[1]
|
陈晨, 张英, 刘嘉, 等(2018). 多巴胺系统基因对注意网络的调控作用. 心理科学, 41(1), 24-30.
|
[2]
|
陈雪江, 朱燕辉(2010). 注意网络的神经机制. 中国医药指南, 8(34), 44-46.
|
[3]
|
桂婷, 杨安民, 孙嘉伦, 等(2022). 线索有效性对社会性注意和外源性注意的影响. 生物化学与生物物理进展, 49(3), 584-590.
|
[4]
|
荆秀娟, 王一峰(2015). 注意网络间的关系及其心理与生理机制. 心理科学进展, 23(9), 1531-1539.
|
[5]
|
彭聃龄, 主编(2019). 普通心理学(第五版). 北京师范大学出版社.
|
[6]
|
史新广, 冯文锋, 冯成志(2022). 不同神经活动类型大学生注意网络的差异及神经机制. 心理科学, 45(2), 258-267.
|
[7]
|
唐晓雨, 王凌云, 张明(2012). 掩蔽线索引发的注意定向——易化和抑制. 应用心理学, 18(3), 204-212, 248.
|
[8]
|
王铄辰, 陈奥博, 曹成龙, 等(2021). 事件相关电位技术在人脑注意网络研究中的应用进展. 中国临床神经外科杂志, 26(12), 959-963.
|
[9]
|
王一楠, 宋耀武(2011). 内源性眼跳与注意转移关系研究述评. 心理与行为研究, 9(2), 154-160.
|
[10]
|
吴越(2020). 注意网络偏侧化发育发展的研究. 硕士学位论文, 合肥: 安徽医科大学.
|
[11]
|
杨青, 谢悦悦(2017). 儿童注意网络的发展特点. 中国健康心理学杂志, 25(5), 797-800.
|
[12]
|
余芬芬, 曹晓华, 田学红, 等(2007). 注意转移准确性的眼动研究. 见 第十一届全国心理学学术会议论文摘要集 (p. 244).
|
[13]
|
张立伟, 杨业兵, 赵宁, 等(2019). 睡眠剥夺对注意定向网络功能连接的影响. 空军医学杂志, 35(2), 93-96.
|
[14]
|
赵晓月, 唐丹丹(2015). 冲突适应过程中的神经信息传递机制. 心理技术与应用, (5), 10-19.
|
[15]
|
Ben Azouz, O., Dellagi, L., Kebir, O., & Tabbane, K. (2009). Le concept d’attention [The Concept of Attention]. La Tunisie medicale, 87, 680-684.
|
[16]
|
Bigler, E. D. (2014). Magnetic Resonance Imaging in the Evaluation of Cognitive Function. Pediatric Blood & Cancer, 61, 1724-1728. https://doi.org/10.1002/pbc.25110
|
[17]
|
Broadbent, D. E. (1958). Percepton and Communication. Pergamon.
|
[18]
|
Callejas, A., Lupiáñez, J., & Tudela, P. (2004). The Three Attentional Networks: On Their Independence and Interactions. Brain and Cognition, 54, 225-227. https://doi.org/10.1016/j.bandc.2004.02.012
|
[19]
|
Capotosto, P., Sulpizio, V., Galati, G., & Baldassarre, A. (2023). Visuo-Spatial Attention and Semantic Memory Competition in the Parietal Cortex. Scientific Reports, 13, Article No. 6218. https://doi.org/10.1038/s41598-023-33533-0
|
[20]
|
Carlisle N. B. (2019). Flexibility in Attentional Control: Multiple Sources and Suppression. The Yale Journal of Biology and Medicine, 92, 103-113.
|
[21]
|
Carter, B. T., & Luke, S. G. (2020). Best Practices in Eye Tracking Research. International Journal of Psychophysiology, 155, 49-62. https://doi.org/10.1016/j.ijpsycho.2020.05.010
|
[22]
|
Casteau, S., & Smith, D. T. (2020). Covert Attention Beyond the Range of Eye-Movements: Evidence for a Dissociation between Exogenous and Endogenous Orienting. Cortex, 122, 170-186. https://doi.org/10.1016/j.cortex.2018.11.007
|
[23]
|
Ceh, S. M., Annerer‐Walcher, S., Körner, C., Rominger, C., Kober, S. E., Fink, A. et al. (2020). Neurophysiological Indicators of Internal Attention: An Electroencephalography-Eye‐Tracking Coregistration Study. Brain and Behavior, 10, e01790. https://doi.org/10.1002/brb3.1790
|
[24]
|
Cichy, R. M., & Oliva, A. (2020). A M/EEG-fMRI Fusion Primer: Resolving Human Brain Responses in Space and Time. Neuron, 107, 772-781. https://doi.org/10.1016/j.neuron.2020.07.001
|
[25]
|
Clarke, S., Farron, N., & Crottaz-Herbette, S. (2022). Choosing Sides: Impact of Prismatic Adaptation on the Lateralization of the Attentional System. Frontiers in Psychology, 13, Article 909686. https://doi.org/10.3389/fpsyg.2022.909686
|
[26]
|
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron, 58, 306-324. https://doi.org/10.1016/j.neuron.2008.04.017
|
[27]
|
de Souza Almeida, R., Faria Jr., A., & Klein, R. M. (2021). On the Origins and Evolution of the Attention Network Tests. Neuroscience & Biobehavioral Reviews, 126, 560-572. https://doi.org/10.1016/j.neubiorev.2021.02.028
|
[28]
|
Dehaene, S., & Changeux, J. (2011). Experimental and Theoretical Approaches to Conscious Processing. Neuron, 70, 200-227. https://doi.org/10.1016/j.neuron.2011.03.018
|
[29]
|
Fan, J., Gu, X., Guise, K. G., Liu, X., Fossella, J., Wang, H. et al. (2009). Testing the Behavioral Interaction and Integration of Attentional Networks. Brain and Cognition, 70, 209-220. https://doi.org/10.1016/j.bandc.2009.02.002
|
[30]
|
Fan, J., Kolster, R., Ghajar, J., Suh, M., Knight, R. T., Sarkar, R. et al. (2007). Response Anticipation and Response Conflict: An Event-Related Potential and Functional Magnetic Resonance Imaging Study. The Journal of Neuroscience, 27, 2272-2282. https://doi.org/10.1523/jneurosci.3470-06.2007
|
[31]
|
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the Efficiency and Independence of Attentional Networks. Journal of Cognitive Neuroscience, 14, 340-347. https://doi.org/10.1162/089892902317361886
|
[32]
|
Federico, F., Marotta, A., Martella, D., & Casagrande, M. (2016). Development in Attention Functions and Social Processing: Evidence from the Attention Network Test. British Journal of Developmental Psychology, 35, 169-185. https://doi.org/10.1111/bjdp.12154
|
[33]
|
Fiebelkorn, I. C., & Kastner, S. (2020). Functional Specialization in the Attention Network. Annual Review of Psychology, 71, 221-249. https://doi.org/10.1146/annurev-psych-010418-103429
|
[34]
|
Francis, A. M., Bissonnette, J. N., Hull, K. M., Leckey, J., Pimer, L., Lawrence, M. A. et al. (2023). Measuring the Attention Networks and Quantitative-Electroencephalography Correlates of Attention in Depression. Psychiatry Research: Neuroimaging, 333, Article ID: 111661. https://doi.org/10.1016/j.pscychresns.2023.111661
|
[35]
|
Galvao-Carmona, A., González-Rosa, J. J., Hidalgo-Muñoz, A. R., Páramo, D., Benítez, M. L., Izquierdo, G., & Vázquez-Marrufo, M. (2014). Disentangling the Attention Network Test: Behavioral, Event Related Potentials, and Neural Source Analyses. Frontiers in Human Neuroscience, 8, Article 813. https://doi.org/10.3389/fnhum.2014.00813
|
[36]
|
Grace, A. A., Floresco, S. B., Goto, Y., & Lodge, D. J. (2007). Regulation of Firing of Dopaminergic Neurons and Control of Goal-Directed Behaviors. Trends in Neurosciences, 30, 220-227. https://doi.org/10.1016/j.tins.2007.03.003
|
[37]
|
Groom, M. J., & Cragg, L. (2015). Differential Modulation of the N2 and P3 Event-Related Potentials by Response Conflict and Inhibition. Brain and Cognition, 97, 1-9. https://doi.org/10.1016/j.bandc.2015.04.004
|
[38]
|
Grossberg, S. (2021). Attention: Multiple Types, Brain Resonances, Psychological Functions, and Conscious States. Journal of Integrative Neuroscience, 20, 197-232. https://doi.org/10.31083/j.jin.2021.01.406
|
[39]
|
Helfrich, R. F., & Knight, R. T. (2019). Cognitive Neurophysiology: Event-Related Potentials. Handbook of Clinical Neurology, 160, 543-558. https://doi.org/10.1016/b978-0-444-64032-1.00036-9
|
[40]
|
Hudson, A. N., Hansen, D. A., Hinson, J. M., Whitney, P., Layton, M. E., DePriest, D. M. et al. (2020). Speed/Accuracy Trade-Off in the Effects of Acute Total Sleep Deprivation on a Sustained Attention and Response Inhibition Task. Chronobiology International, 37, 1441-1444. https://doi.org/10.1080/07420528.2020.1811718
|
[41]
|
Hunt, A. R., & Kingstone, A. (2003). Covert and Overt Voluntary Attention: Linked or Independent? Cognitive Brain Research, 18, 102-105. https://doi.org/10.1016/j.cogbrainres.2003.08.006
|
[42]
|
Ishigami, Y., & Klein, R. M. (2010). Repeated Measurement of the Components of Attention Using Two Versions of the Attention Network Test (ANT): Stability, Isolability, Robustness, and Reliability. Journal of Neuroscience Methods, 190, 117-128. https://doi.org/10.1016/j.jneumeth.2010.04.019
|
[43]
|
Isreal, J. B., Chesney, G. L., Wickens, C. D., & Donchin, E. (1980). P300 and Tracking Difficulty: Evidence for Multiple Resources in Dual‐Task Performance. Psychophysiology, 17, 259-273. https://doi.org/10.1111/j.1469-8986.1980.tb00146.x
|
[44]
|
Jefferies, L. N., Enns, J. T., & Di Lollo, V. (2017). The Exogenous and Endogenous Control of Attentional Focusing. Psychological Research, 83, 989-1006. https://doi.org/10.1007/s00426-017-0918-y
|
[45]
|
Kam, J. W. Y., Helfrich, R. F., Solbakk, A., Endestad, T., Larsson, P. G., Lin, J. J. et al. (2020). Top-Down Attentional Modulation in Human Frontal Cortex: Differential Engagement during External and Internal Attention. Cerebral Cortex, 31, 873-883. https://doi.org/10.1093/cercor/bhaa262
|
[46]
|
Klinkenberg, I., Sambeth, A., & Blokland, A. (2011). Acetylcholine and Attention. Behavioural Brain Research, 221, 430-442. https://doi.org/10.1016/j.bbr.2010.11.033
|
[47]
|
Kulke, L. V., Atkinson, J., & Braddick, O. (2016). Neural Differences between Covert and Overt Attention Studied Using EEG with Simultaneous Remote Eye Tracking. Frontiers in Human Neuroscience, 10, Article 592. https://doi.org/10.3389/fnhum.2016.00592
|
[48]
|
Liu, Y., Bengson, J., Huang, H., Mangun, G. R., & Ding, M. (2014). Top-down Modulation of Neural Activity in Anticipatory Visual Attention: Control Mechanisms Revealed by Simultaneous EEG-fMRI. Cerebral Cortex, 26, 517-529. https://doi.org/10.1093/cercor/bhu204
|
[49]
|
Lowet, E., Gomes, B., Srinivasan, K., Zhou, H., Schafer, R. J., & Desimone, R. (2018). Enhanced Neural Processing by Covert Attention Only during Microsaccades Directed toward the Attended Stimulus. Neuron, 99, 207-214.e3. https://doi.org/10.1016/j.neuron.2018.05.041
|
[50]
|
MacLeod, J. W., Lawrence, M. A., McConnell, M. M., Eskes, G. A., Klein, R. M., & Shore, D. I. (2010). Appraising the ANT: Psychometric and Theoretical Considerations of the Attention Network Test. Neuropsychology, 24, 637-651. https://doi.org/10.1037/a0019803
|
[51]
|
Markett, S., Nothdurfter, D., Focsa, A., Reuter, M., & Jawinski, P. (2021). Attention Networks and the Intrinsic Network Structure of the Human Brain. Human Brain Mapping, 43, 1431-1448. https://doi.org/10.1002/hbm.25734
|
[52]
|
Minhas, A. S., & Oliver, R. (2022). Magnetic Resonance Imaging Basics. In R. Sadleir, & A. S. Minhas (Eds.), Electrical Properties of Tissues (pp. 47-82). Springer International Publishing. https://doi.org/10.1007/978-3-031-03873-0_3
|
[53]
|
Moghadami, M., Moghimi, S., Moghimi, A., Malekzadeh, G. R., & Fadardi, J. S. (2020). The Investigation of Simultaneous EEG and Eye Tracking Characteristics during Fixation Task in Mild Alzheimer’s Disease. Clinical EEG and Neuroscience, 52, 211-220. https://doi.org/10.1177/1550059420932752
|
[54]
|
Mu, S., Wu, H., Zhang, J., & Chang, C. (2023). Subcortical Structural Covariance Predicts Symptoms in Children with Different Subtypes of ADHD. Cerebral Cortex, 33, 8849-8857. https://doi.org/10.1093/cercor/bhad165
|
[55]
|
Naicker, P., Anoopkumar-Dukie, S., Grant, G. D., Neumann, D. L., & Kavanagh, J. J. (2016). Central Cholinergic Pathway Involvement in the Regulation of Pupil Diameter, Blink Rate and Cognitive Function. Neuroscience, 334, 180-190. https://doi.org/10.1016/j.neuroscience.2016.08.009
|
[56]
|
Neuhaus, A. H., Karl, C., Hahn, E., Trempler, N. R., Opgen-Rhein, C., Urbanek, C. et al. (2011). Dissection of Early Bottom-Up and Top-Down Deficits during Visual Attention in Schizophrenia. Clinical Neurophysiology, 122, 90-98. https://doi.org/10.1016/j.clinph.2010.06.011
|
[57]
|
Nobre, A. C., & van Ede, F. (2023). Attention in Flux. Neuron, 111, 971-986. https://doi.org/10.1016/j.neuron.2023.02.032
|
[58]
|
Petersen, S. E., & Posner, M. I. (2012). The Attention System of the Human Brain: 20 Years after. Annual Review of Neuroscience, 35, 73-89. https://doi.org/10.1146/annurev-neuro-062111-150525
|
[59]
|
Polich, J. (2007). Updating P300: An Integrative Theory of P3a and P3b. Clinical Neurophysiology, 118, 2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
|
[60]
|
Posner, M. I. (2014). Attentional Mechanisms. In Encyclopedia of the Neurological Sciences (pp. 314-319). Elsevier. https://doi.org/10.1016/b978-0-12-809324-5.04323-6
|
[61]
|
Posner, M. I., & Petersen, S. E. (1990). The Attention System of the Human Brain. Annual Review of Neuroscience, 13, 25-42. https://doi.org/10.1146/annurev.ne.13.030190.000325
|
[62]
|
Pultsina, K. I., Alekhin, A. N., Petrova, E. V., & Vorobieva, N. V. (2022). Effektivnost’ setei vnimaniya i vyrazhennost’ pozitivnoi i negativnoi simptomatiki pri shizofrenii [Efficiency of the Attention Networks and Severity of Positive and Negative Symptoms in Schizophrenia]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova, 122, 88-96. https://doi.org/10.17116/jnevro202212202188
|
[63]
|
Remington, R. W. (1980). Attention and Saccadic Eye Movements. Journal of Experimental Psychology: Human Perception and Performance, 6, 726-744. https://doi.org/10.1037//0096-1523.6.4.726
|
[64]
|
Roca, J., Crundall, D., Moreno-Ríos, S., Castro, C., & Lupiáñez, J. (2013). The Influence of Differences in the Functioning of the Neurocognitive Attentional Networks on Drivers’ Performance. Accident Analysis & Prevention, 50, 1193-1206. https://doi.org/10.1016/j.aap.2012.09.032
|
[65]
|
Roca, J., Fuentes, L. J., Marotta, A., López-Ramón, M., Castro, C., Lupiáñez, J. et al. (2012). The Effects of Sleep Deprivation on the Attentional Functions and Vigilance. Acta Psychologica, 140, 164-176. https://doi.org/10.1016/j.actpsy.2012.03.007
|
[66]
|
Rueda, M. R., Fan, J., McCandliss, B. D., Halparin, J. D., Gruber, D. B., Lercari, L. P. et al. (2004). Development of Attentional Networks in Childhood. Neuropsychologia, 42, 1029-1040. https://doi.org/10.1016/j.neuropsychologia.2003.12.012
|
[67]
|
Ruiz, N. A., Thieu, M. K., & Aly, M. (2021). Cholinergic Modulation of Hippocampally Mediated Attention and Perception. Behavioral Neuroscience, 135, 51-70. https://doi.org/10.1037/bne0000405
|
[68]
|
Sadaghiani, S., & D’Esposito, M. (2014). Functional Characterization of the Cingulo-Opercular Network in the Maintenance of Tonic Alertness. Cerebral Cortex, 25, 2763-2773. https://doi.org/10.1093/cercor/bhu072
|
[69]
|
Sara, S. J., & Bouret, S. (2012). Orienting and Reorienting: The Locus Coeruleus Mediates Cognition through Arousal. Neuron, 76, 130-141. https://doi.org/10.1016/j.neuron.2012.09.011
|
[70]
|
Sarrias-Arrabal, E., Izquierdo-Ayuso, G., & Vázquez-Marrufo, M. (2023). Attentional Networks in Neurodegenerative Diseases: Anatomical and Functional Evidence from the Attention Network Test. Neurología (English Edition), 38, 206-217. https://doi.org/10.1016/j.nrleng.2020.05.022
|
[71]
|
Scharinger, C., Schüler, A., & Gerjets, P. (2020). Using Eye-Tracking and EEG to Study the Mental Processing Demands during Learning of Text-Picture Combinations. International Journal of Psychophysiology, 158, 201-214. https://doi.org/10.1016/j.ijpsycho.2020.09.014
|
[72]
|
Seli, P., Cheyne, J. A., & Smilek, D. (2012). Attention Failures versus Misplaced Diligence: Separating Attention Lapses from Speed-Accuracy Trade-Offs. Consciousness and Cognition, 21, 277-291. https://doi.org/10.1016/j.concog.2011.09.017
|
[73]
|
Smith, D. T., & Schenk, T. (2012). The Premotor Theory of Attention: Time to Move On? Neuropsychologia, 50, 1104-1114. https://doi.org/10.1016/j.neuropsychologia.2012.01.025
|
[74]
|
Thiele, A., & Bellgrove, M. A. (2018). Neuromodulation of Attention. Neuron, 97, 769-785. https://doi.org/10.1016/j.neuron.2018.01.008
|
[75]
|
Treisman, A. M., & Gelade, G. (1980). A Feature-Integration Theory of Attention. Cognitive Psychology, 12, 97-136. https://doi.org/10.1016/0010-0285(80)90005-5
|
[76]
|
Valtakari, N. V., Hooge, I. T. C., Viktorsson, C., Nyström, P., Falck-Ytter, T., & Hessels, R. S. (2021). Eye Tracking in Human Interaction: Possibilities and Limitations. Behavior Research Methods, 53, 1592-1608. https://doi.org/10.3758/s13428-020-01517-x
|
[77]
|
Van Vleet, T. M., Chen, A., Vernon, A., Novakovic-Agopian, T., & D’Esposito, M. T. (2014). Tonic and Phasic Alertness Training: A Novel Treatment for Executive Control Dysfunction Following Mild Traumatic Brain Injury. Neurocase, 21, 489-498. https://doi.org/10.1080/13554794.2014.928329
|
[78]
|
Vázquez-Marrufo, M., Galvao-Carmona, A., González-Rosa, J. J., Hidalgo-Muñoz, A. R., Borges, M., Ruiz-Peña, J. L. et al. (2014). Neural Correlates of Alerting and Orienting Impairment in Multiple Sclerosis Patients. PLOS ONE, 9, e97226. https://doi.org/10.1371/journal.pone.0097226
|
[79]
|
Vossel, S., Geng, J. J., & Fink, G. R. (2013). Dorsal and Ventral Attention Systems: Distinct Neural Circuits But Collaborative Roles. The Neuroscientist, 20, 150-159. https://doi.org/10.1177/1073858413494269
|
[80]
|
Wang, Y., Zhou, Y., Zhang, X., Wang, K., Chen, X., & Cheng, H. (2023). Orienting Network Impairment of Attention in Patients with Mild Traumatic Brain Injury. Behavioural Brain Research, 437, Article ID: 114133. https://doi.org/10.1016/j.bbr.2022.114133
|
[81]
|
Warbrick, T. (2022). Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold? Sensors, 22, Article 2262. https://doi.org/10.3390/s22062262
|
[82]
|
Williams, R. S., Biel, A. L., Wegier, P., Lapp, L. K., Dyson, B. J., & Spaniol, J. (2016). Age Differences in the Attention Network Test: Evidence from Behavior and Event-Related Potentials. Brain and Cognition, 102, 65-79. https://doi.org/10.1016/j.bandc.2015.12.007
|
[83]
|
Wu, L., Chen, Y., Liu, X., Fang, P., Feng, T., Sun, K. et al. (2022). The Influence of Job Burnout on the Attention Ability of Army Soldiers and Officers: Evidence from Erp. Frontiers in Neuroscience, 16, Article 992537. https://doi.org/10.3389/fnins.2022.992537
|
[84]
|
Xuan, B., Mackie, M., Spagna, A., Wu, T., Tian, Y., Hof, P. R. et al. (2016). The Activation of Interactive Attentional Networks. NeuroImage, 129, 308-319. https://doi.org/10.1016/j.neuroimage.2016.01.017
|
[85]
|
Yin, S., Liu, Y., & Ding, M. (2016). Amplitude of Sensorimotor Mu Rhythm Is Correlated with BOLD from Multiple Brain Regions: A Simultaneous EEG-fMRI Study. Frontiers in Human Neuroscience, 10, Article 364. https://doi.org/10.3389/fnhum.2016.00364
|
[86]
|
Zheng, L., Yuan, S., Wu, X., & Sun, T. (2022). Conflict Adaptation Effect on Numerical Inductive Reasoning: An ERP Study. Perceptual and Motor Skills, 129, 1658-1671. https://doi.org/10.1177/00315125221121185
|