidate Biosynthetic Pathways. Current Opinion in Biotechnology, 75, Article 102708. https://doi.org/10.1016/j.copbio.2022.102708
|
[21]
|
Polturak, G., Liu, Z. and Osbourn, A. (2022) New and Emerging Concepts in the Evolution and Function of Plant Biosynthetic Gene Clusters. Current Opinion in Green and Sustainable Chemistry, 33, Article 100568. https://doi.org/10.1016/j.cogsc.2021.100568
|
[22]
|
Smit, S.J. and Lichman, B.R. (2022) Plant Biosynthetic Gene Clusters in the Context of Metabolic Evolution. Natural Product Reports, 39, 1465-1482. https://doi.org/10.1039/d2np00005a
|
[23]
|
Nützmann, H. and Osbourn, A. (2014) Gene Clustering in Plant Specialized Metabolism. Current Opinion in Biotechnology, 26, 91-99. https://doi.org/10.1016/j.copbio.2013.10.009
|
[24]
|
Nützmann, H., Huang, A. and Osbourn, A. (2016) Plant Metabolic Clusters—From Genetics to Genomics. New Phytologist, 211, 771-789. https://doi.org/10.1111/nph.13981
|
[25]
|
Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grün, S., Winklmair, A., et al. (1997) Analysis of a Chemical Plant Defense Mechanism in Grasses. Science, 277, 696-699. https://doi.org/10.1126/science.277.5326.696
|
[26]
|
Ferruz, N., Schmidt, S. and Höcker, B. (2021) Proteintools: A Toolkit to Analyze Protein Structures. Nucleic Acids Research, 49, W559-W566. https://doi.org/10.1093/nar/gkab375
|
[27]
|
Sun, J., Lu, F., Luo, Y., Bie, L., Xu, L. and Wang, Y. (2023) OrthoVenn3: An Integrated Platform for Exploring and Visualizing Orthologous Data across Genomes. Nucleic Acids Research, 51, W397-W403. https://doi.org/10.1093/nar/gkad313
|
[28]
|
Chavali, A.K. and Rhee, S.Y. (2017) Bioinformatics Tools for the Identification of Gene Clusters That Biosynthesize Specialized Metabolites. Briefings in Bioinformatics, 19, 1022-1034. https://doi.org/10.1093/bib/bbx020
|
[29]
|
Amos, G.C.A., Awakawa, T., Tuttle, R.N., Letzel, A., Kim, M.C., Kudo, Y., et al. (2017) Comparative Transcriptomics as a Guide to Natural Product Discovery and Biosynthetic Gene Cluster Functionality. Proceedings of the National Academy of Sciences, 114, E11121-E11130. https://doi.org/10.1073/pnas.1714381115
|
[30]
|
Zhan, C., Shen, S., Yang, C., Liu, Z., Fernie, A.R., Graham, I.A., et al. (2022) Plant Metabolic Gene Clusters in the Multi-Omics Era. Trends in Plant Science, 27, 981-1001. https://doi.org/10.1016/j.tplants.2022.03.002
|
[31]
|
Liu, M., Li, Y. and Li, H. (2022) Deep Learning to Predict the Biosynthetic Gene Clusters in Bacterial Genomes. Journal of Molecular Biology, 434, Article 167597. https://doi.org/10.1016/j.jmb.2022.167597
|
[32]
|
Zhang, X., Liu, C., Dai, J., Yuan, Y., Gao, C., Feng, Y., et al. (2023) Enabling Technology and Core Theory of Synthetic Biology. Science China Life Sciences, 66, 1742-1785. https://doi.org/10.1007/s11427-022-2214-2
|
[33]
|
Depuydt, T., De Rybel, B. and Vandepoele, K. (2023) Charting Plant Gene Functions in the Multi-Omics and Single-Cell Era. Trends in Plant Science, 28, 283-296. https://doi.org/10.1016/j.tplants.2022.09.008
|
[34]
|
Hemenway, E.A. and Gehring, M. (2023) Epigenetic Regulation during Plant Development and the Capacity for Epigenetic Memory. Annual Review of Plant Biology, 74, 87-109. https://doi.org/10.1146/annurev-arplant-070122-025047
|
[35]
|
Zhang, W., Zeng, Y., Jiao, M., Ye, C., Li, Y., Liu, C., et al. (2023) Integration of High-Throughput Omics Technologies in Medicinal Plant Research: The New Era of Natural Drug Discovery. Frontiers in Plant Science, 14, Article 1073848. https://doi.org/10.3389/fpls.2023.1073848
|
[36]
|
Butte, A.J. and Kohane, I.S. (2003) Relevance Networks: A First Step toward Finding Genetic Regulatory Networks within Microarray Data. In: Parmigiani, G., Garrett, E.S., Irizarry, R.A. and Zeger, S.L., Eds., The Analysis of Gene Expression Data, Springer, 428-446. https://doi.org/10.1007/0-387-21679-0_19
|
[37]
|
Piya, S., Pantalone, V., Zadegan, S.B., Shipp, S., Lakhssassi, N., Knizia, D., et al. (2023) Soybean Gene Co‐Expression Network Analysis Identifies Two Co‐Regulated Gene Modules Associated with Nodule Formation and Development. Molecular Plant Pathology, 24, 628-636. https://doi.org/10.1111/mpp.13327
|
[38]
|
Guo, C., Xie, B. and Liu, Q. (2022) Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Hub Biomarkers in Colorectal Cancer. Functional & Integrative Genomics, 23, Article No. 24. https://doi.org/10.1007/s10142-022-00949-2
|
[39]
|
Zhang, A., Zhang, Q., Li, J., Gong, H., Fan, X., Yang, Y., et al. (2020) Transcriptome Co-Expression Network Analysis Identifies Key Genes and Regulators of Ripening Kiwifruit Ester Biosynthesis. BMC Plant Biology, 20, Article No. 103. https://doi.org/10.1186/s12870-020-2314-9
|
[40]
|
Alcantar, M.A., English, M.A., Valeri, J.A. and Collins, J.J. (2024) A High-Throughput Synthetic Biology Approach for Studying Combinatorial Chromatin-Based Transcriptional Regulation. Molecular Cell, 84, 2382-2396.E9. https://doi.org/10.1016/j.molcel.2024.05.025
|
[41]
|
Farhadian, M., Rafat, S.A., Panahi, B. and Mayack, C. (2021) Weighted Gene Co-Expression Network Analysis Identifies Modules and Functionally Enriched Pathways in the Lactation Process. Scientific Reports, 11, Article No. 2367. https://doi.org/10.1038/s41598-021-81888-z
|
[42]
|
Ng, M. and Yanofsky, M.F. (2001) Function and Evolution of the Plant Mads-Box Gene Family. Nature Reviews Genetics, 2, 186-195. https://doi.org/10.1038/35056041
|
[43]
|
Bélanger, S., Zhan, J. and Meyers, B.C. (2023) Phylogenetic Analyses of Seven Protein Families Refine the Evolution of Small RNA Pathways in Green Plants. Plant Physiology, 192, 1183-1203. https://doi.org/10.1093/plphys/kiad141
|
[44]
|
Blázquez, M.A., Nelson, D.C. and Weijers, D. (2020) Evolution of Plant Hormone Response Pathways. Annual Review of Plant Biology, 71, 327-353. https://doi.org/10.1146/annurev-arplant-050718-100309
|
[45]
|
Waite, J.M. and Dardick, C. (2021) The Roles of the IGT Gene Family in Plant Architecture: Past, Present, and Future. Current Opinion in Plant Biology, 59, Article 101983. https://doi.org/10.1016/j.pbi.2020.101983
|
[46]
|
Zhang, J., Fu, X., Li, R., Zhao, X., Liu, Y., Li, M., et al. (2020) The Hornwort Genome and Early Land Plant Evolution. Nature Plants, 6, 107-118. https://doi.org/10.1038/s41477-019-0588-4
|
[47]
|
Man, J., Gallagher, J.P. and Bartlett, M. (2020) Structural Evolution Drives Diversification of the Large LRR‐RLK Gene Family. New Phytologist, 226, 1492-1505. https://doi.org/10.1111/nph.16455
|
[48]
|
Jaenisch, R. and Bird, A. (2003) Epigenetic Regulation of Gene Expression: How the Genome Integrates Intrinsic and Environmental Signals. Nature Genetics, 33, 245-254. https://doi.org/10.1038/ng1089
|
[49]
|
Moore, L.D., Le, T. and Fan, G. (2012) DNA Methylation and Its Basic Function. Neuropsychopharmacology, 38, 23-38. https://doi.org/10.1038/npp.2012.112
|
[50]
|
Bannister, A.J. and Kouzarides, T. (2011) Regulation of Chromatin by Histone Modifications. Cell Research, 21, 381-395. https://doi.org/10.1038/cr.2011.22
|
[51]
|
Mattick, J.S., Amaral, P.P., Carninci, P., Carpenter, S., Chang, H.Y., Chen, L., et al. (2023) Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nature Reviews Molecular Cell Biology, 24, 430-447. https://doi.org/10.1038/s41580-022-00566-8
|
[52]
|
Gibney, E.R. and Nolan, C.M. (2010) Epigenetics and Gene Expression. Heredity, 105, 4-13. https://doi.org/10.1038/hdy.2010.54
|
[53]
|
Escrich, A., Cusido, R.M., Bonfill, M., Palazon, J., Sanchez-Muñoz, R. and Moyano, E. (2022) The Epigenetic Regulation in Plant Specialized Metabolism: DNA Methylation Limits Paclitaxel in vitro Biotechnological Production. Frontiers in Plant Science, 13, Article 899444. https://doi.org/10.3389/fpls.2022.899444
|
[54]
|
Lin, X., Han, H., Wang, N., Wang, C., Qi, M., Wang, J., et al. (2024) The Gut Microbial Regulation of Epigenetic Modification from a Metabolic Perspective. International Journal of Molecular Sciences, 25, Article 7175. https://doi.org/10.3390/ijms25137175
|