[1]
|
Parhi, R., Kaishap, P.P. and Jena, G.K. (2023) Recent Advances in Nanomaterial-Based Drug Delivery Systems for Melanoma Therapy. ADMET and DMPK, 12, 107-150. https://doi.org/10.5599/admet.2088
|
[2]
|
Arnold, M., Singh, D., Laversanne, M., Vignat, J., Vaccarella, S., Meheus, F., et al. (2022) Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040. JAMA Dermatology, 158, 495-503. https://doi.org/10.1001/jamadermatol.2022.0160
|
[3]
|
Russi, M., Valeri, R., Marson, D., Danielli, C., Felluga, F., Tintaru, A., et al. (2023) Some Things Old, New and Borrowed: Delivery of Dabrafenib and Vemurafenib to Melanoma Cells via Self-Assembled Nanomicelles Based on an Amphiphilic Dendrimer. European Journal of Pharmaceutical Sciences, 180, Article 106311. https://doi.org/10.1016/j.ejps.2022.106311
|
[4]
|
Lee, C., Thomas, C.M. and Ng, K.E. (2017) An Overview of the Changing Landscape of Treatment for Advanced Melanoma. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 37, 319-333. https://doi.org/10.1002/phar.1895
|
[5]
|
Cordeiro, A.P., Feuser, P.E., Figueiredo, P.G., da Cunha, E.S., Martinez, G.R., Machado-de-Ávila, R.A., et al. (2021) In vitro Synergic Activity of Diethyldithiocarbamate and 4-Nitrochalcone Loaded in Beeswax Nanoparticles against Melanoma (B16F10) Cells. Materials Science and Engineering: C, 120, Article 111651. https://doi.org/10.1016/j.msec.2020.111651
|
[6]
|
Curran, M.A., Kim, M., Montalvo, W., Al-Shamkhani, A. and Allison, J.P. (2011) Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production. PLOS ONE, 6, e19499. https://doi.org/10.1371/journal.pone.0019499
|
[7]
|
Koller, K.M., Mackley, H.B., Liu, J., Wagner, H., Talamo, G., Schell, T.D., et al. (2016) Improved Survival and Complete Response Rates in Patients with Advanced Melanoma Treated with Concurrent Ipilimumab and Radiotherapy versus Ipilimumab Alone. Cancer Biology & Therapy, 18, 36-42. https://doi.org/10.1080/15384047.2016.1264543
|
[8]
|
Wolchok, J.D., Chiarion-Sileni, V., Gonzalez, R., Grob, J., Rutkowski, P., Lao, C.D., et al. (2022) Long-Term Outcomes with Nivolumab Plus Ipilimumab or Nivolumab Alone versus Ipilimumab in Patients with Advanced Melanoma. Journal of Clinical Oncology, 40, 127-137. https://doi.org/10.1200/jco.21.02229
|
[9]
|
Da, X., Li, Z., Huang, X., He, Z., Yu, Y., Tian, T., et al. (2023) AGGF1 Therapy Inhibits Thoracic Aortic Aneurysms by Enhancing Integrin α7-Mediated Inhibition of TGF-β1 Maturation and ERK1/2 Signaling. Nature Communications, 14, Article No. 2265. https://doi.org/10.1038/s41467-023-37809-x
|
[10]
|
Zhang, T., Yao, Y., Wang, J., Li, Y., He, P., Pasupuleti, V., et al. (2016) Haploinsufficiency of Klippel-Trenaunay Syndrome Gene Aggf1 Inhibits Developmental and Pathological Angiogenesis by Inactivating PI3K and AKT and Disrupts Vascular Integrity by Activating VE-Cadherin. Human Molecular Genetics, 25, 5094-5110. https://doi.org/10.1093/hmg/ddw273
|
[11]
|
He, Z., Song, Q., Yu, Y., Liu, F., Zhao, J., Un, W., et al. (2023) Protein Therapy of Skeletal Muscle Atrophy and Mechanism by Angiogenic Factor Aggf1. Journal of Cachexia, Sarcopenia and Muscle, 14, 978-991. https://doi.org/10.1002/jcsm.13179
|
[12]
|
LaFargue, C.J., Amero, P., Noh, K., Mangala, L.S., Wen, Y., Bayraktar, E., et al. (2023) Overcoming Adaptive Resistance to Anti-VEGF Therapy by Targeting CD5L. Nature Communications, 14, Article No. 2407. https://doi.org/10.1038/s41467-023-36910-5
|
[13]
|
Yu, Y., Li, Y., Peng, H., Song, Q., Da, X., Li, H., et al. (2022) Angiogenic Factor AGGF1 Blocks Neointimal Formation after Vascular Injury via Interaction with Integrin Α7 on Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 298, Article 101759. https://doi.org/10.1016/j.jbc.2022.101759
|
[14]
|
Park, B.Y., Grisham, R.N., den Hollander, B., Thapi, D., Berman, T., de Stanchina, E., et al. (2016) Tumor Inhibition by Enzalutamide in a Xenograft Model of Ovarian Cancer. Cancer Investigation, 34, 517-520. https://doi.org/10.1080/07357907.2016.1242598
|
[15]
|
Mao, L., Qi, Z., Zhang, L., Guo, J. and Si, L. (2021) Immunotherapy in Acral and Mucosal Melanoma: Current Status and Future Directions. Frontiers in Immunology, 12, Article 680407. https://doi.org/10.3389/fimmu.2021.680407
|
[16]
|
Willsmore, Z.N., Coumbe, B.G.T., Crescioli, S., Reci, S., Gupta, A., Harris, R.J., et al. (2021) Combined Anti‐PD‐1 and Anti‐CTLA‐4 Checkpoint Blockade: Treatment of Melanoma and Immune Mechanisms of Action. European Journal of Immunology, 51, 544-556. https://doi.org/10.1002/eji.202048747
|
[17]
|
Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J. (2000) Vascular-Specific Growth Factors and Blood Vessel Formation. Nature, 407, 242-248. https://doi.org/10.1038/35025215
|
[18]
|
Carmeliet, P. and Jain, R.K. (2011) Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature, 473, 298-307. https://doi.org/10.1038/nature10144
|
[19]
|
Ferrara, N., Hillan, K.J. and Novotny, W. (2005) Bevacizumab (Avastin), a Humanized Anti-VEGF Monoclonal Antibody for Cancer Therapy. Biochemical and Biophysical Research Communications, 333, 328-335. https://doi.org/10.1016/j.bbrc.2005.05.132
|
[20]
|
Krämer, I. and Lipp, H.-P. (2007) Bevacizumab, a Humanized Anti-Angiogenic Monoclonal Antibody for the Treatment of Colorectal Cancer. Journal of Clinical Pharmacy and Therapeutics, 32, 1-14. https://doi.org/10.1111/j.1365-2710.2007.00800.x
|
[21]
|
Jain, R.K., Duda, D.G., Clark, J.W. and Loeffler, J.S. (2006) Lessons from Phase III Clinical Trials on Anti-VEGF Therapy for Cancer. Nature Clinical Practice Oncology, 3, 24-40. https://doi.org/10.1038/ncponc0403
|
[22]
|
Wei, H., Zhao, L., Li, W., Fan, K., Qian, W., Hou, S., et al. (2013) Combinatorial PD-1 Blockade and CD137 Activation Has Therapeutic Efficacy in Murine Cancer Models and Synergizes with Cisplatin. PLOS ONE, 8, e84927. https://doi.org/10.1371/journal.pone.0084927
|
[23]
|
Selby, M.J., Engelhardt, J.J., Quigley, M., Henning, K.A., Chen, T., Srinivasan, M., et al. (2013) Anti-CTLA-4 Antibodies of IgG2a Isotype Enhance Antitumor Activity through Reduction of Intratumoral Regulatory T Cells. Cancer Immunology Research, 1, 32-42. https://doi.org/10.1158/2326-6066.cir-13-0013
|
[24]
|
La Porta, S., Roth, L., Singhal, M., Mogler, C., Spegg, C., Schieb, B., et al. (2018) Endothelial Tie1-Mediated Angiogenesis and Vascular Abnormalization Promote Tumor Progression and Metastasis. Journal of Clinical Investigation, 128, 834-845. https://doi.org/10.1172/jci94674
|
[25]
|
Zhang, Y., Du, X., Liu, M., Tang, F., Zhang, P., Ai, C., et al. (2019) Hijacking Antibody-Induced CTLA-4 Lysosomal Degradation for Safer and More Effective Cancer Immunotherapy. Cell Research, 29, 609-627. https://doi.org/10.1038/s41422-019-0184-1
|