[1]
|
Yoshino, A. (2012) The Birth of the Lithium-Ion Battery. Angewandte Chemie International Edition, 51, 5798-5800. https://doi.org/10.1002/anie.201105006
|
[2]
|
Nishi, Y. (2001) Lithium Ion Secondary Batteries; Past 10 Years and the Future. Journal of Power Sources, 100, 101-106. https://doi.org/10.1016/S0378-7753(01)00887-4
|
[3]
|
Armand, M., Axmann, P., Bresser, D., et al. (2020) Lithium-Ion Batteries–Current State of the Art and Anticipated Developments. Journal of Power Sources, 479, Article 228708. https://doi.org/10.1016/j.jpowsour.2020.228708
|
[4]
|
Chua, R., Cai, Y., Kou, Z.K., et al. (2019) 1.3V Superwide Potential Window Sponsored by Na-Mn-O Plates as Cathodes towards Aqueous Rechargeable Sodium-Ion Batteries. Chemical Engineering Journal, 370, 742-748. https://doi.org/10.1016/j.cej.2019.03.251
|
[5]
|
Guduru, R. and Icaza, J. (2016) A Brief Review on Multivalent Intercalation Batteries with Aqueous Electrolytes. Nanomaterials, 6, Article 41. https://doi.org/10.3390/nano6030041
|
[6]
|
Sonoc, A. and Jeswiet, J. (2014) A Review of Lithium Supply and Demand and a Preliminary Investigation of a Room Temperature Method to Recycle Lithium Ion Batteries to Recover Lithium and Other Materials. Procedia CIRP, 15, 289-293. https://doi.org/10.1016/j.procir.2014.06.006
|
[7]
|
Liu, T., Cheng, X., Yu, H., et al. (2019) An Overview and Future Perspectives of Aqueous Rechargeable Polyvalent Ion Batteries. Energy Storage Materials, 18, 68-91. https://doi.org/10.1016/j.ensm.2018.09.027
|
[8]
|
Xing, Z., Wang, S., Yu, A., et al. (2018) Aqueous Intercalation-Type Electrode Materials for Grid-Level Energy Storage: Beyond the Limits of Lithium and Sodium. Nano Energy, 50, 229-244. https://doi.org/10.1016/j.nanoen.2018.05.049
|
[9]
|
Cai, Y., Kumar, S., Chua, R., et al. (2020) Bronze-Type Vanadium Dioxide Holey Nanobelts as High Performing Cathode Material for Aqueous Aluminium-Ion Batteries. Journal of Materials Chemistry A, 8, 12716-12722. https://doi.org/10.1039/D0TA03986A
|
[10]
|
Zhao, J., Ren, H., Liang, Q., et al. (2019) High-Performance Flexible Quasi-Solid-State Zinc-Ion Batteries with Layer-Expanded Vanadium Oxide Cathode and Zinc/Stainless Steel Mesh Composite Anode. Nano Energy, 62, 94-102. https://doi.org/10.1016/j.nanoen.2019.05.010
|
[11]
|
Ren, H., Zhao, J., Yang, L., et al. (2019) Inverse Opal Manganese Dioxide Constructed by Few-Layered Ultrathin Nanosheets as High-Performance Cathodes for Aqueous Zinc-Ion Batteries. Nano Research, 12, 1347-1353. https://doi.org/10.1007/s12274-019-2303-1
|
[12]
|
Yuan, D., Manalastas, W., Zhang, L., et al. (2019) Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. ChemSusChem, 12, 4889-4900. https://doi.org/10.1002/cssc.201901409
|
[13]
|
Kumar, S., Verma, V., Chua, R., et al. (2020) Multiscalar Investigation of FeVO4 Conversion Cathode for a Low Concentration Zn(CF3SO3)2 Rechargeable Zn-Ion Aqueous Battery. Batteries & Supercaps, 3, 619-630. https://doi.org/10.1002/batt.202000018
|
[14]
|
Canepa, P., Sai Gautam, G., Hannah, D.C., et al. (2017) Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chemical Reviews, 117, 4287-4341. https://doi.org/10.1021/acs.chemrev.6b00614
|
[15]
|
Demir-Cakan, R., Palacin, M.R. and Croguennec, L. (2019) Rechargeable Aqueous Electrolyte Batteries: From Univalent to Multivalent Cation Chemistry. Journal of Materials Chemistry A, 7, 20519-20539. https://doi.org/10.1039/C9TA04735B
|
[16]
|
Helbig, C., Bradshaw, A.M., Wietschel, L., et al. (2018) Supply Risks Associated with Lithium-Ion Battery Materials. Journal of Cleaner Production, 172, 274-286. https://doi.org/10.1016/j.jclepro.2017.10.122
|
[17]
|
Boyd, S. and Augustyn, V. (2018) Transition Metal Oxides for Aqueous Sodium-Ion Electrochemical Energy Storage. Inorganic Chemistry Frontiers, 5, 999-1015. https://doi.org/10.1039/C8QI00148K
|
[18]
|
Hosaka, T., Shimamura, T., Kubota, K., et al. (2019) Polyanionic Compounds for Potassium-Ion Batteries. The Chemical Record, 19, 735-745. https://doi.org/10.1002/tcr.201800143
|
[19]
|
Kubota, K., Dahbi, M., Hosaka, T., et al. (2018) Towards K-Ion and Na-Ion Batteries as “Beyond Li-Ion”. The Chemical Record, 18, 459-479. https://doi.org/10.1002/tcr.201700057
|
[20]
|
Duan, L., Xu, J., Xu, Y., et al. (2023) Cocoon-Shaped P3-Type K0.5Mn0.7Ni0.3O2 as an Advanced Cathode Material for Potassium-Ion Batteries. Journal of Energy Chemistry, 76, 332-338. https://doi.org/10.1016/j.jechem.2022.10.006
|
[21]
|
Duan, L., Shao, C., Liao, J., et al. (2024) A P2/P3 Biphasic Layered Oxide Composite as a High-Energy and Long-Cycle-Life Cathode for Potassium-Ion Batteries. Angewandte Chemie-International Edition, 63, e202400868. https://doi.org/10.1002/anie.202400868
|
[22]
|
Yang, S., Min, X., Yang, B., et al. (2024) Co-Doped P3 Type K0.5Mn1-xCoxO2 (x≤0.5) Cathodes for Long Cycle Life Potassium Ion Battery. Journal of Physics and Chemistry of Solids, 188, Article 111924. https://doi.org/10.1016/j.jpcs.2024.111924
|
[23]
|
Zhao, Z., Sun, Y., Pan, Y., et al. (2023) A New Mn-Based Layered Cathode with Enlarged Interlayer Spacing for Potassium Ion Batteries. Journal of Colloid and Interface Science, 652, 231-239. https://doi.org/10.1016/j.jcis.2023.08.055
|
[24]
|
Duan, L., Tang, H., Xu, X., et al. (2023) MnFe Prussian Blue Analogue-Derived P3-K0.5Mn0.67Fe0.33O1.95N0.05 Cathode Material for High-Performance Potassium-Ion Batteries. Energy Storage Materials, 62, Article 102950. https://doi.org/10.1016/j.ensm.2023.102950
|
[25]
|
Zhang, H., Gao, Y., Peng, J., et al. (2023) Prussian Blue Analogues with Optimized Crystal Plane Orientation and Low Crystal Defects toward 450 Wh kg-1 Alkali-Ion Batteries. Angewandte Chemie-International Edition, 62, e202303953. https://doi.org/10.1002/anie.202303953
|
[26]
|
Zhou, Q., Liu, H., Dou, S., et al. (2024) Defect-Free Prussian Blue Analogue as Zero-Strain Cathode Material for High-Energy-Density Potassium-Ion Batteries. ACS Nano Journal, 18, 7287-7297. https://doi.org/10.1021/acsnano.4c00251
|
[27]
|
Hu, Y., Tang, W., Yu, Q., et al. (2020) Novel Insoluble Organic Cathodes for Advanced Organic K-Ion Batteries. Advanced Functional Materials, 30, Article 2000675. https://doi.org/10.1002/adfm.202000675
|
[28]
|
Mathew, V., Kim, S., Kang, J., et al. (2014) Amorphous Iron Phosphate: Potential Host for Various Charge Carrier Ions. NPG Asia Materials, 6, e138. https://doi.org/10.1038/am.2014.98
|
[29]
|
Obrezkov, F.A., Ramezankhani, V., Zhidkov, I., et al. (2019) High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material. The Journal of Physical Chemistry Letters, 10, 5440-5445. https://doi.org/10.1021/acs.jpclett.9b02039
|
[30]
|
Han, J., Li, G, N., Liu, F., et al. (2017) Investigation of K3V2(PO4)3/C Nanocomposites as High-Potential Cathode Materials for Potassium-Ion Batteries. Chemical Communications, 53, 1805-1808. https://doi.org/10.1039/C6CC10065A
|
[31]
|
Zhang, W., Huang, W. and Zhang, Q. (2021) Organic Materials as Electrodes in Potassium-Ion Batteries. Chemistry—A European Journal, 27, 6131-6144. https://doi.org/10.1002/chem.202005259
|
[32]
|
Zhao, Q., Lu, Y. and Chen, J. (2017) Advanced Organic Electrode Materials for Rechargeable Sodium-Ion Batteries. Advanced Energy Materials, 7, Article 1601792. https://doi.org/10.1002/aenm.201601792
|
[33]
|
Kapaev, R.R. and Troshin, P.A. (2020) Organic-Based Active Electrode Materials for Potassium Batteries: Status and Perspectives. Journal of Materials Chemistry A, 8, 17296-17325. https://doi.org/10.1039/D0TA04741D
|
[34]
|
Zheng, Y., Xie, H., Li, J., et al. (2024) Insights into the Jahn-Teller Effect in Layered Oxide Cathode Materials for Potassium-Ion Batteries. Advanced Energy Materials, 14, Article 2400461. https://doi.org/10.1002/aenm.202400461
|
[35]
|
Wang, X., Xiao, Z., Han, K., et al. (2023) Advances in Fine Structure Optimizations of Layered Transition-Metal Oxide Cathodes for Potassium-Ion Batteries. Advanced Energy Materials, 13, Article 2202861. https://doi.org/10.1002/aenm.202202861
|
[36]
|
Nathan, M., Yu, H., Kim, G., et al. (2022) Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries. Advanced Science, 9, Article 2105882. https://doi.org/10.1002/advs.202105882
|
[37]
|
Oh, S.M., Myung, S.T., Hassoun, J., et al. (2012) Reversible NaFePO4 Electrode for Sodium Secondary Batteries. Electrochemistry Communications, 22, 149-152. https://doi.org/10.1016/j.elecom.2012.06.014
|
[38]
|
Jian, Z., Yu, H. and Zhou, H. (2013) Designing High-Capacity Cathode Materials for Sodium-Ion Batteries. Electrochemistry Communications, 34, 215-218. https://doi.org/10.1016/j.elecom.2013.06.017
|
[39]
|
Kim, H., Kwon, D., Kim, J., et al. (2020) Na+ Redistribution by Electrochemical Na+/K+ Exchange in Layered NaxNi2SbO6. Chemistry of Materials, 32, 4312-4323. https://doi.org/10.1021/acs.chemmater.0c01152
|
[40]
|
Shirane, T., Kanno, R., Kawamoto, Y., et al. (1995) Reversible NaFePO4 Electrode for Sodium Secondary Batteries. Solid State Ionics, 79, 227-233. https://doi.org/10.1016/0167-2738(95)00066-F
|
[41]
|
Sada, K., Senthilkumar, B. and Barpanda, P. (2017) Electrochemical Potassium-Ion Intercalation in NaxCoO2: A Novel Cathode Material for Potassium-Ion Batteries. Chemical Communications, 53, 8588-8591. https://doi.org/10.1039/C7CC02791E
|
[42]
|
Choi, J.U., Ji, P.Y., Jo, J.H., et al. (2020) An Optimized Approach toward High Energy Density Cathode Material for K-Ion Batteries. Energy Storage Materials, 27, 342-351. Https://doi.org/10.1016/j.ensm.2020.02.025
|
[43]
|
Hwang, J.Y., Kim, J., Yu, T.Y., et al. (2018) Development of P3-K0.69CrO2 as an Ultra-High-Performance Cathode Material for K-Ion Batteries. Energy & Environmental Science, 11, 2821-2827. https://doi.org/10.1039/c8ee01365a
|
[44]
|
Naveen, N., Park, W.B., Han, S.C., et al. (2018) Reversible K+ Insertion/Deinsertion and Concomitant Na+ Redistribution in P’3-Na0.52CrO2 for High-Performance Potassium-Ion Battery Cathodes. Chemistry of Materials, 30, 2049-2057. https://doi.org/10.1021/acs.chemmater.7b05329
|
[45]
|
Sada, K., Senthilkumar, B. and Barpanda, P. (2018) Potassium-Ion Intercalation Mechanism in Layered Na2Mn3O7. ACS Applied Energy Materials, 1, 5410-5416. https://doi.org/10.1021/acsaem.8b01016
|
[46]
|
Zhang, H., Xi, K., Jiang, K., et al. (2019) Enhanced K-Ion Kinetics in a Layered Cathode for Potassium Ion Batteries. Chemical Communications, 55, 7910-7913. https://doi.org/10.1039/C9CC03156A
|
[47]
|
Nathan, M.G.T., Naveen, N., Park, W.B., et al. (2019) Fast Chargeable P2-K-2/3[Ni1/3Mn2/3]O2 for Potassium Ion Battery Cathodes. Journal of Power Sources, 438, Article 226992. https://doi.org/10.1016/j.jpowsour.2019.226992
|
[48]
|
Jo, J.H., Choi, J.U., Park, Y.J., et al. (2020) P2-K0.75[Ni1/3Mn2/3]O2 Cathode Material for High Power and Long Life Potassium-Ion Batteries. Advanced Energy Materials, 10, Article No. 1903605. https://doi.org/10.1002/aenm.201903605
|
[49]
|
Bhatia, A., Pereira-Ramos, J., Emery, N., et al. (2020) An Exploratory Investigation of Spinel LiMn1.5Ni0.5O4 as Cathode Material for Potassium-Ion Battery. ChemElectroChem, 7, 3420-3428. https://doi.org/10.1002/celc.202000462
|
[50]
|
Sohn, W., Chae, J.S., Lim, G.H., et al. (2022) Ion-Exchange-Assisted Li0.27K0.72Ni0.6Co0.2Mn0.2O2 Cathode in Potassium-Ion Batteries. Journal of Alloys and Compounds, 898, Article 162904. https://doi.org10.1016/j.jallcom.2021.162904
|
[51]
|
Nathan, M.G.T., Park, W.B., Naveen, N., et al. (2020) A Comparison of As-Synthesized P2-K0.70[Cr0.85Sb0.15]O2 and Ion-Exchanged P2-K0.62Na0.08[Cr0.85Sb0.15]O2 Demonstrates the Superiority of the Latter as a Potassium-Ion Battery Cathode. Journal of the Electrochemical Society, 167, Article 100507. https://doi.org/10.1149/1945-7111/ab9568
|
[52]
|
Gao, A., Li, M., Guo, N., et al. (2019) K-Birnessite Electrode Obtained by Ion Exchange for Potassium-Ion Batteries: Insight into the Concerted Ionic Diffusion and K Storage Mechanism. Advanced Energy Materials, 9, Article 1802739. https://doi.org/10.1002/aenm.201802739
|