单操作孔达芬奇机器人胸腔镜肺叶切除术的近期疗效
The Short-Term Efficacy of Two-Port Da Vinci Robot Thoracoscopic Lobectomy
摘要: 目的:评估单操作孔达芬奇机器人胸腔镜肺叶切除术的近期疗效。方法:收集2022.06~2023.08以来于烟台毓璜顶医院胸外科行达芬奇机器人胸腔镜肺叶切除术手术的肺癌患者临床资料共150例,其中81例采用传统四孔达芬奇机器人胸腔镜肺叶切除术为对照组,69例采用单操作孔达芬奇机器人胸腔镜肺叶切除术为观察组,比较两组近期疗效。结果:观察组术中出血量为24.20 ± 20.68 ml小于对照组的31.11 ± 19.35 ml,P < 0.05,差异有统计学意义;观察组术后第一天疼痛评分为3.84 ± 1.01分小于对照组的5.48 ± 0.85分,P < 0.05,差异有统计学意义。两组总手术时间、胸管持续时间、术后第一天引流量、术后总引流量、术后第三天疼痛评分、手术并发症、术中淋巴结清扫个数,P > 0.05,差异均无统计学意义。结论:达芬奇机器人单操作孔胸腔镜下肺叶切除术具有与传统四孔机器人辅助胸腔镜下肺叶切除术同样的疗效和安全性,术中创伤更小,术后短期生活质量更高,值得临床推广。
Abstract: Objective: Evaluate the short-term efficacy of two-port Da Vinci robot thoracoscopic lobectomy. Methods: Collect 150 patients with lung cancer who underwent Da Vinci robotic thoracoscopic lobectomy in the Department of thoracic surgery of Yantai Yuhuangding Hospital from June 2022 to August 2023. Among them, 81 patients underwent four-hole Da Vinci robotic thoracoscopic lobectomy as the control group, and 69 patients underwent two-port Da Vinci robotic thoracoscopic lobectomy as the observation group. Compare the short-term efficacy of the two groups. Result: The intraoperative blood loss in the observation group was 24.20 ± 20.68 ml, less than 31.11 ± 19.35 ml in the control group, P < 0.05; The visual analogue scale score of the observation group on the first day after operation was 3.84 ± 1.01 points, less than 5.48 ± 0.85 points of the control group, P < 0.05. No perioperative mortality occurred in either group. Conclusion: Da Vinci robot two-port video-assisted thoracoscopic lobectomy has the same efficacy and safety as traditional four-port robot-assisted thoracoscopic lobectomy, with less intraoperative trauma and higher short-term postoperative quality of life, which is worthy of clinical promotion.
文章引用:王栋, 邵光远, 黄海波, 张正, 孙思远, 彭笑怒. 单操作孔达芬奇机器人胸腔镜肺叶切除术的近期疗效[J]. 临床医学进展, 2024, 14(8): 1681-1687. https://doi.org/10.12677/acm.2024.1482406

1. 引言

肺癌是当今全球性的健康问题,根据统计,每年估计有超过200万人新诊断为肺癌,近年来,中国肺癌新发病例数持续上升,在排名中位居第一肺癌是当今全球性的健康问题,根据统计,每年估计有超过200万人新诊断为肺癌,近年来,中国肺癌新发病例数持续上升,在排名中位居第一[1] [2]。目前外科手术是目前Ⅰ、Ⅱ及部分Ⅲa期肺癌患者治疗非小细胞肺癌的首选方法[3] [4]。自1992年电视辅助胸腔镜手术(video-assisted thoracic surgery, VATS)被引入治疗非小细胞肺癌(non-small cell lung cancer, NSCLC)以来,大量研究证明电视胸腔镜手术减少了术后并发症、住院时间、术后疼痛,以及拥有更好的长期生存率[5]-[8]。其中一项研究表明:胸腔镜肺叶切除术与传统开胸手术相比术后漏气较少(13% vs 19%),术后术侧肺炎较少(5% vs 10%),胸管持续时间较短(3 vs 4天),住院时间较短(中位数为4 vs 5天) [9]。2002年,提供三维视觉及精细操作的达芬奇手术机器人开始在肺癌根治术中应用[10],在保证安全性和可行性的同时,能清晰地暴露术野,使手术操作更精确,降低术中出血风险,减少围手术期并发症发生[11]-[15]

多数情况下达芬奇机器人胸腔镜肺叶切除术都是使用3~4个机械臂及4~5个孔进行的[16]-[18],相对于胸腔镜手术采用二个孔甚至单孔完成手术,部分患者及家属不太接受机器人手术。通过技术改进,医生进行了减孔的努力,多数能够减至三孔,缩减至二孔仅有少数报道[19]-[21]

有鉴于此,我们进行了初步的探索,将达芬奇机器人胸腔镜肺叶切除术的切口减至两个,取得了良好的临床效果。本文回顾性分析单操作孔达芬奇机器人胸腔镜肺叶切除术的各项指标从而评估此手术方式的近期疗效。

2. 资料与方法

2.1. 一般资料

收集2022年6月至2023年8月于烟台毓璜顶医院胸外科接受达芬奇机器人胸腔镜肺叶切除术的患者资料。患者均诊断为肺癌,按照手术术式的不同分为对照组和观察组,对照组采用传统四孔机器人胸腔镜肺叶切除术,观察组采用行单操作孔机器人胸腔镜肺叶切除术,均采用第三代达芬奇机器人完成手术。纳入标准:1) 经术中快速病理及术后病理诊断为Ⅰ、Ⅱ及Ⅲa期肺癌的患者;2) 接受达芬奇机器人胸腔镜肺叶切除术的患者;3) 患者的手术记录和病例资料完整可靠;4) 患者术前、术中及术后的临床数据和检查结果齐全。排除标准:1) 术中中转开胸;2) 合并严重器质性疾病,如严重心脑血管疾病;3) 既往有胸部手术史。

2.2. 手术方法

2.2.1. 观察组

单操作孔达芬奇机器人组(观察组):选择腋中线与腋前线之间第4肋间或第5肋间切口为主操作孔。主操作孔长约4 cm,放置切口保护套,该孔兼作进镜孔、机械臂孔、助手辅助孔。镜头臂不使用trocar,放置在主操作孔紧靠背侧端。在右胸手术中,将1号机械臂的trocar放置在主操作孔紧靠腹侧端;若为左胸手术,将2号机械臂的trocar放置在主操作孔紧靠腹侧端。选择腋后线第7肋间长约0.8 cm切口为另一机械臂操作孔。床旁机械臂系统从患者头肩部偏腹侧进入,机械臂中心柱和主操作孔切口背段端点的连线与切口方向垂直。1号臂放置单极电钩或电剪刀,2号臂放置双极电凝抓持钳。

2.2.2. 对照组

四孔达芬奇机器人组(对照组):入镜孔为腋后线第8肋间,选择肩胛线8肋间、腋前线前第5肋间为主操作孔,辅助口为腋中线第7肋间。

2.3. 观察指标

观察指标:1) 术前相关资料:年龄、性别、既往史、吸烟史;2) 手术相关资料:手术时间、术中出血量、术中淋巴结清扫数目,手术部位(左右侧,上下叶等);3) 术后相关资料:术后第一天、第三天疼痛评分、术后第一天引流量、术后总引流量、胸管持续时间、术后并发症。术后并发症包括术后术侧气胸、术后肺炎、乳糜胸、脓胸、支气管残端漏。

2.4. 统计学处理

统计学处理应用SPSS 23.0软件对数据进行统计学分析。计量资料以 x ¯ ±s 表示,组间比较采用t检验;计数资料以频数和率表示,组间比较采用χ2检验P < 0.05为差异有统计学意义。

3. 结果

3.1. 患者资料

经筛选,排除1例冠脉搭桥术后患者、1例左肺下叶肺癌根治术后患者、2例中转开胸患者。最终共有150 例患者入组,对照组81例,观察组69 例。两组患者性别,年龄,病理结果,吸烟史、FEV1%、既往史(包括高血压、糖尿病及呼吸道疾病等)等指标均未表现出显著性,P > 0.05,见表1

3.2. 两组患者术中及术后指标比较

观察组术中出血量少于对照组,P < 0.05,差异有统计学意义。两组患者总手术时间、胸管持续时间、术后第一天引流量及术后总引流量,P > 0.05,无统计学意义。以上指标统计结果说明进行单操作孔达芬奇机器人肺叶切除术的患者术中出血量少于传统四孔达芬奇机器人肺叶切除术的患者,术中患者创伤更小,见表2

3.3. 两组患者术后疼痛评分比较

数据显示,观察组患者术后第一天疼痛指数小于观察组,P < 0.05,差异有统计学意义。而两组患者术后第三天疼痛评分对比无统计学意义,P > 0.05。表示观察组术后第一天生活质量明显优于对照组,见表3

3.4. 两组患者术后并发症发生率比较

数据显示,两组患者术后并发症发生率无明显显著差异,P > 0.05。见表4。患者术后并发症包括术后术侧气胸、术后肺炎、乳糜胸、脓胸及支气管残端漏。

3.5. 两组手术术中淋巴结清扫数目的比较

所有患者均进行了术中快速病理检测及术后病理检测并诊断为肺癌,结果显示观察组患者术中淋巴结清扫个数与对照组无异,说明单操作孔达芬奇机器人胸腔镜肺叶切除术保证了手术的疗效,见表5

4. 讨论

20世纪胸外科进入微创新时代,胸腔镜手术因其创伤小、疼痛小等优势被推荐为肺叶切除术的首选手术方式。胸腔镜肺叶切除术打孔方法有单孔、二孔、三孔等方式。有研究表明,单孔胸腔镜手术术后感觉过敏、麻木感、触痛感明显少于多孔胸腔镜,患者的满意度高于多孔胸腔镜[22]-[24]。随着科技水平人工智能技术的进步,2002年出现了首例达芬奇机器人胸腔镜肺切除术,随后国内外各单位均开始开展。目前相关报道证明安全可行,在手术安全性、淋巴结清扫彻底性以及肿瘤学随访数据方面与开放及胸腔镜手术相近。但传统达芬奇机器人手术需要在胸部做4~5个孔,手术创伤大[25]-[27]。因为器械臂与肋骨成角,对肋骨、肋间肌肉、神经压榨较为严重,患者术后生活质量及术后恢复速度并不优于传统胸腔镜手术。

于是我们开始探索减孔的机器人手术方式,我们使用的是第三代达芬奇机器人系统,通过统计患者围手术期指标,发现进行单操作孔达芬奇机器人辅助肺叶切除术的患者术中出血量及术后第一天疼痛指数指标均优于传统四孔达芬奇机器人辅助肺叶切除术,而且术中淋巴结清扫数目与之前比较无明显变化。这可以从一定程度上说明随着手术孔数的减少,在不影响手术疗效的前提下,患者术中所受创伤更小,术后生活质量更高。

但是单操作孔机器人手术相对于传统四孔机器人手术对术者和助手的配合要求更高,由于空间相对减小,更易出现器械干扰。助手对器械的理解,视野暴露的理解,都会影响手术的进程,主要问题是注意避免机械臂干扰。此术式手术视角和切割缝合器的角度都与单孔胸腔镜手术类似,术者和助手有单孔胸腔镜手术经验者,学习曲线更短。

安全、微创、操作精细、舒适是外科技术的发展方向。随着机器人微创技术的不断进步,在肺癌治疗方向单操作孔机器人肺叶切除术将会成为更加流行更加成熟的手术方式。目前我们科室基本实现了第三代达芬奇单操作孔机器人肺切除术代替传统四孔机器人肺切除术,并收集以上临床数据,证实了该手术方式的可行性、安全性及优势,但是远期效果还需长期随访。单操作孔机器人肺切除术是否全面优于传统四孔法,也需要更多的临床数据和临床研究来证实[28]-[30]。在今后的研究中,我们将扩大样本量并对患者的术后指标进行更全面的记录,比如增加对患者总生存率或无进展生存期的记录等。

Table 1. Comparison of clinical data between the two groups

1. 两组患者临床资料比较

组别

对照组(n = 81)

观察组(n = 69)

χ2/t

P值

性别

-0.106

0.745

35

28

46

41

年龄(岁)

59.49 ± 8.82

59.72 ± 8.67

-0.161

0.872

病理结果

1.568

0.457

腺癌

75

61

鳞癌

6

7

神经内分泌类癌

0

1

吸烟史

0.831

0.362

15

17

66

52

FEV1%

98.16 ± 14.75

98.35 ± 13.52

0.778

0.438

既往史

0.216

0.642

23

22

58

47

手术部位

12.486

0.086

左肺上叶

12

13

左肺下叶

11

12

右肺上叶

20

26

右肺中叶

7

1

右肺下叶

30

15

右肺上叶 + 右肺中叶

1

0

右肺上叶 + 右肺下叶

0

1

右肺中叶 + 右肺下叶

0

1

Table 2. Comparison of perioperative conditions between the two groups

2. 两组患者围手术期情况比较

组别

对照组(n = 81)

观察组(n = 69)

t

P

出血量(ml)

31.11 ± 19.35

24.20 ± 20.68

2.111

0.036

总手术时间(分钟)

157.71 ± 37.37

147.97 ± 28.97

1.672

0.097

胸管持续时间(天)

4.88 ± 2.66

4.41 ± 2.74

1.066

0.288

术后第一天引流量(ml)

274.88 ± 126.66

275.51 ± 145.89

−0.028

0.977

术后总引流量(ml)

899.26 ± 520.69

812.61 ± 577.72

0.966

0.336

Table 3. Comparison of visual analogue scale between the two groups

3. 两组患者术后疼痛评分比较

组别

对照组(n = 81)

观察组(n = 69)

t

P

术后第一天疼痛评分(分)

5.48 ± 0.85

3.84 ± 1.01

10.793

0.000

术后第三天疼痛评分(分)

2.57 ± 0.71

2.39 ± 0.81

1.428

0.155

Table 4. Comparison of postoperative complications between the two groups

4. 两组患者术后并发症比较

组别

对照组(n = 81)

观察组(n = 70)

χ2

P

术后并发症

1.206

0.272

24

15

57

54

Table 5. Comparison of intraoperative lymph node dissection between the two groups

5. 两组患者术中清扫淋巴结情况比较

对照组(n = 81)

观察组(n = 69)

t

P

术中淋巴结清扫数目(个)

14.23 ± 4.24

14.07 ± 3.39

0.256

0.798

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[2] Alduais, Y., Zhang, H., Fan, F., Chen, J. and Chen, B. (2023) Non-Small Cell Lung Cancer (NSCLC): A Review of Risk Factors, Diagnosis, and Treatment. Medicine, 102, e32899.
https://doi.org/10.1097/md.0000000000032899
[3] Fitzmaurice, C. (2018) Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 2006 to 2016: A Systematic Analysis for the Global Burden of Disease Study. Journal of Clinical Oncology, 36, 1568-1568.
https://doi.org/10.1200/jco.2018.36.15_suppl.1568
[4] Duma, N., Santana-Davila, R. and Molina, J.R. (2019) Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clinic Proceedings, 94, 1623-1640.
https://doi.org/10.1016/j.mayocp.2019.01.013
[5] Lang-Lazdunski, L. (2013) Surgery for Non-Small Cell Lung Cancer. European Respiratory Review, 22, 382-404.
https://doi.org/10.1183/09059180.00003913
[6] Nakazawa, S., Shimizu, K., Mogi, A. and Kuwano, H. (2017) VATS Segmentectomy: Past, Present, and Future. General Thoracic and Cardiovascular Surgery, 66, 81-90.
https://doi.org/10.1007/s11748-017-0878-6
[7] Salfity, H. and Tong, B.C. (2020) VATS and Minimally Invasive Resection in Early-Stage NSCLC. Seminars in Respiratory and Critical Care Medicine, 41, 335-345.
https://doi.org/10.1055/s-0039-3401991
[8] Vannucci, F. and Gonzalez-Rivas, D. (2016) Is VATS Lobectomy Standard of Care for Operable Non-Small Cell Lung Cancer? Lung Cancer, 100, 114-119.
https://doi.org/10.1016/j.lungcan.2016.08.004
[9] Villamizar, N.R., Darrabie, M.D., Burfeind, W.R., Petersen, R.P., Onaitis, M.W., Toloza, E., et al. (2009) Thoracoscopic Lobectomy Is Associated with Lower Morbidity Compared with Thoracotomy. The Journal of Thoracic and Cardiovascular Surgery, 138, 419-425.
https://doi.org/10.1016/j.jtcvs.2009.04.026
[10] Melfi, F. (2002) Early Experience with Robotic Technology for Thoracoscopic Surgery. European Journal of Cardio-Thoracic Surgery, 21, 864-868.
https://doi.org/10.1016/s1010-7940(02)00102-1
[11] Liang, H., Liang, W., Zhao, L., Chen, D., Zhang, J., Zhang, Y., et al. (2018) Robotic versus Video-Assisted Lobectomy/Segmentectomy for Lung Cancer. Annals of Surgery, 268, 254-259.
https://doi.org/10.1097/sla.0000000000002346
[12] Ma, J., Li, X., Zhao, S., Wang, J., Zhang, W. and Sun, G. (2021) Robot-Assisted Thoracic Surgery versus Video-Assisted Thoracic Surgery for Lung Lobectomy or Segmentectomy in Patients with Non-Small Cell Lung Cancer: A Meta-Analysis. BMC Cancer, 21, Article No. 498.
https://doi.org/10.1186/s12885-021-08241-5
[13] van der Ploeg, A.P.T., Ayez, N., Akkersdijk, G.P., van Rossem, C.C. and de Rooij, P.D. (2019) Postoperative Pain After Lobectomy: Robot-Assisted, Video-Assisted and Open Thoracic Surgery. Journal of Robotic Surgery, 14, 131-136.
https://doi.org/10.1007/s11701-019-00953-y
[14] Wei, S., Chen, M., Chen, N. and Liu, L. (2017) Feasibility and Safety of Robot-Assisted Thoracic Surgery for Lung Lobectomy in Patients with Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. World Journal of Surgical Oncology, 15, Article No. 98.
https://doi.org/10.1186/s12957-017-1168-6
[15] Zhang, Y., Chen, C., Hu, J., Han, Y., Huang, M., Xiang, J., et al. (2020) Early Outcomes of Robotic versus Thoracoscopic Segmentectomy for Early-Stage Lung Cancer: A Multi-Institutional Propensity Score-Matched Analysis. The Journal of Thoracic and Cardiovascular Surgery, 160, 1363-1372.
https://doi.org/10.1016/j.jtcvs.2019.12.112
[16] Veronesi, G., Galetta, D., Maisonneuve, P., Melfi, F., Schmid, R.A., Borri, A., et al. (2010) Four-Arm Robotic Lobectomy for the Treatment of Early-Stage Lung Cancer. The Journal of Thoracic and Cardiovascular Surgery, 140, 19-25.
https://doi.org/10.1016/j.jtcvs.2009.10.025
[17] Choe, G., Carr, R. and Molena, D. (2020) New Surgical Approaches in the Treatment of Non-Small Cell Lung Cancer. Clinics in Chest Medicine, 41, 175-183.
https://doi.org/10.1016/j.ccm.2020.02.007
[18] Khan, J.A., Albalkhi, I., Garatli, S. and Migliore, M. (2024) Recent Advancements in Minimally Invasive Surgery for Early-Stage Non-Small Cell Lung Cancer: A Narrative Review. Journal of Clinical Medicine, 13, Article 3354.
https://doi.org/10.3390/jcm13113354
[19] Fairbairn, K., Rice, J. and Worrell, S.G. (2023) Robotic Lobectomy. Thoracic Surgery Clinics, 33, 33-41.
https://doi.org/10.1016/j.thorsurg.2022.07.011
[20] Han, K.N., Lee, J.H., Hong, J.I. and Kim, H.K. (2022) Comparison of Two-Port and Three-Port Approaches in Robotic Lobectomy for Non-Small Cell Lung Cancer. World Journal of Surgery, 46, 2517-2525.
https://doi.org/10.1007/s00268-022-06660-4
[21] Yang, N., He, X., Bai, Q., Cui, B. and Gou, Y. (2021) Analysis of the Short-Term Outcomes of Biportal Robot-Assisted Lobectomy. The International Journal of Medical Robotics and Computer Assisted Surgery, 17, e2326.
https://doi.org/10.1002/rcs.2326
[22] Bulgarelli Maqueda, L., García-Pérez, A., Minasyan, A. and Gonzalez-Rivas, D. (2019) Uniportal VATS for Non-Small Cell Lung Cancer. General Thoracic and Cardiovascular Surgery, 68, 707-715.
https://doi.org/10.1007/s11748-019-01221-4
[23] Chung, J.H., Choi, Y.S., Cho, J.H., Kim, H.K., Kim, J., Zo, J.I., et al. (2015) Uniportal Video-Assisted Thoracoscopic Lobectomy: An Alternative to Conventional Thoracoscopic Lobectomy in Lung Cancer Surgery? Interactive CardioVascular and Thoracic Surgery, 20, 813-819.
https://doi.org/10.1093/icvts/ivv034
[24] Berzenji, L., Wen, W., Verleden, S., Claes, E., Yogeswaran, S.K., Lauwers, P., et al. (2023) Minimally Invasive Surgery in Non-Small Cell Lung Cancer: Where Do We Stand? Cancers, 15, Article 4281.
https://doi.org/10.3390/cancers15174281
[25] Möller, T. and Egberts, J. (2020) Roboterassistierte Thoraxchirurgie—Anwendungsgebiete und Limitationen. Der Chirurg, 92, 122-127.
[26] Melfi, F.M.A., Fanucchi, O., Davini, F. and Mussi, A. (2014) Vats-Based Approach for Robotic Lobectomy. Thoracic Surgery Clinics, 24, 143-149.
https://doi.org/10.1016/j.thorsurg.2014.02.003
[27] Guo, F., Ma, D. and Li, S. (2019) Compare the Prognosis of Da Vinci Robot-Assisted Thoracic Surgery (RATS) with Video-Assisted Thoracic Surgery (VATS) for Non-Small Cell Lung Cancer. Medicine, 98, e17089.
https://doi.org/10.1097/md.0000000000017089
[28] Ujiie, H., Gregor, A. and Yasufuku, K. (2019) Minimally Invasive Surgical Approaches for Lung Cancer. Expert Review of Respiratory Medicine, 13, 571-578.
https://doi.org/10.1080/17476348.2019.1610399
[29] Jiang, Y., Su, Z., Liang, H., Liu, J., Liang, W. and He, J. (2020) Video-Assisted Thoracoscopy for Lung Cancer: Who Is the Future of Thoracic Surgery? Journal of Thoracic Disease, 12, 4427-4433.
https://doi.org/10.21037/jtd-20-1116
[30] Singer, E.S., Kneuertz, P.J., Nishimura, J., D’Souza, D.M., Diefenderfer, E., Moffatt-Bruce, S.D., et al. (2020) Effect of Operative Approach on Quality of Life Following Anatomic Lung Cancer Resection. Journal of Thoracic Disease, 12, 6913-6919.
https://doi.org/10.21037/jtd.2020.01.05