41G微针视网膜下重组人组织纤溶酶原激活剂注射治疗黄斑下出血1例
Subretinal Recombinant Human Tissue Plasminogen Activator Injection Using a 41G Needle for the Management of Submacular Hemorrhages: A Case Report
DOI: 10.12677/acm.2024.1482402, PDF, HTML, XML,   
作者: 陈旭峰:暨南大学附属爱尔眼科医院,广东 广州;梁先军*:佛山爱尔眼科医院综合眼病科,广东 广州
关键词: 视网膜下注射重组组织纤溶酶原激活剂黄斑下出血Subretinal Injection Tissue Plasminogen Activator Submacular Hemorrhage
摘要: 黄斑下出血是位于视网膜光感受器细胞层和视网膜色素上皮层(retinal pigment epithelium, RPE)之间的出血,可能由年龄相关性黄斑变性(age-related macular degeneration, AMD)、视网膜大动脉瘤等疾病引起。血凝块释放的铁对感光细胞、视网膜循环等都具有毒性作用,因此血凝块的吸收快慢是预后良好与否的关键,利用41号(41G)微针行视网膜下注射人组织纤溶酶原激活剂(tissue plasminogen activator, t-PA)联合玻璃体切除术(pars plana vitrectomy, PPV)和气体填塞术能更有效、更安全地治疗视网膜下出血,从而快速吸收血凝块以保护视功能。现报道1例利用41G微针在视网膜下注射重组人组织纤溶酶原激活剂以治疗黄斑下出血。
Abstract: Submacular hemorrhage is bleeding between the retinal pigment epithelium (RPE) and the photoreceptor cell layer of the retina. It can be caused by age-related macular degeneration (AMD), large aneurysms of the retina and other diseases. The iron released by blood clots has toxic effects on photoreceptor cells and retinal circulation, so the absorption rate of blood clots is the key to good prognosis. Subretinal injection of human tissue plasminogen activator was performed using 41 (41G) microneedles, the combination with pars plana vitrectomy (PPV) and gas tamponage can more effectively and safely treat subretinal bleeding, thereby rapidly absorbing the blood clot to preserve visual function. We report a case of submacular hemorrhage treated by subretinal injection of recombinant human tissue plasminogen activator using 41G microneedles.
文章引用:陈旭峰, 梁先军. 41G微针视网膜下重组人组织纤溶酶原激活剂注射治疗黄斑下出血1例[J]. 临床医学进展, 2024, 14(8): 1656-1661. https://doi.org/10.12677/acm.2024.1482402

1. 引言

黄斑下出血(Submacular hemorrhage, SMH)是视网膜和脉络膜循环改变引起的位于视网膜光感受器细胞层与RPE层之间的出血[1],可能由年龄相关性黄斑变性(AMD)、视网膜大动脉瘤、糖尿病视网膜病变等疾病引起,其中SMH最常见的原因是新生血管性年龄相关性黄斑变性(nAMD) [2]。视网膜下形成血块后,会阻止氧气和其他营养物质从视网膜色素上皮(RPE)传递到光感受器和外层视网膜的供应[3] [4]。此外,视网膜下凝块和纤维蛋白的收缩可对光感受器造成不可逆的损伤,在Toth等人的研究中,9个超过1小时的凝块中,其中6个凝块纤维蛋白与光感受器(Photoreceptor)内外节的撕裂有关[4]。血凝块释放的铁对感光细胞、视网膜循环和脉络膜毛细血管都具有毒性作用[3],所以患者的预后视血块吸收长短决定。黄斑下出血的治疗策略旨在清除黄斑区的血液并防止进一步出血[5],治疗具有多种选择,包括玻璃体内注射抗血管内皮生长因子(vascular endothelial growth factor, VEGF)药物,视网膜下或玻璃体内注射组织纤溶酶原激活剂(t-PA),以及气体–气动替代或玻璃体切除术(含或不含t-PA),可作为单一治疗或联合手术治疗。其中,Hillenkamp等[6]报道了玻璃体切除术和气体填塞术联合视网膜下注射t-PA比玻璃体内注射t-PA和气体填塞术更有效地治疗视网膜下出血。有研究表明微针这种针头的长度在数百微米范围内,因此产生的疼痛相对较少或没有,并且可生物降解的纳米颗粒与固体或空心纳米颗粒相比,它们具有产生的废物不尖锐,并且可以设计成允许快速或缓慢释放药物的优点[7]。而这就提供了一种侵入性更小、更可靠的进入视网膜的方式,预计针的直径越小,与注射相关的视网膜组织损伤就越小。现报道1例41G针视网膜下重组人组织纤溶酶原激活剂注射治疗视网膜下出血。

2. 临床资料

2.1. 一般资料

患者为老年男性,71岁,因“右眼视力下降伴视物遮挡6天”于2023年12月11号入院。患者自诉6天前无明显诱因出现右眼视力下降伴视物遮挡,伴视物变形,伴眼前视物发暗,不伴眼红、眼胀、眼痛等,无畏光、流泪,无头晕头痛、呕吐等不适。曾在外院就诊,考虑“渗出性老年性黄斑变性”,建议手术治疗。既往史:既往高血压病史、2型糖尿病病史,均规律药物控制,近期血压及血糖控制可。

2.2. 专科查体

视力:右眼裸眼:0.1,矫正视力:无提高,左眼裸眼:0.04,矫正视力:无提高。眼压:右眼NCT17 mmHg,左眼NCT16 mmHg。右眼结膜无充血、水肿,角膜透明,KP(−),房水清,中轴深约4CT,周边深1/2CT,房水闪辉(−),虹膜纹理清晰,无前后粘连,瞳孔圆,居中,直径约3 mm,直接间接对光反射灵敏,晶状体混浊C2N0P1,玻璃体稍混浊,视乳头色淡红,视盘边界清,C/D = 0.3,A:V = 2:3,视网膜平伏,黄斑中心凹颞侧可见一2/3PD的暗红色病灶,病灶旁可见约13PD的网膜下出血灶(图1(A)),黄斑中心凹反光消失;左眼结膜无充血、水肿,角膜透明,KP(−),房水清,中轴深约4CT,周边深1/2CT,房水闪辉(−),虹膜纹理清晰,无前后粘连,瞳孔圆,居中,直径约3 mm,直接间接对光反射灵敏,晶状体混浊C2N0P1,玻璃体稍混浊,视乳头色淡红,视盘边界清,C/D = 0.3,A:V = 2:3,视网膜平伏,黄斑区可见1/2PD的暗红色病灶,病灶旁可见黄白色渗出,黄斑中心凹反光消失。

2.3. 辅助检查

2023年12月11日光学断层扫描(optical coherence tomography, OCT):右眼视网膜外层明显增厚,黄斑区RPE拇指样隆起,神经上皮和视网膜色素上皮脱离,神经上皮层下见大量中反射信号(见图1(A))。

2.4. 入院诊断

1) 右眼视网膜出血;2) 双眼渗出性老年性黄斑变性;3) 双眼老年性白内障;4) 高血压病2级(高危);5) 2型糖尿病;6) 心脏术后(心脏支架植入术后)。

2.5. 治疗

入院后完善其他术前相关检查,排除手术禁忌症,拟2023年12月12日行“右眼后入路玻璃体切割术;右眼视网膜下药物(阿替普酶)注射术;右眼玻璃体气液交换术。”

手术治疗:2023年12月12日,患者行手术治疗:首先,右眼行后入路玻璃体切割术:常规消毒铺巾,利多卡因与左布比卡因按1:1比例作球后神经及滑车上神经阻滞麻醉,在电子显微镜下,23G巩膜穿刺刀距角膜缘后4.0 mm作标准巩膜三通道,颞下放置灌注管,在非接触广角镜下可见黄斑区13PD网膜下出血,出血灶中央见黄白色梭型病灶,23G高速气动玻切头行微创玻璃体切除,切割率3000 rpm,负压300 mmHg,曲安奈德注射液染色,巩膜顶压下切除基底部玻璃体;接下来41G针头行网膜下注射阿替普酶注射液20 ug/l,0.1 ml,最后进行气液交换。嘱托患者术后面朝下一周。

2.6. 转归

2023年12月14日,患者术后第2天右眼视力指数/20 cm,眼底所见眼底所见视网膜平伏,隐约见黄斑区网膜下出血大部分已吸收(图1(B)),余细节窥视欠清。OCT:右眼黄斑中心凹神经上皮浆液性隆起,中心凹颞侧RPE隆起,下方见中反射信号,较术前视网膜厚度明显下降(见图1(B))。2023年12月20日,术后第8天右眼视力0.2,眼底所见视网膜平伏,隐约见黄斑区网膜下出血全部已吸收,OCT:黄斑中心凹神经上皮浆液性隆起,黄斑区视网膜外层厚度明显降低,出血消失,黄斑颞侧RPE层隆起(见图1(C))。2023年12月21日,2024年1月29日,2024年3月6日行右眼玻璃体腔注药物注射术(阿柏西普),2024年3月6日术后右眼裸眼视力0.3+,矫正视力0.5。

(A)

(B)

(C)

Figure 1. Fundus photos and optical coherence tomography of the patient’s left eye: at the time of treatment (A), 2 days after surgery (B), and 8 days after surgery (C), submacular hemorrhage was mostly absorbed 2 days after surgery, and it was completely absorbed 1 week later. The retinal macular thickness before surgery, 2 days after surgery, and 1 week after surgery were 723 μm, 241 μm, and 178 μm, respectively

1. 本例患者左眼眼底照片及光学相干断层扫描检查:就诊时(A),术后2天(B),术后8天(C),可见术后2天黄斑下出血被大部分吸收,1周后黄斑下出血被完全吸收,术前、术后2天及1周视网膜黄斑厚度分别为723 μm,24 1μm及178 μm

3. 讨论

视网膜下出血是位于视网膜光感受器细胞层与RPE层之间的出血,患者多以突然发生的中心暗点或视力下降而就诊[8]。研究表明,出血后7天,视网膜外层受损,光感受器受损,RPE顶部微绒毛缩短[9],出血14天后,视网膜外层广泛而严重受损,光感受器严重受损,RPE上的吞噬细胞迅速增加,造成不可逆的结构损伤。

有实验研究表明,在视网膜下注射t-PA可加速视网膜下出血的清除,降低外视网膜的退化程度[10]-[13]。治疗的方式包括玻璃体切割、气体填充、玻璃体腔注射抗VEGF药物、视网膜下切开术等。组织型纤溶酶原激活剂(t-PA),属于丝氨酸蛋白酶,代表药物为阿替普酶(alteplase),t-PA能够激活纤溶酶原使形成的血块液化,促进积血的吸收,最大限度地减少出血对光感受器细胞及RPE的损害,提高患者视觉质量。其中,大多数玻璃体内或视网膜下应用t-PA的研究中,大部分都是针对nAMD相关的黄斑下出血[14]-[19],这些研究表明视网膜下或玻璃体内t-PA应用是更有效的选择。同时,41号(41G)微针提供了一种侵入性更小、更可靠的进入视网膜的方式,预计针的直径越小,与注射相关的视网膜组织损伤就越小。Liu等人[20]报道了玻璃体切除术中使用30号(30G)针经巩膜隧道外引流视网膜下出血的良好效果。Venkatesh等[21]报道内源性眼内炎患者行25G平面部PPV,并用41G针直接在视网膜下脓肿处注射万古霉素,视力可被提高。Jiang等[22]报道了3例不同原因引起的SMH,他们在行41G针在视网膜下注射重组人组织纤溶酶原激活剂后均有良好的结果。报道的案例均说明临床上使用直径越小的微针进入视网膜具有越高的安全性,治疗效果理想。

在本例中患者中,患者以“右眼视力下降伴视物遮挡6天”为主要症状入院,患者就诊时右眼视力为0.1,在41G针在视网膜下注射重组人组织纤溶酶原激活剂(rt-PA)后,患者视力在术后1周后迅速恢复至0.2,在接受后续三次右眼玻璃体腔药物注射术(阿柏西普)后,患者术后3个月的裸眼视力可恢复至0.3,矫正视力提升至0.5+。患者术后第2天隐约可见眼底血块大部分被吸收,OCT检查显示视网膜下出血在术后1周大部分被吸收,明显可见术后视网膜中央厚度恢复。本例中注射药物效果可以穿透整个视网膜下出血的同时并无发生相关的毒性反应及手术并发症,得到了一个较理想的结果。成功地治疗了因nAMD引起的黄斑下出血,在短时间内血块被迅速吸收,安全快速并且有效地阻止了病情进一步发展。

综上所述,本例患者成功、安全地使用41G针在视网膜下注射t-PA以治疗黄斑下出血,为渗出性老年性黄斑变性所致黄斑下出血的治疗提供了一定的实践经验,有益于临床医生联合相应临床场景制定正确且个体化的治疗方案。

NOTES

*通讯作者。

参考文献

[1] Shukla, U.V. and Kaufman, E.J. (2022) Intraocular Hemorrhage. StatPearls Publishing, Treasure Island.
[2] Avery, R.L., Fekrat, S., Hawkins, B.S. and Bressler, N.M. (1996) Natural History of Subfoveal Subretinal Hemorrhage in Age-Related Macular Degeneration. Retina, 16, 183-189.
https://doi.org/10.1097/00006982-199616030-00001
[3] Glatt, H. and Machemer, R. (1982) Experimental Subretinal Hemorrhage in Rabbits. American Journal of Ophthalmology, 94, 762-773.
https://doi.org/10.1016/0002-9394(82)90301-4
[4] Toth, C.A. (1991) Fibrin Directs Early Retinal Damage after Experimental Subretinal Hemorrhage. Archives of Ophthalmology, 109, 723-729.
https://doi.org/10.1001/archopht.1991.01080050139046
[5] González-López, J.J., McGowan, G., Chapman, E. and Yorston, D. (2016) Vitrectomy with Subretinal Tissue Plasminogen Activator and Ranibizumab for Submacular Haemorrhages Secondary to Age-Related Macular Degeneration: Retrospective Case Series of 45 Consecutive Cases. Eye, 30, 929-935.
https://doi.org/10.1038/eye.2016.65
[6] Hillenkamp, J., Surguch, V., Framme, C., Gabel, V. and Sachs, H.G. (2009) Management of Submacular Hemorrhage with Intravitreal versus Subretinal Injection of Recombinant Tissue Plasminogen Activator. Graefes Archive for Clinical and Experimental Ophthalmology, 248, 5-11.
https://doi.org/10.1007/s00417-009-1158-7
[7] Hartman, R.R. and Kompella, U.B. (2018) Intravitreal, Subretinal, and Suprachoroidal Injections: Evolution of Microneedles for Drug Delivery. Journal of Ocular Pharmacology and Therapeutics, 34, 141-153.
https://doi.org/10.1089/jop.2017.0121
[8] 胡笳, 王建明, 刘子瑶, 等. 视网膜大动脉瘤破裂致黄斑部出血的治疗方法及效果[J]. 国际眼科杂志, 2017, 17(5): 986-988.
[9] Cho, J.H., Ryoo, N., Cho, K.H., Park, S.J., Park, K.H. and Woo, S.J. (2016) Incidence Rate of Massive Submacular Hemorrhage and Its Risk Factors in Polypoidal Choroidal Vasculopathy. American Journal of Ophthalmology, 169, 79-88.
https://doi.org/10.1016/j.ajo.2016.06.014
[10] Benner, J.D., Hay, A., Landers, M.B., Hjelmeland, L.M. and Morse, L.S. (1994) Fibrinolytic-Assisted Removal of Experimental Subretinal Hemorrhage within Seven Days Reduces Outer Retinal Degeneration. Ophthalmology, 101, 672-681.
https://doi.org/10.1016/s0161-6420(94)31279-6
[11] Johnson, M.W., Olsen, K.R. and Hernandez, E. (1991) Tissue Plasminogen Activator Treatment of Experimental Subretinal Hemorrhage. Retina, 11, 250-258.
https://doi.org/10.1097/00006982-199111020-00011
[12] Johnson, M.W., Olsen, K.R. and Hernandez, E. (1992) Tissue Plasminogen Activator Thrombolysis during Surgical Evacuation of Experimental Subretinal Hemorrhage. Ophthalmology, 99, 515-521.
https://doi.org/10.1016/s0161-6420(92)31939-6
[13] Lewis, H., Resnick, S.C., Flannery, J.G. and Straatsma, B.R. (1991) Tissue Plasminogen Activator Treatment of Experimental Subretinal Hemorrhage. American Journal of Ophthalmology, 111, 197-204.
https://doi.org/10.1016/s0002-9394(14)72259-7
[14] Humayun, M., Lewis, H., Flynn, H.W., Sternberg, P. and Blumenkranz, M.S. (1998) Management of Submacular Hemorrhage Associated with Retinal Arterial Macroaneurysms. American Journal of Ophthalmology, 126, 358-361.
https://doi.org/10.1016/s0002-9394(98)00090-7
[15] Peyman, G.A., Nelson, N.C., Alturki, W., Blinder, K.J., Paris, C.L., Desai, U.R., et al. (1991) Tissue Plasminogen Activating Factor Assisted Removal of Subretinal Hemorrhage. Ophthalmic Surgery, Lasers and Imaging Retina, 22, 575-582.
https://doi.org/10.3928/1542-8877-19911001-07
[16] Sonmez, K., Ozturk, F. and Ozcan, P.Y. (2012) Treatment of Multilevel Macular Hemorrhage Secondary to Retinal Arterial Macroaneurysm with Submacular Tissue Plasminogen Activator. European Journal of Ophthalmology, 22, 1026-1031.
https://doi.org/10.5301/ejo.5000140
[17] van Zeeburg, E.J.T., Cereda, M.G. and van Meurs, J.C. (2012) Recombinant Tissue Plasminogen Activator, Vitrectomy, and Gas for Recent Submacular Hemorrhage Displacement Due to Retinal Macroaneurysm. Graefes Archive for Clinical and Experimental Ophthalmology, 251, 733-740.
https://doi.org/10.1007/s00417-012-2116-3
[18] Wu, T. and Sheu, S. (2005) Intravitreal Tissue Plasminogen Activator and Pneumatic Displacement of Submacular Hemorrhage Secondary to Retinal Artery Macroaneurysm. Journal of Ocular Pharmacology and Therapeutics, 21, 62-67.
https://doi.org/10.1089/jop.2005.21.62
[19] Zhao, P., Hayashi, H., Oshima, K., Nakagawa, N. and Ohsato, M. (2000) Vitrectomy for Macular Hemorrhage Associated with Retinal Arterial Macroaneurysm. Ophthalmology, 107, 613-617.
https://doi.org/10.1016/s0161-6420(99)00127-x
[20] Liu, H., Zhang, L., Li, X. and Wu, M. (2016) 23-gauge Vitrectomy with External Drainage Therapy as a Novel Procedure to Displace Massive Submacular Hemorrhage Secondary to Polypoidal Choroidal Vasculopathy. Medicine, 95, e4192.
https://doi.org/10.1097/md.0000000000004192
[21] Venkatesh, P., Temkar, S., Tripathy, K. and Chawla, R. (2016) Intralesional Antibiotic Injection Using 41G Needle for the Management of Subretinal Abscess in Endogenous Endophthalmitis. International Journal of Retina and Vitreous, 2, Article No. 17.
https://doi.org/10.1186/s40942-016-0043-x
[22] Jiang, D., Yang, X., Shang, Q. and Wu, R. (2023) Subretinal Recombinant Human Tissue Plasminogen Activator Injection Using a 41G Needle for the Management of Submacular Hemorrhages: A 3-Case Report. International Journal of Ophthalmology, 16, 663-667.
https://doi.org/10.18240/ijo.2023.04.24