丹参酮IIA治疗脊髓损伤修复的可能机制
Possible Mechanisms of Tanshinone IIA in the Treatment of Spinal Cord Injury Repair
DOI: 10.12677/acm.2024.1482397, PDF, HTML, XML,    科研立项经费支持
作者: 刘春花, 艾克拜尔江·艾赛提, 艾克热木江·木合热木*:新疆医科大学第六附属医院脊柱外科,新疆 乌鲁木齐
关键词: 丹参酮IIA脊髓损伤神经再生机制Tanshinone IIA Spinal Cord Injury Nerve Regeneration Mechanism
摘要: 丹参酮IIA,也称为TanIIA,在生物体内代谢过程中扮演着多重角色,其产物能够影响多种生物化学反应。这些反应中,TanIIA有时作为辅酶参与,有时则可能促进或干扰这些反应过程,从而展现出多样的药理特性。尽管在脊髓损伤等神经系统疾病的治疗中,TanIIA已经显示出了一定的疗效,但其具体的作用机制尚未完全阐明。基于现有的研究成果,我们推测TanIIA可能通过多种药理途径,包括抗炎、抗氧化、抗细胞凋亡以及保护血管,来促进脊髓损伤后的神经细胞存活和修复。
Abstract: Tanshinone IIA, also known as TanIIA, plays multiple roles in the metabolic process of living organisms, and its products can affect a variety of biochemical reactions. In these reactions, TanIIA is sometimes involved as a coenzyme, and sometimes it may facilitate or interfere with these reaction processes, thus exhibiting diverse pharmacological properties. Although TanIIA has shown some efficacy in the treatment of neurological diseases such as spinal cord injury, its specific mechanism of action has not been fully elucidated. Based on the existing research results, we speculate that TanIIA may promote the survival and repair of nerve cells after spinal cord injury through multiple pharmacological pathways, including anti-inflammatory, antioxidant, anti-apoptosis, and vascular protection.
文章引用:刘春花, 艾克拜尔江·艾赛提, 艾克热木江·木合热木. 丹参酮IIA治疗脊髓损伤修复的可能机制[J]. 临床医学进展, 2024, 14(8): 1610-1615. https://doi.org/10.12677/acm.2024.1482397

1. 引言

丹参,属于唇形科鼠尾草属的多年生草本植物,其根部富含丹参酮IIA。该化合物呈樱红色针状结晶,分子量约为294.34,不溶于水,但能溶于二甲基亚砜、乙醇等有机溶剂。为了从丹参中提取丹参酮IIA,通常采用超临界二氧化碳萃取技术,该技术的关键参数包括25 MPa的萃取压力、40℃的温度、2小时的提取时间和1.0 mL/min的乙醇流量,具体结构见图1

Figure 1. Molecular formula of tanshinone IIA

1. 丹参酮IIA的分子式

丹参酮ⅡA是丹参中一个关键的化学成分,它在多个领域展现了显著的药理特性,包括对心血管疾病的治疗、肿瘤的抑制、炎症的缓解、器官纤维化的改善以及神经系统的保护[1]。根据现有文献的综合评估,丹参酮ⅡA可能通过其抗炎、抗氧化和类似雌激素的生物活性来发挥其药理作用。因此,本研究的目标是深入研究丹参酮ⅡA在抗炎和抗氧化方面的作用,以期为未来的相关研究提供科学依据和理论支持。

2. 抗炎作用

据研究显示,丹参酮IIA具备显著的抗炎能力,它能够调节多种炎症相关因子的生成,如IL-6、IL-10、IL-1β和TNF-α,并抑制白细胞的激活[2],研究表明,丹参酮IIA能够显著降低促炎因子如IL-6、IL-1β和TNF-α的表达,同时增加抗炎因子如IL-10的水平。这种调节作用帮助平衡炎症反应,减轻组织损伤,丹参酮IIA能够抑制白细胞的激活和迁移,减少其在炎症部位的积聚。这一机制有助于降低局部炎症反应和组织损伤,丹参酮IIA还具有抗氧化特性,可以清除自由基,减轻氧化应激对细胞的损伤。氧化应激与炎症密切相关,因此其抗氧化作用也间接促进了抗炎效果。Huang等人探讨了丹参酮IIA如何通过抑制炎症来缓解心脏功能障碍,发现提前使用丹参酮IIA可以显著改善心脏功能[3]。此外,丹参酮IIA还能抑制LPS诱导的TNF-α和IL-1β的增加,降低NADPH氧化酶的活性,并减少ERK1/2和p38 MAPK的磷酸化[4]

在葡聚糖硫酸钠诱导的小鼠结肠炎模型中,[5]周艳等人观察到丹参酮IIA能够降低中性粒细胞的活性并减少炎症因子的水平,从而展现出抗炎特性。此外,丹参酮IIA还通过抑制髓过氧化物酶和去甲肾上腺素的活性,减轻了痛风性关节炎小鼠的踝关节肿胀[6]

据研究显示,丹参酮IIA能够抑制RAW264.7细胞的增殖和磷脂酶A2的生成,同时促进这些细胞释放IL-10,并减少IL-6的生成及其mRNA的表达[7]。此外,它还能够抑制LPS诱导的EA.hy926细胞中TLR4和TNF-α mRNA的表达,显示出其抗炎特性[8]。Tang等人的研究还发现,丹参酮IIA有效抑制VCAM-1和ICAM-1的表达,并以剂量依赖方式减少TNF-α引起的BMVECs中性粒细胞粘附。它还显著降低TNF-α刺激下的活性氧和MDA生成,并阻止NF-κB活化,从而调控粘附分子的表达[9] [10]

丹参酮IIA通过下调脑缺血再灌注大鼠脑内巨噬细胞迁移抑制因子(MIF)、TNF-α和IL-6的水平,有助于减轻脑损伤并增强神经保护[11]。丹参酮IIA还能减轻辐射导致的初期炎症因子释放和NF-κBp65亚单位的核易位,其抗炎效果与阻遏NF-κB信号通路相关的炎症基因表达有关。,有助于减缓阿尔茨海默病的进展[12]。Jiang等人的研究还表明,丹参酮IIA能降低LPS刺激的RAW264.7细胞产生的早期炎症因子,通过阻止IκB-α的磷酸化和抑制NIK-IKK及MAPKs (p38、ERK1/2、JNK)途径的活化,防止LPS诱导的IκB-α降解和NF-κB激活,实现其抗炎作用[13]。此外,丹参酮IIA还能保护人类血脑屏障模型免受白细胞相关缺氧复氧损伤的影响[14]

3. 抗氧化作用

在脊髓损伤后的病理过程中,氧化应激扮演着关键角色。研究指出,丹参酮ⅡA具有显著的抗氧化效果[15]。丹参酮IIA能降低ox-LDL在血浆中的浓度,并减少超氧阴离子和MDA的形成[16] [17]。在高血压大鼠中,它通过抑制NAD(P)H氧化酶活性和减少活性氧的产生,改善心脏功能,发挥抗氧化作用[18] [19]。在H2O2诱导的J774巨噬细胞损伤和大脑中动脉闭塞大鼠脑缺血再灌注模型中,丹参酮IIA提升了谷胱甘肽过氧化物酶的活性[20]

此外,丹参酮ⅡA通过清除脂质自由基,阻断脂质过氧化的连锁反应,抑制DNA加合物的形成,从而降低细胞毒性,对DNA提供保护。同时,它还能提高脑缺氧区域谷胱甘肽过氧化物酶的活性,减少MDA的产生,有效缓解氧化应激[21]

4. 抗自由基效能

丹参酮ⅡA通过调节机体内的氧自由基代谢,降低自由基水平,有助于减轻大鼠局灶性脑缺血后24小时内脑组织的充血、水肿和缺血性损伤。[22]黑明燕等人的研究指出,丹参酮ⅡA能在缺血缺氧损伤的早期阶段降低[Ca2+]的聚集。[23]叶龙彬等的研究显示,给予丹参酮ⅡA (剂量为25 mg·kg1)能够显著改善脑缺血大鼠的神经行为,减少脑梗死面积和脑含水量。此外,丹参酮ⅡA还能对抗脑缺血–再灌注引起的超氧化物歧化酶(SOD)活性的下降和丙二醛(MDA)含量的增加,以及降低脑组织中的一氧化氮(NO)水平,显示出对大鼠局灶性脑缺血–再灌注损伤的保护作用,因此可能用于治疗脑血管疾病。

5. 抗细胞凋亡

丹参酮ⅡA通过激活特定的细胞凋亡途径,能够抵御淀粉样β蛋白引发的神经元细胞毒性[24]。该化合物还能增强神经元的ATP酶和蛋白质二硫键异构酶的活性,促进能量代谢平衡和细胞内环境的稳定,从而实现对神经元的保护与修复[25]。在脊髓缺血性损伤中,丹参酮ⅡA还能促进Bcl-2的表达,通过抗凋亡机制减轻缺血再灌注引起的损伤[26]

在脑缺血期间,星形胶质细胞的增殖和激活会引发周围组织形成胶质瘢痕,这会阻碍神经元轴突的正常生长。[27] Zhou等人的研究发现,丹参酮ⅡA能够抑制脑缺血引起的星形胶质细胞激活并减少胶质瘢痕的形成,从而为神经保护提供支持。[28]周丽等人的研究还表明,丹参酮IIA能够显著降低缺血再灌注大鼠模型脑组织中的NF-κB和IκB蛋白的表达水平,可能通过抑制NF-κB和IκB之间的正反馈循环,减少神经元损失,进而降低大脑的炎性反应。这些发现对于深入研究丹参酮IIA在脑保护方面的作用机制具有重要意义。

[29]张延辉等研究人员通过结扎兔腹主动脉的方法建立了脊髓缺血再灌注模型,并在不同时间点提取脊髓和静脉血样以检测谷氨酸含量。研究发现,丹参酮ⅡA能够降低再灌注期间脊髓中的谷氨酸含量,从而对脊髓神经元提供保护。这可能归因于丹参酮IIA减少炎症因子VCAM-1的产生,改善血液流变学,进而减少脊髓组织的损伤。此外,近年来还发现丹参酮ⅡA可以通过抑制胶质细胞的激活、减少炎性细胞因子的表达以及下调氧化应激等机制来缓解神经性疼痛[30]

丹参酮ⅡA因其独特的药理特性,在神经系统损害的修复领域得到了广泛的应用[31]。研究指出,丹参酮ⅡA在体外实验中展现出通过降低细胞凋亡、改善组织缺氧状况并诱导细胞自噬,从而对放射性损伤产生神经保护效果[32]。在放射性脑损伤小鼠模型中,丹参酮ⅡA通过抑制ATP-P2X7R信号通路的激活,有效减少了炎症和自由基的积累,改善了小鼠的空间记忆和学习能力,减轻了脑部水肿。另外,[33]研究表明,丹参酮ⅡA在急性脊髓损伤小鼠中能够下调RhoA和ROCKII蛋白水平,抑制肌球蛋白轻链的磷酸化,进而促进神经细胞的修复和轴突再生。此外,丹参酮ⅡA对于糖尿病引发的神经功能障碍、脊髓损伤后的运动功能损害以及惊厥等病症也展现出了一定的治疗效果[34] [35]

6. 结论

综上所述,丹参酮ⅡA展现出显著的抗氧化和抗炎等生物学活性,同时还具有血管保护和神经保护等多种药理作用,且长期使用副作用较小。近年来,大量科学研究表明,丹参酮ⅡA具备许多其他药理效应,国内外学者在揭示其药理机制及疾病治疗策略方面亦取得了诸多进展。然而,这类研究主要集中在动物实验和体外细胞实验上,因此还需进一步的深入研究。基于丹参酮ⅡA药理作用的最新进展,未来其有望成为治疗多种疾病的有效药物。为了进一步拓宽丹参及丹参酮ⅡA的临床应用,迫切需要开展更多研究以揭示其潜在的药理作用和机制。

基金项目

新疆维吾尔自治区自然科学基金项目(2022D01C331, 2022D01C330)资助。

NOTES

*通讯作者。

参考文献

[1] Zhang, Y., Wang, X. and Chen, X. (2016) Tanshinone IIA: A Review of Its Pharmacological Effects and Mechanisms. Phytotherapy Research, 30, 1348-1354.
[2] Hou, Y., Liu, S., Zhang, Z., et al. (2021) Tanshinone IIA Alleviates High Glucose-Induced Endothelial Injury by Inhibiting Oxidative Stress and Apoptosis via the Nrf2/HO-1 Pathway. European Journal of Pharmacology, 899, Article 174045.
[3] Liu, Y., Ye, X., Yin, S., et al. (2020) Protective Effects of Tanshinone IIA on Osteoarthritis by Inhibiting Inflammation and Cartilage Degradation: An in Vitro and in Vivo Study. International Immunopharmacology, 80, Article 106139.
[4] Zou, L., Xue, Z., Lu, Z., et al. (2019) Tanshinone IIA Exerts an Anti-Inflammatory Effect in Mice with Sepsis by Inhibiting the TLR4/NF-κB Signaling Pathway. Molecular Medicine Reports, 20, 3049-3058.
[5] Wang, F., Zhang, Y., Yang, H., et al. (2020) Tanshinone IIA Ameliorates Amyloid Beta-Induced Neuronal Injury by Modulating Neuroinflammation through the SIRT1/NF-κB Pathway in Microglia. Frontiers in Pharmacology, 11, Article 602439.
[6] Yang, Y., Gao, Z.G., Ma, J.X., et al. (2019) Tanshinone IIA Attenuates Dextran Sulfate Sodium-Induced Colitis via Promoting Anti-Inflammatory Macrophage Polarization and Suppressing NF-κB Activation. Frontiers in Pharmacology, 10, Article 178.
[7] Huang, X.R., Liu, H.Y., We, Y., et al. (2020) Tanshinone IIA Ameliorates Diabetic Nephropathy by Inhibiting Oxidative Stress and Inflammation through Modulation of the AMPK/PGC-1α/Nrf2 Pathway. Biomedicine & Pharmacotherapy, 132, Article 110772.
[8] Li, J., Bai, T., Zhang, R., et al. (2018) Tanshinone IIA Alleviates Liver Fibrosis by Inhibiting Oxidative Stress and Apoptosis through Nrf2/HO-1 and TGF-β1/Smad2 Pathways. Chemico-Biological Interactions, 294, 110-119.
[9] Xu, M., Wang, L., Hou, Y., et al. (2021) Tanshinone IIA Exerts Beneficial Effects on Cognitive Deficits by Mitigating Oxidative Stress and Enhancing Mitochondrial Function in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimers Disease, 82, 1735-1745.
[10] Wang, X.Y., Zhao, K.F., Hao, J., et al. (2020) Tanshinone IIA Alleviates Ischemia/Reperfusion Injury in Cardiomyocytes by Modulating the ER Stress/Mitochondrial Fission Pathway. Life Sciences, 256, Article 117897.
[11] Gao, J., Liu, Y., Sun, Z., et al. (2021) Tanshinone IIA Attenuates Cerebral Ischemia/Reperfusion Injury by Inhibiting the NLRP3 Inflammasome and Pyroptosis. Neural Regeneration Research, 16, 1510-1516.
[12] Li, Q., Yang, J., Yu, Z., et al. (2019) Neuroprotective Mechanism of Tanshinone IIA in Ischemic Stroke through Modulating Microglial Activation and Polarization. Frontiers in Pharmacology, 10, Article 1234.
[13] Ren, X., Guo, W., Yan, M., et al. (2020) Tanshinone IIA Mitigates Alzheimer’s Disease Pathogenesis by Attenuating Oxidative Stress and Neuroinflammation through the Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article 5985346.
[14] Zhao, S., Yu, C., Gao, Y., et al. (2021) Tanshinone IIA Ameliorates Lipopolysaccharide-Induced Cognitive Dysfunction via Inhibition of miR-155 in Mice. Neuroscience Letters, 748, Article 135714.
[15] Zeng, Z., Huang, Y., Wang, E., et al. (2019) Tanshinone IIA Inhibits NF-κB and MAPK Signaling and Attenuates Endotoxin-Induced Acute Lung Injury in Mice. Phytomedicine, 58, Article 152874.
[16] Qian, Y., Lu, Z., Zhang, W., et al. (2019) Tanshinone IIA Improves Blood-Brain Barrier Integrity and Attenuates Inflammatory Response Induced by Cerebral Ischemia/Reperfusion in Rats. International Immunopharmacology, 66, 300-306.
[17] Zhang, S., Wang, C., Zhang, Y., et al. (2020) Tanshinone IIA Reduces Oxidative Stress and Matrix Metalloproteinase Expression by Modulating the Nrf2/ARE Pathway in Chronic Obstructive Pulmonary Disease Rats. Phytomedicine, 78, Article 153289.
[18] Zhao, Y., Wang, W., Chen, Y., et al. (2019) The Protective Effect of Tanshinone IIA on Endothelial Function in Hypertension-Induced Vascular Remodeling through the Inhibition of Oxidative Stress and Inflammation. Frontiers in Pharmacology, 10, Article 728.
[19] Feng, X., Ma, W., Zhan, Y., et al. (2020) Tanshinone IIA Ameliorates Atherosclerotic Calcification by Inhibiting Oxidative Stress and ER Stress via PI3K/Akt Pathway. Journal of Cellular and Molecular Medicine, 24, 12277-12289.
[20] Liu, J., Yang, Y., Qiu, H., et al. (2021) Tanshinone IIA Protects Human Umbilical Vein Endothelial Cells from Oxidized Low-Density Lipoprotein-Induced Oxidative Damage through the Nrf2 Pathway. Environmental Toxicology and Pharmacology, 86, Article 103686.
[21] Xu, W., Zhou, F., Shen, F., et al. (2021) Tanshinone IIA Mitigates Cerebral Ischemia/Reperfusion Injury by Regulating Autophagic Flux and Mitochondrial Function via AMPK/mTOR Signaling Pathway. International Journal of Molecular Sciences, 22, Article 7667.
[22] Li, J., Sun, Y., Zhang, L., et al. (2019) Tanshinone IIA and Its Derivatives Attenuate Hypoxia/Reoxygenation-Induced Apoptosis by Modulating the Bcl-2/Bax Ratio and Mitochondrial Permeability Transition Pore in Cardiomyocytes. Molecular Medicine Reports, 20, 1501-1508.
[23] Wang, L., Zhang, H., Yu, Y., et al. (2020) Neuroprotective Effects of Tanshinone IIA in Ischemic Stroke Models by Down-Regulating NF-κB and Pro-Inflammatory Cytokines. Brain Research, 1734, Article 146737.
[24] Zhang, H., Wen, X., Li, D., et al. (2018) Tanshinone IIA Protects against Cerebral Ischemia/Reperfusion Injury through Activation of the Nrf2/HO-1 Signaling Pathway. Experimental and Therapeutic Medicine, 15, 3634-3640.
[25] Li, C.Y., Song, Y., Li, Y., et al. (2020) Tanshinone IIA Prevents Oxidative Stress-Induced Brain Microvascular Endothelial Cell Damage through Nrf2/ARE Pathway Activation. Vascular Pharmacology, 124, Article 106619.
[26] Li, Y., Wang, B., Zhou, R., et al. (2020) Tanshinone IIA Protects against Cerebral Ischemia-Reperfusion Injury by Targeting microRNA-155-3p-Mediated Regulation of Blood-Brain Barrier Integrity. Neuroscience Letters, 735, Article 135268.
[27] Zou, Y., Yi, R., Wu, W., et al. (2019) Tanshinone IIA Protects against Hypoxia/Reoxygenation-Induced Oxidative Stress in RAW264.7 Cells via AMPK/Nrf2 Pathway. Biomedicine & Pharmacotherapy, 118, Article 109355.
[28] Zhao, X., Yu, Y., He, S., et al. (2021) Tanshinone IIA Ameliorates Cognitive Deficits Induced by Acute Cerebral Ischemia-Reperfusion through Suppression of Endoplasmic Reticulum Stress. Molecular Neurobiology, 58, 4511-4524.
[29] Zhang, Y., Li, X., Qian, Y., et al. (2019) Tanshinone IIA Inhibits Microglial Activation and Reduces Inflammatory Injury in MCAO Models through the TLR4/NF-κB Signaling Pathway. Frontiers in Pharmacology, 10, Article 1234.
[30] Chen, S., Huang, S., Wang, Q., et al. (2022) Tanshinone IIA Alleviates Brain Injury Following Subarachnoid Hemorrhage by Modulating Oxidative Stress and Neuronal Apoptosis via the PI3K/Akt Pathway. Biological Research, 55, 1-11.
[31] Chen, X.Y., Li, Y.P., Zhang, Q.S., et al. (2021) Tanshinone IIA Ameliorates Radiation-Induced Hippocampal Neuronal Injury by Reducing Oxidative Stress and Apoptosis through the Nrf2/HO-1 Signaling Pathway. International Journal of Radiation Biology, 97, 1723-1734.
[32] Wu, W., Zhao, X., Chen, W., et al. (2020) Protective Effects of Tanshinone IIA on Radiation-Induced Brain Injury in Mice by Modulating Oxidative Stress and Inflammatory Cytokines. Frontiers in Pharmacology, 11, Article 5864.
[33] Zhang, H., Sun, X., Wang, Z. and Tao, Q. (2022) Tanshinone IIA Attenuates Traumatic Spinal Cord Injury via Inhibition of Oxidative Stress-Induced Neuronal Apoptosis and Neuroinflammation through the PI3K/Akt Pathway. Neuroscience Letters, 768, Article 1363.
[34] Wang, J., Liu, S., Hou, Y., et al. (2020) Tanshinone IIA Ameliorates Diabetic Peripheral Neuropathy by Improving Mitochondrial Function and Inhibiting Oxidative Stress and Inflammation. Neural Regeneration Research, 15, 1637-1646.
[35] Guo, X., Li, F., Duan, Y., et al. (2019) Tanshinone IIA Protects against Spinal Cord Injury by Regulating the Nrf2/ARE Pathway and Reducing Oxidative Stress and Apoptosis. Journal of Molecular Neuroscience, 69, 52-59.