[1]
|
吴丹遐(综述), 陈强, 申昆玲(审校). 百日咳的临床研究进展[J]. 中国当代儿科杂志, 2016, 18(9): 897-902.
|
[2]
|
Cherry, J.D., Wendorf, K., Bregman, B., Lehman, D., Nieves, D., Bradley, J.S., et al. (2018) An Observational Study of Severe Pertussis in 100 Infants≤120 Days of Age. Pediatric Infectious Disease Journal, 37, 202-205. https://doi.org/10.1097/inf.0000000000001710
|
[3]
|
van der Zee, A., Schellekens, J.F.P. and Mooi, F.R. (2015) Laboratory Diagnosis of Pertussis. Clinical Microbiology Reviews, 28, 1005-1026. https://doi.org/10.1128/cmr.00031-15
|
[4]
|
Winter, K., Zipprich, J., Harriman, K., Murray, E.L., Gornbein, J., Hammer, S.J., et al. (2015) Risk Factors Associated with Infant Deaths from Pertussis: A Case-Control Study. Clinical Infectious Diseases, 61, 1099-1106. https://doi.org/10.1093/cid/civ472
|
[5]
|
陈奕颖, 林宏昌. 裂隙淋巴细胞对百日咳的诊断价值[J]. 检验医学与临床, 2020, 17(7): 918-920.
|
[6]
|
许秀妆, 章金灿. 裂隙淋巴细胞辅助诊断儿童百日咳的临床价值[J]. 中国当代儿科杂志, 2020, 22(9): 996-1000.
|
[7]
|
刘倩, 王文慧, 豆巧华, 等. 百日咳疑似病例实验室检测法的比较研究[J]. 微生物学免疫学进展, 2022, 50(1): 53-57.
|
[8]
|
伍金倩, 黄道连, 崔经和, 等. 外周血裂隙淋巴细胞计数对百日咳诊断价值的研究[J]. 实验与检验医学, 2020, 38(5): 872-875.
|
[9]
|
Tascini C, Carannante N, Sodano G, et al. (2019) Neonatal Pertussis Diagnosis: Low Procalcitonin Level and High Lymphocyte Count Are Able to Discriminate Pertussis from Bacterial and Viral Infections. The New Microbiologica, 42, 49-51.
|
[10]
|
彭晓康, 刘小乖, 李亚绒, 等. 合并其他病原感染的百日咳患儿临床特征与炎症指标特点[J]. 中国妇幼健康研究, 2020, 31(8): 5.
|
[11]
|
Zhang, R., Li, Z., Li, G., Tie, Y., Li, X., Gao, Y., et al. (2020) A Highly Sensitive One-Tube Nested Quantitative Real-Time PCR Assay for Specific Detection of Bordetella Pertussis Using the LNA Technique. International Journal of Infectious Diseases, 93, 224-230. https://doi.org/10.1016/j.ijid.2020.01.053
|
[12]
|
马富艳. 儿童百日咳实验室诊断的研究进展[J]. 浙江医学, 2023, 45(9): 993-997.
|
[13]
|
中华医学会感染病学分会儿科感染学组, 国家卫生健康委能力建设和继续教育儿科专委会感染组, 中国临床实践指南联盟方法学专委会, 等. 中国百日咳诊疗与预防指南(2024版) [J]. 中华医学杂志, 2024, 104(15): 1258-1279.
|
[14]
|
Markey, K., Douglas-Bardsley, A., Asokanathan, C., Fry, N.K., Barkoff, A., Bacci, S., et al. (2019) Improvement in Serological Diagnosis of Pertussis by External Quality Assessment. Journal of Medical Microbiology, 68, 741-747. https://doi.org/10.1099/jmm.0.000926
|
[15]
|
王青, 刘莹, 袁林, 等. 实时荧光定量聚合酶链式反应检测百日咳鲍特菌的效能研究[J]. 中国全科医学, 2019, 22(23): 2815-2819.
|
[16]
|
Al-Hinai, H., Al-Rashdi, A. and Al Azri, S. (2022) Laboratory Performance and Clinical Correlation of Real-Time Polymerase Chain Reaction as a Diagnostic Test for Bordetella Pertussis Isolated from Patients in Oman. Oman Medical Journal, 37, e372. https://doi.org/10.5001/omj.2022.62
|
[17]
|
董莉真, 王成雪, 李瑶瑶, 等. 幽门螺杆菌的感染诊断及环介导等温扩增技术在该领域的研究进展[J]. 国际免疫学杂志, 2024, 47(2): 162-170.
|
[18]
|
Soroka, M., Wasowicz, B. and Rymaszewska, A. (2021) Loop-Mediated Isothermal Amplification (LAMP): The Better Sibling of PCR? Cells, 10, Article 1931. https://doi.org/10.3390/cells10081931
|
[19]
|
Wong, Y.-P., Othman, S., Lau, Y.-L., Radu, S. and Chee, H.-Y. (2018) Loop-Mediated Isothermal Amplification (LAMP): A Versatile Technique for Detection of Micro-Organisms. Journal of Applied Microbiology, 124, 626-643. https://doi.org/10.1111/jam.13647
|
[20]
|
Si, Y., Zhang, T., Chen, N., Cheng, Y., Wang, L., Yuan, J., et al. (2021) A Lamp-Based System for Rapid Detection of Eight Common Pathogens Causing Lower Respiratory Tract Infections. Journal of Microbiological Methods, 190, Article 106339. https://doi.org/10.1016/j.mimet.2021.106339
|
[21]
|
Juscamayta-López, E., Valdivia, F., Soto, M.P., Nureña, B. and Horna, H. (2023) A Pangenome Approach-Based Loop-Mediated Isothermal Amplification Assay for the Specific and Early Detection of Bordetella Pertussis. Scientific Reports, 13, Article No. 4356. https://doi.org/10.1038/s41598-023-29773-9
|
[22]
|
邵有和, 李磊, 覃淑娟. 探析高通量测序技术在肺部感染性疾病中的应用进展[J]. 中外医药研究, 2023, 2(7): 165-167.
|
[23]
|
徐伟玲, 于少飞. 病原靶向二代测序在下呼吸道感染病原体诊断中应用价值研究进展[J]. 检验医学与临床, 2023, 20(20): 3068-3072.
|
[24]
|
Schultzhaus, Z., Wang, Z. and Stenger, D. (2021) Crispr-Based Enrichment Strategies for Targeted Sequencing. Biotechnology Advances, 46, Article 107672. https://doi.org/10.1016/j.biotechadv.2020.107672
|
[25]
|
赵聪琳, 刘凯, 周永召. 靶向二代测序技术与宏基因组二代测序技术在病原微生物检测中的应用[J]. 中华预防医学杂志, 2024, 58(1): 114-121.
|
[26]
|
Gu, W., Miller, S. and Chiu, C.Y. (2019) Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology: Mechanisms of Disease, 14, 319-338. https://doi.org/10.1146/annurev-pathmechdis-012418-012751
|
[27]
|
Pendleton, K.M., Erb-Downward, J.R., Bao, Y., Branton, W.R., Falkowski, N.R., Newton, D.W., et al. (2017) Rapid Pathogen Identification in Bacterial Pneumonia Using Real-Time Metagenomics. American Journal of Respiratory and Critical Care Medicine, 196, 1610-1612. https://doi.org/10.1164/rccm.201703-0537le
|
[28]
|
Burnham, P., Dadhania, D., Heyang, M., Chen, F., Westblade, L.F., Suthanthiran, M., et al. (2018) Urinary Cell-Free DNA Is a Versatile Analyte for Monitoring Infections of the Urinary Tract. Nature Communications, 9, Article No. 2412. https://doi.org/10.1038/s41467-018-04745-0
|
[29]
|
Thoendel, M., Jeraldo, P.R., Greenwood-Quaintance, K.E., Yao, J.Z., Chia, N., Hanssen, A.D., et al. (2016) Comparison of Microbial DNA Enrichment Tools for Metagenomic Whole Genome Sequencing. Journal of Microbiological Methods, 127, 141-145. https://doi.org/10.1016/j.mimet.2016.05.022
|
[30]
|
Zhou, Y., Wylie, K.M., El Feghaly, R.E., Mihindukulasuriya, K.A., Elward, A., Haslam, D.B., et al. (2016) Metagenomic Approach for Identification of the Pathogens Associated with Diarrhea in Stool Specimens. Journal of Clinical Microbiology, 54, 368-375. https://doi.org/10.1128/jcm.01965-15
|
[31]
|
庄思琪, 毛怡心, 邓富昌, 等. 健康老年人肠道菌群宏基因组与16S rDNA测序的比较研究[J]. 中华预防医学杂志, 2022, 56(11): 1618-1624.
|
[32]
|
Blauwkamp, T.A., Thair, S., Rosen, M.J., Blair, L., Lindner, M.S., Vilfan, I.D., et al. (2019) Analytical and Clinical Validation of a Microbial Cell-Free DNA Sequencing Test for Infectious Disease. Nature Microbiology, 4, 663-674. https://doi.org/10.1038/s41564-018-0349-6
|
[33]
|
Simner, P.J., Miller, H.B., Breitwieser, F.P., Pinilla Monsalve, G., Pardo, C.A., Salzberg, S.L., et al. (2018) Development and Optimization of Metagenomic Next-Generation Sequencing Methods for Cerebrospinal Fluid Diagnostics. Journal of Clinical Microbiology, 56, e00472-18. https://doi.org/10.1128/jcm.00472-18
|
[34]
|
Wilson, M.R., O’Donovan, B.D., Gelfand, J.M., Sample, H.A., Chow, F.C., Betjemann, J.P., et al. (2018) Chronic Meningitis Investigated via Metagenomic Next-Generation Sequencing. JAMA Neurology, 75, 947-955. https://doi.org/10.1001/jamaneurol.2018.0463
|
[35]
|
Thoendel, M.J., Jeraldo, P.R., Greenwood-Quaintance, K.E., Yao, J.Z., Chia, N., Hanssen, A.D., et al. (2018) Identification of Prosthetic Joint Infection Pathogens Using a Shotgun Metagenomics Approach. Clinical Infectious Diseases, 67, 1333-1338. https://doi.org/10.1093/cid/ciy303
|
[36]
|
姜梦杰, 唐浩能, 唐玲丽. 宏基因组学技术在女性生殖道疾病中应用的研究进展[J]. 中华预防医学杂志, 2023, 57(2): 172-178.
|
[37]
|
Ivy, M.I., Thoendel, M.J., Jeraldo, P.R., Greenwood-Quaintance, K.E., Hanssen, A.D., Abdel, M.P., et al. (2018) Direct Detection and Identification of Prosthetic Joint Infection Pathogens in Synovial Fluid by Metagenomic Shotgun Sequencing. Journal of Clinical Microbiology, 56, e00402-18. https://doi.org/10.1128/jcm.00402-18
|
[38]
|
Miller, S., Naccache, S.N., Samayoa, E., Messacar, K., Arevalo, S., Federman, S., et al. (2019) Laboratory Validation of a Clinical Metagenomic Sequencing Assay for Pathogen Detection in Cerebrospinal Fluid. Genome Research, 29, 831-842. https://doi.org/10.1101/gr.238170.118
|