冷诱导RNA结合蛋白介导氧化应激促进脑缺血再灌注损伤的机制研究
The Mechanism of CIRP Mediating Oxidative Stress to Promote Cerebral Ischemia-Reperfusion Injury
摘要: 目的:探究冷诱导RNA结合蛋白(cold-inducible RNA-binding protein, CIRP)是否能通过TLR4/MyD88途径介导氧化应激促进脑缺血再灌注损伤的发生发展过程,目前尚无报道。本研究将为脑缺血再灌注损伤的治疗提供新的靶点,亦为临床急性缺血性脑卒中(acute ischemic stroke, AIS)患者术后缺血再灌注损伤的治疗应用提供了理论依据。方法:首先通过检测AIS患者术后外周血、构建HMC3细胞缺氧/复氧模型,观察缺血再灌注损伤对CIRP表达水平的影响;其次通过培养SH-SY5Y细胞,使用人重组CIRP蛋白(Recombinant human CIRP protein, rhCIRP)及C23干预,观察CIRP的表达及氧化应激水平。最后利用慢病毒敲减HMC3细胞的CIRP基因,再次构建细胞缺氧/复氧模型,探究CIRP通过TLR4/MyD88途径激活NADPH氧化酶,释放ROS上调Drp-1水平,进而促进线粒体分裂的分子机制。结果:AIS患者脑缺血再灌注后血清CIRP表达较术前显著升高。在人小胶质细胞HMC3缺氧/复氧模型中,细胞内CIRP表达水平显著升高且8小时后CIRP表达水平达到巅峰,并分泌到细胞外,激活炎症因子TNF-α、IL-6表达。rhCIRP可以作用于SH-SY5Y细胞促进TLR4、GP91、P47、DRP-1、MFN-2、Cleaved-caspase-3、TNF-α、IL-6的表达,介导氧化应激。而使用C23和敲减CIRP后则可以抑制上述蛋白和炎症因子的表达,保护组织细胞。结论:缺血再灌注损伤使小胶质细胞释放大量CIRP,分泌到细胞外,TLR-4/MyD88通路介导氧化应激,引起神经细胞缺血再灌注损伤。
Abstract: Objective: To explore whether CIRP can promote the occurrence and development of cerebral ischemia-reperfusion injury through TLR4/MyD88 pathway through oxidative stress, there is no report at present. This study will provide a new target for cerebral ischemia-reperfusion injury, and also provide a theoretical basis for the treatment and application of ischemia-reperfusion injury after acute ischemic stroke surgery. Methods: The effect of ischemia reperfusion injury on the expression of CIRP was observed by detecting the peripheral blood of patients with acute ischemic stroke after operation and constructing the hypoxia/reoxygenation model of HMC3 cells. Secondly, SH-SY5Y was cultured, and human recombinant CIRP protein (rhCIRP) and CIRP inhibitor (C23) were used to observe the level of CIRP and oxidative stress. Finally, the CIRP gene of HMC3 cells was knocked down by lentivirus, and the cell hypoxia/reoxygenation model was constructed again to explore the molecular mechanism of CIRP activating NADPH oxidase through TLR4/MyD88 pathway, releasing ROS to up-regulate the level of Drp-1, and promoting mitochondrial division. Results: The expression of serum CIRP in AIS patients after cerebral ischemia reperfusion was significantly higher than that before operation. In the hypoxia/reoxygenation model of human microglial cell HMC3, the expression level of CIRP in the cell increased significantly and reached the peak after 8 hours, and secreted to the outside of the cell to activate the inflammatory factor TNF-α, IL-6 expression. rhCIRP can be used as SH-SY5Y cells to promote TLR4, GP91, P47, DRP-1, MFN-2, Cleved-caspase-3, TNF-α, IL-6 expression, and mediate oxidative stress. C23 and knockdown of CIRP can inhibit the expression of the above proteins and inflammatory factors, and protect the tissue cells. Conclusion: Ischemia reperfusion injury causes microglia to release a large amount of CIRP, which is secreted into the extracellular space. The TLR-4/MyD88 pathway mediates oxidative stress, leading to neuronal ischemia-reperfusion injury.
文章引用:范阳, 张西安, 豆涛涛, 刘立承, 皇甫慧源, 刘展会. 冷诱导RNA结合蛋白介导氧化应激促进脑缺血再灌注损伤的机制研究[J]. 临床医学进展, 2024, 14(8): 1633-1644. https://doi.org/10.12677/acm.2024.1482400

1. 引言

急性缺血性脑卒中具有高发病率、高致残率、高死亡率等特点,给家庭、社会和国家造成了大量的劳动力损失、严重的公共卫生负担和巨大的公共资源消耗[1] [2]。AIS的特征是供血血管阻塞导致脑血流突然中断,致使某些脑部区域缺血甚至出现不可逆的细胞死亡,表现为短暂或永久性的神经功能障碍,包括运动障碍、失语症、昏迷甚至死亡[3]。AIS首要治疗目标是在有效的时间窗内使闭塞的血管再通、恢复血流,进而减少梗死体积,及时挽救缺血半暗带,改善患者的预后[4] [5]。但再灌注后部分恢复血流供应的脑组织反而出现更严重的功能损伤,并可导致脑组织损伤加重和神经元凋亡增多[6]。因此,亟需深入探索脑缺血再灌注损伤的发病机制和有效的治疗靶点。

细胞核内的CIRP (intracellular cold-inducible RNA-binding protein, iCIRP)可转移至细胞质而后释放至胞外,并作为一种损伤相关模式分子(damage-associated molecular pattern molecule, DAMP) [7] [8]。在近10年前,Zhou等发现在小鼠的大脑中动脉闭塞(middle cerebral artery occlusion, MCAO)模型中和细胞的缺氧模型中,都检测到小胶质细胞可表达CIRP蛋白,并随着缺血缺氧时间的延长逐渐分泌到细胞外,介导炎症反应,促进神经细胞凋亡,损伤脑组织[9]。在近期的研究中,肝脏缺血再灌注损伤和体外循环中(cardiopulmonary bypass, CPB)可以分泌大量的CIRP,这些分泌的CIRP可能通过TLR4/MyD88途径诱导NADPH氧化酶的表达,促进活性氧(Reactive oxygen species, ROS)生成,导致线粒体分裂、炎症反应和细胞凋亡,最终导致组织损伤[10]-[12]。而人工合成CIRP同源多肽(Compound#23, C23)作为一种CIRP抑制剂,可以通过抑制CIRP介导的氧化应激和线粒体分裂来减轻肝脏的缺血再灌注损伤和CPB导致的急性肾损伤,改善了大鼠和细胞模型中CIRP介导的氧化应激和线粒体功能障碍。

2. 材料和方法

2.1. 实验材料

2.1.1. 实验细胞

人小胶质细胞HMC3 (上海赛百慷公司,货号:iCell-h301),人神经母细胞瘤细胞SH-SY5Y (上海赛百慷公司,货号:iCell-h187)。

2.1.2. 药品及试剂

超敏ECL发光液(美国Bio-Rad Laboratories公司),WB制胶试剂盒(美国Bio-Rad Laboratories公司),脱脂奶粉(美国Bio-Rad Laboratories公司),胎牛血清(美国Thermo公司),蛋白maker (美国Thermo公司),BCA蛋白质测定试剂盒 (上海碧云天公司),4%多聚甲醛(上海碧云天公司),胰蛋白酶(上海碧云天公司),肌动蛋白抗体(β-actin,上海碧云天公司),0.5% Triton X-100 (上海碧云天公司),蛋白提取试剂盒(上海碧云天公司),5×蛋白上样给缓冲液(上海碧云天公司),冷诱导RNA结合蛋白抗体(anti-CIRP,abcam公司,中国),TOLL样受体4抗体(武汉三鹰公司),线粒体动力相关蛋白-1抗体(anti-Drp-1,武汉三鹰公司),线粒体融合相关蛋白-2抗体(anti-Mfn-2,武汉三鹰公司,NADPH氧化酶亚基抗体(anti-GP91,武汉三鹰公司),NADPH氧化酶亚基抗体(anti-P47,武汉三鹰公司),半胱氨酸蛋白酶-3抗体(anti-Caspase-3,武汉三鹰公司),半胱氨酸蛋白酶-3前体抗体(anti-Cleaved-caspase-3,武汉三鹰公司),10%过硫酸铵(北京索莱宝公司),TEMED (北京索莱宝公司),吐温(北京索莱宝公司),10%SDS (北京索莱宝公司),DMEM (北京赛澳美公司),PBS (北京赛澳美公司),C23 (南京金斯瑞公司),冷诱导RNA结合蛋白(CIRBP)检测试剂盒(武汉优尔生公司),白细胞介素6检测试剂盒(IL-6,江苏晶美生物公司),肿瘤坏死因子-α检测试剂盒(TNF-α,江苏晶美生物公司),重组人CIRP蛋白(rhCIRP,武汉云克隆公司),无水乙醇(成都科隆公司),慢病毒(LV-CIRBP-RNAI,吉凯基因,中国)。

2.1.3. 主要仪器

超低温冰箱、细胞培养箱(美国thermo scientific公司);超净工作台(北京东联哈尔仪器制造有限公司);电子天平(瑞士METTLER TOLEDO公司);紫外分光光度仪(日本岛津公司)。凝胶成像系统(美国Bio-Rad Laboratories公司),荧光显微镜(日本Olympus公司),全自动通用酶标仪(美国BioTek instrument公司)。

2.2. 实验方法

2.2.1. 临床标本和患者数据

本研究按照西安市第九医院医学行为规范和标准,并经医学伦理委员会批准。在研究之前获得所有患者的知情同意(当患者无民事行为能力时,其家属在签署委托书后签署同意书)。随机采集2021年5月至2022年12月神经外科急性缺血性脑卒中患者的外周血标本35份及健康人外周血标本19份。在此期间,AIS患者的血清样本在以下两个时间点收集,入院时及脑血管介入再通术后24小时。健康人血清则于早晨08:00~10:00空腹时收集。将标本用离心机4℃、3000 r离心吸取血清储存在−80℃冰箱直至进一步分析。

2.2.2. 细胞培养

小胶质细胞HMC3在添加有10% FBS、100 U/mL青霉素和100 mg/L链霉素的DMEM培养基中培养。将细胞接种在6孔板中,每孔密度为5 × 105个细胞。将细胞分为以下六组:常温(37℃)常氧培养2 h (NN组),缺氧(1% O2)培养2 h (I/R0h组),缺氧(1% O2)培养2 h,然后在常温和常氧条件下培养4 h (I/R4h组),缺氧(1% O2)培养2 h,然后在常温和常氧条件下培养8 h (I/R8h组),缺氧(1% O2)培养2 h,然后在常温和常氧条件下培养12 h (I/R12h组),缺氧(1% O2)培养2 h,然后在常温和常氧条件下培养24 h (I/R24h组)。人神经母细胞瘤细胞SH-SY5Y在添加有10% FBS、100U/mL青霉素和100 mg/L链霉素的DMEM培养基中培养。将细胞接种在6孔板中,每孔密度为5 × 105个细胞。将细胞分为以下四组:常温(37℃)常氧培养24 h (control组),加入rhCIRP 300 ng/mL在常温(37℃)常氧培养24 h (Low rhCIRP组),加入rhCIRP 1000 ng/mL在常温(37℃)常氧培养24 h (High rhCIRP组),加入rhCIRP 1000 ng/mL + C23 300 ng/mL在常温(37℃)常氧培养24 h (High rhCIRP + C23组)。敲减CIRP的小胶质细胞HMC3在添加有10% FBS、100 U/mL青霉素和100 mg/L链霉素的DMEM培养基中培养。将细胞接种在6孔板中,每孔密度为5 × 105个细胞。将细胞分为以下两组:缺氧(1% O2)条件下培养2 h,然后在常温和常氧条件下培养8 h (KD组),缺氧(1% O2)条件下培养2 h,然后在常温和常氧条件下培养8 h (NC组)。

2.2.3. 蛋白质印迹

通过10%十二烷基硫酸钠–聚丙烯酰胺凝胶电泳对来自每组的等量蛋白质进行电泳并转移到PVDF膜上。将膜与一抗在4℃孵育过夜,然后加入辣根过氧化物酶偶联的二抗,并在37℃下孵育1 h。本研究中使用的抗体是anti-CIRP、anti-TLR-4、anti-MyD88、anti-Caspase-3、anti-Cleaved-caspase-3 (1:1000)、anti-Drp-1、anti-Mfn-2、anti-GP91、anti-P47 (1:2000),β-actin (1:3000)。使用发光液检测蛋白质并通过成像系统观察。

2.2.4. 酶联免疫吸附试验

按分组进行不同处理后,收集H9c2和NRK-52E细胞培养基作为待测标本。使用ELISA试剂盒测定 CIRP、白细胞介素6 (IL-6)和肿瘤坏死因子α (TNF-α)的水平。所有测定均根据制造商的说明进行。实验独立重复3次。H9c2细胞培养后与NRK-52E细胞培养后IL-6和TNF-α浓度的差异计算为ΔIL-6和ΔTNF-α

2.2.5. 流式细胞术

首先,SH-SY5Y细胞(1 × 106)用预冷PBS洗涤两次,然后使用膜联蛋白V荧光素(FITC)细胞凋亡检测试剂盒I (BD Biosciences;包括PI染色材料)进行流式细胞术。其中,膜联蛋白V阳性细胞表示早期凋亡细胞,碘化丙啶(PI)阳性细胞表示坏死细胞,双阳性细胞表示晚期凋亡细胞。

2.3. 统计学方法

采用SPSS 26.0统计学软件进行分析。所有数据均表示为平均值 ± 标准误差(SE),并通过单向方差分析(ANOVA)和t检验通过比较两组进行比较。P < 0.05为差异具有统计学意义。

3. 结果

3.1. AIS患者脑缺血再灌注后外周血CIRP表达再灌注后增加

从2021年5月至2022年10月期间随机采集了35份AIS后接受脑血管介入再通患者的配对血清标本和19名健康人血清标本。图1所示,健康人的CIRP表达低于AIS患者术前的CIRP表达,两者均远低于AIS患者术后24 h的CIRP表达,各组的CIRP浓度分别为124.62 ± 23.18 pg/ml,933.74 ± 283.89 pg/ml 和2243.61 ± 1258.97 pg/ml (健康人vs术前P < 0.01,健康人vs术后P < 0.001,术前vs术后P < 0.001)。

Figure 1. Cerebral ischemia-reperfusion injury promotes CIRP secretion

1. 脑缺血再灌注损伤促进CIRP分泌

3.2. 缺氧促进小胶质细胞分泌CIRP

为模拟AIS患者血管介入开通脑缺血再灌注的过程,将HMC3细胞在37℃、5% CO2、1% O2条件下培养2 h,然后在分别在常温常氧条件下培养0 h、4 h、8 h、12 h、24 h。图2所示,结果表明I/R4h组、I/R8h组、I/R12h组、I/R24h组CIRP表达水平显著高于control组和I/R0h组,且control组和I/R0h组CIRP表达水平相近。复氧后CIRP表达水平呈现升高后降低趋势,且8 h后CIRP表达水平达到巅峰,随后逐渐下降(图2(A))。将Western Blot结果量化统计后,各组CIRP/β-actin分别为control组1.00 ± 0.00、I/R0h组1.15 ± 0.16、I/R4h组1.93 ± 0.21、I/R8h组2.60 ± 0.59、I/R12h组2.03 ± 0.47和I/R24h组1.59 ± 0.14 (control组vs I/R4h组,P < 0.05;control组vs I/R8h组,P <0.001;control组vs I/R12h组,P < 0.05,图2(B))。

3.3. 缺氧促进小胶质细胞炎性因子分泌

缺氧条件下可以促进小胶质细胞分泌CIRP,也可以促进炎症因子的分泌。图3所示,各组培养基中CIRP浓度分别为54.70 ± 3.21 pg/ml、50.70 ± 2.94 pg/ml、56.73 ± 2.13 pg/ml和61.21 ± 1.84 pg/ml、76.83 ± 3.38 pg/ml、93.86 ± 2.10pg/ml (control组vs I/R12h组,P < 0.001;control组vs I/R24h组,P < 0.001,图3(A))。可见培养基中CIRP水平逐渐升高,且12 h更为显著,与上述细胞内CIRP水平相对比,不难得出,复氧8 h后,细胞内CIRP表达并未减少,而是分泌到细胞外。此外,各组培养基中IL-6浓度分别为9.42 ± 0.54 pg/ml、9.20 ± 0.48 pg/ml、10.68 ± 2.63 pg/ml、12.52 ± 1.48 pg/ml、16.79 ± 2.25 pg/ml和21.59 ± 2.15 pg/ml (control组vs I/R12h组,P <0.01;control组vs I/R24h组,P <0.001,图3(B))。各组TNF-α浓度分别为17.54 ± 1.78 pg/ml、18.52 ± 2.27 pg/ml、18.1 ± 1.65 pg/ml、21.10 ± 1.90 pg/ml、28.21 ± 1.84 pg/ml和38.70 ± 1.46 pg/ml (control组vs I/R12h组,P < 0.001;control组vs I/R24h组,P < 0.001,图3(C))。TNF-α和IL-6表达趋势与培养基中CIRP表达趋势相似,因此可以推断,复氧8小时后,细胞内CIRP逐渐分泌到细胞外,参与炎症反应。

Figure 2. HMC3 cell hypoxia/reoxygenation model promotes CIRP secretion. (A) Western Blot was used to detect the expression of CIRP protein in each group; (B) Quantify the WB detection results of each group and conduct statistical analysis

2. HMC3细胞缺氧/复氧模型促进CIRP分泌。(A) Western Blot检测各组CIRP蛋白表达情况;(B) 量化各组WB检测结果并进行统计学分析

Figure 3. HMC3 cell hypoxia/reoxygenation model promotes CIRP expression and secretion into the extracellular space. (A) ELISA was used to detect the expression level of CIRP protein in the hypoxia/reoxygenation model culture medium of HMC3 cells in each group; (B) ELISA was used to detect the expression level of IL-6 in each group of culture media; (C) ELISA was used to detect the expression levels of TNF-α in each group of culture media

3. HMC3细胞缺氧/复氧模型促进CIRP表达并分泌到细胞外。(A) ELISA检测各组HMC3细胞缺氧/复氧模型培养基中CIRP蛋白表达水平;(B) ELISA检测各组培养基中IL-6表达水平;(C) ELISA检测各组培养基中TNF-α表达水平

3.4. CIRP促进神经母细胞瘤细胞氧化应激

CIRP不仅能促进炎症因子分泌,还能介导氧化应激。将人SH-SY5Y细胞在5% CO2和37℃下培养,并用重组人CIRP蛋白(rhCIRP)或C23处理24小时。图4所示,通过Western Blot技术检测,结果表明Low rhCIRP组和High rhCIRP组受体蛋白TLR4,NADPH氧化酶复合体亚基GP91、P47,线粒体相关蛋白DRP-1、MFN-2,凋亡蛋白Cleaved-caspase-3的表达趋势类似,均高于control组。而在High rhCIRP + C23组上述蛋白的表达均下降,低于Low rhCIRP组和High rhCIRP组。而control组和High rhCIRP + C23组对比,各蛋白则无明显变化趋势(图4(A))。各组TNF-α浓度分别为17.46 ± 2.54 pg/ml、36.06 ± 3.36 pg/ml、48.46 ± 4.82 pg/ml和26.84 ± 3.22 pg/ml (control组 vs Low rhCIRP组 P < 0.001,control组vs High rhCIRP组,P < 0.001;High rhCIRP组vs High rhCIRP + C23组,P < 0.001,图4(B))。检测各组培养基中IL-6浓度分别为12.35 ± 1.76 pg/ml、25.65 ± 4.49 pg/ml、37.81 ± 4.47 pg/ml和21.97 ± 5.91 pg/ml (control组vs Low rhCIRP组,P < 0.001;control组vs High rhCIRP组,P < 0.001;High rhCIRP组vs High rhCIRP + C23组,P < 0.001,图4(C))。结果表明,Low rhCIRP组及High rhCIRP表达的炎症因子较对照组依次升高,而加入抑制剂C23后其表达显著降低,表明CIRP在介导氧化应激的同时,也能促进炎症因子的分泌,多途径损伤神经细胞。通过流式细胞术可以看到,rhCIRP可以促进细胞凋亡,且呈浓度依赖,而抑制剂C23可以显著降低细胞凋亡水平与Western Blot检测结果相似(图4(D))。

Figure 4. rhCIRP mediates oxidative stress in SH-SY5Y cells. (A) Western Blot was used to detect rhCIRP mediated oxidative stress and promotion of apoptosis in SH-SY5Y cells; (B) ELISA was used to detect the expression levels of TNF-α in each group of culture media; (C) ELISA was used to detect the expression level of IL-6 in each group of culture media; (D) Flow cytometry was used to detect the level of apoptosis in each group of cells

4. rhCIRP介导SH-SY5Y细胞氧化应激。(A) Western Blot检测rhCIRP介导SH-SY5Y细胞氧化应激,促进细胞凋亡;(B) ELISA检测各组培养基中TNF-α表达水平;(C) ELISA检测各组培养基中IL-6表达水平;(D) 流式细胞术检测各组细胞的凋亡水平

3.5. 慢病毒敲减HMC3细胞的CIRP基因

培养HMC3细胞使用慢病毒敲减CIRP基因并筛选,应用WB技术检测CIRP蛋白的表达。图5所示,应用荧光显微镜观察,发现细胞发出绿色荧光,表示慢病毒已转入HMC3细胞中(图5(A))。提取细胞内蛋白并用Western Blot技术检测,发现KD组CIRP蛋白表达水平显著低于NC组(图5(B))。将WB条带量化统计后,NC组与KD组CIRP/β-actin分别为1.01 ± 0.09、0.38 ± 0.11 (NC组vs KD组,P < 0.001,图5(C))。

Figure 5. Knockdown of CIRP gene in HMC3 cells by lentivirus. (A) After 72 hours of observation under a fluorescence microscope, the lentivirus has been transferred into HMC3 cells and emits green fluorescence; (B) WB detection of CIRP protein expression in HMC3 cells after knocking down the CIRP gene; (C) Quantify the Western Blot test results of each group and perform statistical analysis

5. 慢病毒敲减HMC3细胞的CIRP基因。(A) 72小时用荧光显微镜观察,慢病毒已转入HMC3细胞并发出绿色荧光;(B) WB检测敲减CIRP基因后的HMC3细胞的CIRP蛋白表达情况;(C) 量化各组Western Blot检测结果并进行统计学分析

3.6. 敲减CIRP可以抑制氧化应激

将筛选后的KD组及NC组HMC3细胞再培养,常温和低氧条件下培养2 h,然后在常温和常氧条件下培养8 h。图6所示,通过Western Blot技术检测,结果表明NC组的CIRP蛋白、受体蛋白TLR4,NADPH氧化酶复合体亚基GP91、P47,线粒体相关蛋白DRP-1、MFN-2,凋亡蛋白Cleaved-caspase-3的表达均显著高于KD组。表明敲减CIRP后可显著抑制氧化应激。

Figure 6. Knocking down CIRP can inhibit oxidative stress

6. 敲减CIRP可以抑制氧化应激

4. 讨论

在老年人群中AIS是一种高发病,而且有较高的致残率和死亡率,给社会和家庭造成了巨大的负担。已经证实iCIRP和eCIRP具有不同的功能,iCIRP是高度保守的RNA伴侣,具有维持mRNA稳定性和信号传递的作用[13],而eCIRP是一种新的DAMP以促进和激活炎症反应[14] [15]。在许多I/R模型中,CIRP的表达水平显著升高,并分泌到细胞外,参与炎症反应和氧化应激。Zhou和其团队[9]证实,小鼠MCAO模型中,随着缺血时间的延长,脑梗死体积增大的同时,CIRP表达水平升高,并逐渐分泌到细胞外,同时TNF-α、IL-6等炎症因子的表达显著上调,而敲减CIRP基因的小鼠在MCAO模型中TNF-α、IL-6等炎症因子的表达明显低于WT小鼠。心脏手术中,Chen [16]等人发现CIRP表达在CPB后6小时显著增加,并在CPB后5天后逐渐恢复到正常水平。Liu [17]等建立大鼠深度低温循环停搏模型,结果表明在小胶质细胞中CIRP通过Brd2-NF-κB信号通路介导促炎细胞因子的释放来加重神经元损伤。在Cen [18]的研究中表明,敲减CIRP基因在抑制炎症和抑制氧化应激方面具有显著成效,并可显著减轻肾缺血再灌注导致的急性肾损伤。

越来越多的证据表明线粒体动力学障碍,包括线粒体结构肿胀、线粒体嵴的受损、膜电位降低、ROS水平升高以及线粒体氧化磷酸化酶缺乏等,会激活氧化应激导致细胞凋亡[19]。线粒体融合与裂变,线粒体生物合成与降解是调节线粒体动力学的两个相反过程[20]。在正常情况下,线粒体的数量、活性和定位是由裂变蛋白和融合蛋白进行协调,高ROS水平可诱导裂变相关蛋白Drp-1过表达。在果蝇伤口愈合模型中,高表达的Drp-1导致线粒体DNA断裂[21]。同样,心肌细胞过度摄取、氧化和积累脂质,可以导致线粒体形态的改变和促进线粒体ROS的产生,从而诱导Drp-1磷酸化减少和线粒体分裂[22]。相反,Mfn-2可以作用于内质网上的PERK蛋白,介导内质网应激,保护线粒体的形态和减少ROS的产生[23]。表明Drp-1和Mfn-2可能作为一对功能相反的蛋白,动态调节线粒体功能。在帕金森病的研究中,发现外源性H2O2刺激可诱导Mfn-2泛素化并导致成纤维细胞中的线粒体DNA断裂[24]。线粒体动力学紊乱和细胞内ROS产生可能相互促进,ROS积累会引发线粒体断裂、肿胀或缩短,可见线粒体成为ROS损伤和产生的主要靶标和位点[25] [26],而过度的线粒体断裂也会反过来增加ROS的产生,导致恶性循环,最终,高水平的ROS可诱导NLRP3炎症小体[27]、NF-κB [28]和过氧化物酶-2 (PRDX-2) [29]炎症介质的分泌。

总而言之,eCIRP不仅可以通过巨噬细胞、淋巴细胞、中性粒细胞、小胶质细胞等免疫细胞介导炎症反应,还可以通过介导氧化应激,提高血管内皮细胞[15]和肺上皮细胞[30]内的ROS水平,导致细胞凋亡。而且重组CIRP可直接诱导小鼠肺血管内皮细胞NADPH氧化酶活化,增加ROS的产生,从而加重肺损伤[15]。在之前的研究中我们发现,CIRP在CPB患者中的表达显著高于比未进行CPB的患者。在大鼠体外循环模型中,肾组织中gp91phox和P47phox表达及ROS水平也远高于假手术组,在肾小管上皮细胞中也得到了类似的结果,并且高表达的CIRP显著升高了急性肾损伤的风险。

缺血缺氧可以导致细胞内ATP减少,从而迫使细胞体线粒体裂变以维持线粒体数量,保证正常能量供应,但是过度的线粒体裂变导致线粒体断裂并触发细胞凋亡[31] [32]。线粒体分裂过程通过多种蛋白质介导,关键蛋白是Drp-1,抑制Drp-1的易位和激活可以阻止肝脏IRI中的肝细胞凋亡。此外,持续缺血缺氧也会减少线粒体转录因子的表达水平,导致线粒体生物合成受损。在我们之前的研究中,供体肝脏低温保存和再灌注后Fis-1、Drp-1、gp91phox和P47phox的表达高于常温机械灌注组,这与丙二醛表达水平一致。此外,高浓度rhCIRP可上调肝脏HL-7702细胞中gp91phox和P47phox的表达,增加ROS,促进炎症因子分泌,诱导细胞凋亡。而且,抑制CIRP表达能有效下调组织和细胞中的氧化应激,从而减少肝脏缺血再灌注损伤。这些结果表明抑制CIRP可以维持肝脏代谢,减轻线粒体功能障碍,并抑制与IRI相关的炎症。eCIRP与细胞膜表面受体TLR4-MD2之间存在强结合力,通过NF-κB通路刺激细胞表达及释放炎症因子,继而引起炎症反应,加重细胞和组织损伤,在我们之前的研究中发现,在低温缺氧的情况下心肌H9c2细胞会表达和分泌高水平的CIRP。其可以通过TLR4/MyD88途径释激活炎症反应,损伤心肌细胞。而且eCIRP和其他炎症因子可以作用于HK-2细胞,诱导细胞凋亡。C23可以竞争性与TLR4-MD2受体结合阻断CIRP介导的促炎反应和氧化应激,缓解CBP导致的急性肾损伤[12]

在本研究中,AIS患者血管介入再通后,即发生脑缺血再灌注后,会分泌大量的CIRP激活氧化应激,导致神经细胞损伤。我们在细胞层面模拟脑缺血再灌注模型,发现随着再灌注时间的延长,细胞内的CIRP表达呈现先升高后降低的趋势,但这并不是CIRP蛋白被耗竭,而是由细胞内逐渐分泌至细胞外,作为一种DAMP,促进脑缺血再灌注损伤。这些eCIRP通过TLR4/MyD88信号通路介导氧化应激,作用于神经母细胞瘤细胞SH-SY5Y,诱导其凋亡。C23可以抑制CIRP介导的氧化应激,减少了对神经母细胞瘤细胞的损伤,保护神经功能。本研究进一步证实,在脑缺血再灌注中eCIRP可通过TLR4/MyD88信号通路促进NADPH氧化酶的表达,加重细胞内氧化应激,介导线粒体动力学紊乱,最终增加细胞凋亡。

5. 结语

综上所述,脑缺血再灌注过程中,神经细胞势必会经历缺血缺氧,而且血管再通后,也会造成再灌注损伤。我们的研究证实人小胶质细胞在缺氧/复氧后高表达CIRP,并逐渐分泌到细胞外引发氧化应激和线粒体动力学的失衡,从而导致一系列炎症反应,最终导致神经细胞凋亡。预计下一步将要构建大鼠的脑缺血再灌注模型并使用电子显微镜观察线粒体变化,从宏观和微观两方面取得更多的实验结果,进一步求证本研究的结论。

基金项目

西安市创新能力强基计划——医学研究项目(2022JH-YBYJ-0316)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789-1858.
[2] Goldstein, L.B., Adams, R., Alberts, M.J., et al. (2006) Primary Prevention of Ischemic Stroke: A Guideline from the American Heart Association/American Stroke Association Stroke Council: Cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group. Circulation, 113, e873-923.
[3] Dirnagl, U., Iadecola, C. and Moskowitz, M.A. (1999) Pathobiology of Ischaemic Stroke: An Integrated View. Trends in Neurosciences, 22, 391-397.
https://doi.org/10.1016/s0166-2236(99)01401-0
[4] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组, 中华医学会神经病学分会神经血管介入协作组. 中国急性缺血性脑卒中早期血管内介入诊疗指南2018 [J]. 中华神经科杂志, 2018, 51(9): 683-691.
[5] 周腾飞, 朱良付, 李天晓. 影响急性缺血性脑卒中血管内治疗预后的相关因素分析[J]. 介入放射学杂志, 2017, 26(2): 99-104.
[6] 朱晓勤, 曾建伟, 胡海霞. 栝楼桂枝汤调控p38MAPK, Caspase-3减轻MCAO大鼠脑缺血再灌注损伤的机制研究[J]. 福建中医药, 2019, 50(5): 27-31.
[7] Qiang, X., Yang, W., Wu, R., Zhou, M., Jacob, A., Dong, W., et al. (2013) Cold-Inducible RNA-Binding Protein (CIRP) Triggers Inflammatory Responses in Hemorrhagic Shock and Sepsis. Nature Medicine, 19, 1489-1495.
https://doi.org/10.1038/nm.3368
[8] Aziz, M., Brenner, M. and Wang, P. (2019) Extracellular CIRP (eCIRP) and Inflammation. Journal of Leukocyte Biology, 106, 133-146.
https://doi.org/10.1002/jlb.3mir1118-443r
[9] Zhou, M., Yang, W., Ji, Y., Qiang, X. and Wang, P. (2014) Cold-Inducible RNA-Binding Protein Mediates Neuroinflammation in Cerebral Ischemia. Biochimica et Biophysica Acta (BBA)—General Subjects, 1840, 2253-2261.
https://doi.org/10.1016/j.bbagen.2014.02.027
[10] Liu, W., Fan, Y., Ding, H., Han, D., Yan, Y., Wu, R., et al. (2021) Normothermic Machine Perfusion Attenuates Hepatic Ischaemia‐Reperfusion Injury by Inhibiting Cirp‐mediated Oxidative Stress and Mitochondrial Fission. Journal of Cellular and Molecular Medicine, 25, 11310-11321.
https://doi.org/10.1111/jcmm.17062
[11] Zheng, X., Fan, Y., Li, J., Ma, T., Li, Y., Wang, Q., et al. (2022) Change in Oxidative Stress and Mitochondrial Dynamics in Response to Elevated Cold-Inducible RNA-Binding Protein in Cardiac Surgery-Associated Acute Kidney Injury. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3576892.
https://doi.org/10.1155/2022/3576892
[12] 范阳, 刘展会, 豆涛涛, 等. 冷诱导RNA结合蛋白在体外循环期间导致急性肾损伤机制实验研究[J]. 陕西医学杂志, 2022, 51(8): 929-933.
[13] Zhong, P. and Huang, H. (2017) Recent Progress in the Research of Cold-Inducible RNA-Binding Protein. Future Science OA, 3, Article ID: FSO246.
https://doi.org/10.4155/fsoa-2017-0077
[14] Ode, Y., Aziz, M. and Wang, P. (2018) CIRP Increases ICAM-1+ Phenotype of Neutrophils Exhibiting Elevated iNOS and NETs in Sepsis. Journal of Leukocyte Biology, 103, 693-707.
https://doi.org/10.1002/JLB.3A0817-327RR
[15] Yang, W., Sharma, A., Wang, Z., Li, Z., Fan, J. and Wang, P. (2016) Cold-Inducible RNA-Binding Protein Causes Endothelial Dysfunction via Activation of Nlrp3 Inflammasome. Scientific Reports, 6, Article No. 26571.
https://doi.org/10.1038/srep26571
[16] Chen, X., Jiang, J., Wu, X., Li, J. and Li, S. (2019) Plasma Cold-Inducible RNA-Binding Protein Predicts Lung Dysfunction after Cardiovascular Surgery Following Cardiopulmonary Bypass: A Prospective Observational Study. Medical Science Monitor, 25, 3288-3297.
https://doi.org/10.12659/msm.914318
[17] Liu, M., Li, Y., Gao, S., Yan, S., Zhang, Q., Liu, G., et al. (2020) A Novel Target to Reduce Microglial Inflammation and Neuronal Damage after Deep Hypothermic Circulatory Arrest. The Journal of Thoracic and Cardiovascular Surgery, 159, 2431-2444.E7.
https://doi.org/10.1016/j.jtcvs.2019.06.115
[18] Cen, C., Yang, W., Yen, H., Nicastro, J.M., Coppa, G.F. and Wang, P. (2016) Deficiency of Cold-Inducible Ribonucleic Acid-Binding Protein Reduces Renal Injury after Ischemia-Reperfusion. Surgery, 160, 473-483.
https://doi.org/10.1016/j.surg.2016.04.014
[19] Cid-Castro, C., Hernández-Espinosa, D.R. and Morán, J. (2018) ROS as Regulators of Mitochondrial Dynamics in Neurons. Cellular and Molecular Neurobiology, 38, 995-1007.
https://doi.org/10.1007/s10571-018-0584-7
[20] Chan, D.C. (2012) Fusion and Fission: Interlinked Processes Critical for Mitochondrial Health. Annual Review of Genetics, 46, 265-287.
https://doi.org/10.1146/annurev-genet-110410-132529
[21] Muliyil, S. and Narasimha, M. (2014) Mitochondrial ROS Regulates Cytoskeletal and Mitochondrial Remodeling to Tune Cell and Tissue Dynamics in a Model for Wound Healing. Developmental Cell, 28, 239-252.
https://doi.org/10.1016/j.devcel.2013.12.019
[22] Tsushima, K., Bugger, H., Wende, A.R., Soto, J., Jenson, G.A., Tor, A.R., et al. (2018) Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circulation Research, 122, 58-73.
https://doi.org/10.1161/circresaha.117.311307
[23] Muñoz, J.P., Ivanova, S., Sánchez-Wandelmer, J., Martínez-Cristóbal, P., Noguera, E., Sancho, A., et al. (2013) Mfn2 Modulates the UPR and Mitochondrial Function via Repression of PERK. The EMBO Journal, 32, 2348-2361.
https://doi.org/10.1038/emboj.2013.168
[24] Rakovic, A., Grünewald, A., Kottwitz, J., Brüggemann, N., Pramstaller, P.P., Lohmann, K., et al. (2011) Mutations in PINK1 and Parkin Impair Ubiquitination of Mitofusins in Human Fibroblasts. PLOS ONE, 6, e16746.
https://doi.org/10.1371/journal.pone.0016746
[25] Brillo, V., Chieregato, L., Leanza, L., Muccioli, S. and Costa, R. (2021) Mitochondrial Dynamics, ROS, and Cell Signaling: A Blended Overview. Life, 11, Article 332.
https://doi.org/10.3390/life11040332
[26] Willems, P.H.G.M., Rossignol, R., Dieteren, C.E.J., Murphy, M.P. and Koopman, W.J.H. (2015) Redox Homeostasis and Mitochondrial Dynamics. Cell Metabolism, 22, 207-218.
https://doi.org/10.1016/j.cmet.2015.06.006
[27] Lin, Q., Li, S., Jiang, N., Shao, X., Zhang, M., Jin, H., et al. (2019) Pink1-Parkin Pathway of Mitophagy Protects against Contrast-Induced Acute Kidney Injury via Decreasing Mitochondrial ROS and NLRP3 Inflammasome Activation. Redox Biology, 26, Article ID: 101254.
https://doi.org/10.1016/j.redox.2019.101254
[28] Tenório, M.B., Ferreira, R.C., Moura, F.A., Bueno, N.B., de Oliveira, A.C.M. and Goulart, M.O.F. (2019) Cross-Talk between Oxidative Stress and Inflammation in Preeclampsia. Oxidative Medicine and Cellular Longevity, 2019, Article ID: 8238727.
https://doi.org/10.1155/2019/8238727
[29] Salzano, S., Checconi, P., Hanschmann, E., Lillig, C.H., Bowler, L.D., Chan, P., et al. (2014) Linkage of Inflammation and Oxidative Stress via Release of Glutathionylated Peroxiredoxin-2, Which Acts as a Danger Signal. Proceedings of the National Academy of Sciences of the United States of America, 111, 12157-12162.
https://doi.org/10.1073/pnas.1401712111
[30] Ran, D., Chen, L., Xie, W., Xu, Q., Han, Z., Huang, H., et al. (2016) Cold-inducible RNA Binding Protein Regulates Mucin Expression Induced by Cold Temperatures in Human Airway Epithelial Cells. Archives of Biochemistry and Biophysics, 603, 81-90.
https://doi.org/10.1016/j.abb.2016.05.009
[31] Zhang, C., Huang, J. and An, W. (2017) Hepatic Stimulator Substance Resists Hepatic Ischemia/reperfusion Injury by Regulating Drp1 Translocation and Activation. Hepatology, 66, 1989-2001.
https://doi.org/10.1002/hep.29326
[32] Yin, W., Signore, A.P., Iwai, M., Cao, G., Gao, Y. and Chen, J. (2008) Rapidly Increased Neuronal Mitochondrial Biogenesis after Hypoxic-Ischemic Brain Injury. Stroke, 39, 3057-3063.
https://doi.org/10.1161/strokeaha.108.520114