T淋巴细胞对于非小细胞肺癌免疫治疗的预后意义
Prognostic Significance of T Lymphocytes in Immunotherapy for Non-Small Cell Lung Cancer
DOI: 10.12677/acm.2024.1482418, PDF, HTML, XML,   
作者: 葛 倩:西安医学院研究生工作部,陕西 西安;张志芸, 董国敏, 姜 剑:陕西中医药大学研究生院,陕西 咸阳;李索尼, 赵 征*:陕西省肿瘤医院内科,陕西 西安
关键词: 非小细胞肺癌免疫治疗肿瘤浸润淋巴细胞外周血淋巴细胞Non-Small Cell Lung Cancer Immunotherapy Tumor-Infiltrating Lymphocytes Peripheral Blood Lymphocytes
摘要: 非小细胞肺癌(NSCLC)是一种死亡率很高的全球性肿瘤,严重威胁着人类的生命和健康。非小细胞肺癌的治疗包括手术、化疗、放疗、靶向治疗、免疫治疗等。目前,免疫疗法已显示出巨大的潜力。但一部分人并没有受益,存在原发性耐药、免疫相关不良事件等问题。迫切需要一种有效的标志物来筛选受益人群并判断预后。迄今为止,FDA (食品和药物管理局)唯一批准的ICI反应的生物标志物PD-L1已在临床实践中全面实施。随着进一步的研究发现PD-L1具有一定的局限性,其他相关的生物标志物仍在探索和开发中。近年来,对T淋巴细胞的研究逐渐增多,其在预后中的作用已被广泛证实。本文就非小细胞肺癌免疫治疗的现状及T淋巴细胞预后标志物的意义进行综述。
Abstract: Non-small cell lung cancer (NSCLC) is a global tumor with a high mortality rate, which seriously threatens human life and health. The treatment of non-small cell lung cancer includes surgery, chemotherapy, radiotherapy, targeted therapy, immunotherapy, etc. At present, immunotherapy has shown great potential. Although immunotherapy has a good effect, some people do not benefit. There are problems such as primary drug resistance and immune-related adverse events. There is an urgent need for an effective marker to screen the beneficiary population and determine the prognosis. To date, the only FDA-approved biomarker for ICI response, PD-L1, has been fully implemented in clinical practice. As further studies have found that PD-L1 has certain limitations, other related biomarkers are still being explored and developed. In recent years, the research on T lymphocytes has gradually increased, which has a certain guiding significance for the prognosis of patients with non-small cell lung cancer. Its important role in the prognosis has been widely confirmed. This article reviews the current status of immunotherapy for non-small cell lung cancer and the significance of T lymphocyte prognostic markers.
文章引用:葛倩, 张志芸, 董国敏, 姜剑, 李索尼, 赵征. T淋巴细胞对于非小细胞肺癌免疫治疗的预后意义[J]. 临床医学进展, 2024, 14(8): 1761-1770. https://doi.org/10.12677/acm.2024.1482418

1. 介绍

非小细胞肺癌(NSCLC)是一种常见的恶性肿瘤,发病率高,严重威胁着人类的生命和健康。由于非小细胞肺癌在早期缺乏典型的临床表现,患者确诊时多为中晚期非小细胞肺癌,治疗方案非常有限,以致于非小细胞肺癌的死亡率很高。非小细胞肺癌严重威胁着人们的生命和健康。根据癌症统计,导致男性死亡人数最多的癌症是肺癌、前列腺癌和结肠直肠癌,女性的是肺癌、乳腺癌和结肠直肠癌[1]。肺癌在男性和女性中都有很高的比例。肺癌主要有两种类型,小细胞肺癌(SCLC)和非小细胞肺癌(NSCLC),其中NSCLC占85% [2]

2. 非小细胞肺癌的免疫治疗

2.1. 非小细胞肺癌的免疫治疗现状

NSCLC的治疗经历了从放化疗时代到靶向治疗时代,再到免疫治疗时代三个时期。免疫治疗自诞生以来一直发挥着重要作用,几种类型的免疫疗法,包括过继细胞转移(ACT)和免疫检查点抑制剂(ICI),已经获得了持久的临床反应。通常来说,人体自身的免疫细胞攻击和破坏异常的肿瘤细胞,但肿瘤细胞通过复杂多样的免疫逃逸机制逃避T细胞的免疫攻击,抑制免疫反应,从而实现无限增殖,促进肿瘤发展。免疫检查点是目前公认的肿瘤免疫逃逸机制之一。PD-1 (程序性细胞死亡蛋白1),也称为CD279,是一种55 kDa的I型跨膜糖蛋白,由288个氨基酸组成[3]。PD-1主要在T细胞上表达,与抗原呈递细胞(antigen-presenting cells, APCs)相互作用,PD-L1和PD-L2在肿瘤上表达,向T细胞传递负性信号,导致T细胞衰竭,失去免疫系统保护,促进肿瘤发展[4]。免疫治疗配体与免疫细胞受体相结合,阻断肿瘤细胞的表达,阻断肿瘤的免疫抑制通路,发挥免疫系统杀伤肿瘤细胞的作用[5]。免疫检查点抑制剂用来阻断抑制性免疫受体并激活功能失调的T细胞,包括CD8+ T细胞[6]。也就是说,肿瘤免疫治疗通过产生和加强患者已有的肿瘤特异性免疫应答,阻断患者的免疫抑制,恢复自身免疫系统对抗肿瘤细胞的能力,从而更加准确有效地对抗肿瘤细胞。全球已批准多种用于NSCLC的PD-1抑制剂和PD-L1抑制剂,超过200种PD-1/L1药物仍在临床试验中[7]。免疫治疗联合其他治疗方法治疗非小细胞肺癌也显示出良好的疗效[7] [8]

2.2. 非小细胞肺癌免疫治疗的预后标志物

免疫治疗在取得良好疗效的同时,也存在一定的局限性,如假性进展、原发性耐药、免疫相关不良事件等。免疫检查点在发挥作用的同时也有一定的局限性[9]。为了使接受免疫治疗的患者获益最大化,未来的研究应该着重探索生物标志物。针对这些问题,筛选真正的受益者,准确预测和评价疗效就显得尤为重要。随着免疫治疗的发展,预测疗效的生物标志物不断被探索。已经提出了多种基于组织的生物标志物来有效预测非小细胞肺癌免疫治疗的疗效。主要包括程序性死亡配体1 (PD-L1)、肿瘤突变负担(TMB)、微卫星不稳定性/缺陷错配修复(MSI/dMMR)、特异性基因组改变、驱动突变和易位(EGFR和ALK)、STK11/KEAP1、TP53、循环肿瘤DNA (ctDNA)、中性粒细胞与淋巴细胞比值(NLR)、血小板与淋巴细胞比值(PLR)等[10]-[14]。目前,PD-L1表达是确定非小细胞肺癌最有可能从免疫治疗中获益的主要标准。多项实验证实,PD-L1表达与免疫治疗预后相关[15]-[19],可有效预测非小细胞肺癌免疫治疗的预后。2016年出现了一个不同的结论,Padmanee Sharma及其同事在一项大型多中心试验中发现,通过Dako免疫组织化学测量,发现Nivolumab单药治疗复发性转移性尿路上皮癌的客观缓解率(ORR)与肿瘤PD-L1表达无关。无论肿瘤PD-L1表达水平如何,均观察到临床显著的抗肿瘤活性[20]。2018年的一项研究指出,无论PD-L1表达和EGFR或ALK基因改变状态如何,在贝伐珠单抗加化疗的基础上,阿替利珠单抗显著提高了转移性非鳞状NSCLC患者的无进展生存期和总生存期[21]。还有学者提出,高水平的PD-1表达似乎在限制患者的生存中发挥了作用[22]。随着不同研究结果的出现,PD-L1表达的预测作用和适用条件有待进一步研究和规范。近年来,大多数临床研究都证实了T淋巴细胞亚群在免疫治疗中的预后价值[23] [24]

3. T淋巴细胞亚群与肿瘤免疫

3.1. 免疫系统与肿瘤

免疫系统是机体自身的保护机制,具有免疫监视、防御和调节功能。免疫细胞的主要生理功能是监测组织稳态,防止病原体入侵,消除受损细胞的转化[25]。先天免疫反应导致适应性免疫系统(B细胞和T细胞)的激活,提供与抗原呈递细胞和促炎环境的直接相互作用。T淋巴细胞起源于骨髓干细胞,在胸腺中发育分化,成熟后进入外周免疫器官胸腺依赖区,经血液循环至淋巴细胞、组织等分布全身,介导细胞免疫,调节机体免疫反应。当机体受到外来细菌或异常细胞入侵时,T细胞、B细胞、NK细胞等免疫细胞产生免疫反应,识别并清除有害物质,保护机体免受攻击,维持体内平衡[25]。T细胞是重要的效应免疫细胞,负责诱导恶性细胞的病毒转化或细胞死亡。T淋巴细胞的两个主要亚群是辅助T细胞(Th、CD4+)和细胞毒性T细胞(CTL、CD8+) [26]。癌症免疫编辑是一个由三个阶段组成的过程,即癌症免疫监视、平衡和逃逸[26]-[28],肿瘤生长主要由CD4+和CD8+ T细胞控制[29]。免疫编辑学说描述了癌症发展过程中免疫细胞与肿瘤细胞相互作用,可应用于包括NSCLC在内的多种肿瘤类型。T细胞在癌症、自身免疫和感染中形成免疫反应,其中CD4+ (Th)和CD8+介导被调节性T细胞(Tregs)抑制的效应反应[30]。早在2002年,Edward Y Woo就证明肺癌患者体内的调节性T淋巴细胞直接抑制自体T淋巴细胞增殖,这些调节性T细胞可能在诱导或维持肺癌患者的肿瘤耐受中发挥作用,对这一亚群的操纵可能是癌症免疫治疗的重要组成部分[31]。PD-1、CTLA-4、Tim-3和Lag-3对肿瘤浸润淋巴细胞(TILs)的上调被认为表明了一种称为T淋巴细胞衰竭的功能障碍状态,这种状态最初是在慢性小鼠淋巴细胞性脉络丛脑膜炎病毒(LCMV)感染中发现的[32] [33]。近年来的研究揭示了T淋巴细胞衰竭的功能状态,这表明它不是一种惰性和无功能状态,而是T淋巴细胞显示出残留水平的阻断功能,这使我们推测T淋巴细胞衰竭已经发展成为一种保护我们免受致病但潜伏病毒侵害的策略[34]。T淋巴细胞耗竭是一种特异性表现,耗竭的T淋巴细胞的特征是效应功能的逐渐丧失、免疫检查点抑制受体的高表达和持续表达、代谢失调和体内平衡自我更新减少[35] [36]。在癌症治疗中,强调靶向重新激活肿瘤内耗尽的T细胞的潜在作用[34]。T淋巴细胞耗竭的机制也证实了T淋巴淋巴细胞与肿瘤发生的密切关系。

3.2. CD4+和CD8+

CD4+ T淋巴细胞主要通过膜表面分子和分泌的细胞因子辅助和调节免疫应答。CD4+ T淋巴细胞在适应性免疫系统中发挥多种功能,最广为人知的是它们作为辅助性T细胞(Th)的作用,包括Th1、Th2、Th17和调节性T细胞(Tregs)亚群[37]。CD4+ T淋巴细胞大致可分为不同的类别,包括招募关键淋巴细胞群进入继发性淋巴组织或病原体感染部位,协助其他效应细胞的扩增或功能,或通过产生细胞因子或细胞介导的细胞毒性提供直接效应功能,在病毒免疫中具有重要作用[38]。CD4+ T淋巴细胞显著增强IIC的早期表达并增强病毒控制[39]。Helene Beuneu通过建立小鼠模型并使用FACS分析,观察到CD4+ T淋巴细胞可以非常快速地影响CD8+ T淋巴细胞的分化,提高IFN-γ的产生能力[40],并增加树突状细胞招募CD8+ T细胞的能力[41]。CD8+ T淋巴细胞记忆亚群的产生和持续在一定程度上受CD4 + T淋巴辅助细胞影响[42],在维持CD8+ T淋巴细胞反应和防止失败中起重要作用[4]。CCD4+ T淋巴细胞亚群也具有高度可塑性,许多群体能够偶然产生异质细胞因子,能够与其他初级、效应、记忆和调节性CD4+ T淋巴细胞交叉,并能够与其他初级、效应、记忆和调节性CD4+ T淋巴细胞交换以扩大其功能[43]。CD4+ T淋巴细胞还具有抗肿瘤作用,可以增强其他抗肿瘤效应细胞的杀伤肿瘤活性,如CD8+ T淋巴细胞和巨噬细胞[40] [44]

细胞毒性T细胞是抗癌免疫反应中最强大的效应体,也是目前成功的癌症免疫治疗的支柱[5]。CD8+ T淋巴细胞具有选择性检测和根除癌细胞的能力[45]。细胞毒性CD8+ T淋巴细胞在消除细胞内感染和恶性细胞中发挥关键作用,并可提供长期保护性免疫[46]。当T细胞受体识别人类白细胞抗原I类(HLA-I)/β-2微球蛋白(β2m)复合物在靶细胞表面呈现特异性抗原肽时,CD8+ T淋巴细胞通过其杀死恶性细胞的能力在癌症免疫中发挥核心作用[47]。CD8+ T淋巴细胞的原位功能是一种直接的癌细胞杀手[48]。王伟民在2019年发现免疫治疗激活的CD8+ T淋巴细胞增强了肿瘤细胞中铁死亡特异性脂质过氧化,这意味着铁死亡增加有助于免疫治疗的抗肿瘤作用。T淋巴细胞促进肿瘤铁死亡是一种新的抗肿瘤机制[49]。研究表明,CD8+ T淋巴细胞的环境适应性与其发育轨迹交织在一起,并最终决定了提供有效应答和长期组织免疫的能力[50]。当肿瘤发生时,CD8+ T淋巴细胞受到多种免疫抑制信号的刺激,包括慢性TCR信号、缺氧、营养缺乏和促炎细胞因子,这些信号共同作用诱导肿瘤微环境中的T细胞衰竭[46] [51] [52]。肿瘤浸润性CD8+ T淋巴细胞在预测患者生存和免疫治疗反应中的作用已在许多肿瘤中得到证实[53]-[56]

4. T淋巴细胞亚群作为非小细胞肺癌预后生物标志物的意义

非小细胞肺癌的免疫结构包括肿瘤核心、浸润边缘、三级淋巴结构(TLS)和肿瘤微环境,以及各种免疫细胞的分布[57]。肺癌微环境中的免疫细胞主要由T淋巴细胞、巨噬细胞和肥大细胞组成,浆细胞、NK细胞和骨髓抑制细胞相对较少[25] [58] [59]。它通常具有高度的免疫抑制作用,能够通过多种机制下调抗肿瘤免疫反应,包括抗原加工和呈递缺陷、免疫调节细胞因子的释放和免疫抑制细胞如调节性T淋巴细胞(Tregs)的募集[31] [60]

4.1. 肿瘤浸润淋巴细胞(TIL)

1986年,肿瘤浸润淋巴细胞(tumor浸润淋巴细胞,TIL)是一组具有抗原性活性的肿瘤侵袭细胞,在小鼠肿瘤组织中首次发现[61]。TIL数量的增加与1A期非小细胞肺癌患者无复发生存率的提高有关[62],而TIL的密度与非小细胞肺癌患者的疾病复发和生存有关[63]。不同的T细胞亚型与较长的NSCLC存活相关,在肿瘤和肿瘤间质中有不同的水平[64]。CD3+ T淋巴细胞和CD8+ T淋巴细胞与生存率一致相关,但在非小细胞肺癌中只有CD8+ T淋巴细胞提供独立的预后信息[64]。2008年,Khalid I Al-Shibli通过335例切除的I至IIIA期非小细胞肺癌的组织微阵列,构建了一个充满活力和代表性的肿瘤上皮和间质区重复核心。上皮细胞和间质细胞CD4+、CD8+、CD20+淋巴细胞免疫组化检测证实,间质细胞CD4+、CD8+淋巴细胞密度高是非小细胞肺癌切除术患者独立的阳性预后指标[65]。一项涉及797人的大型研究得出结论,间质CD8+ TIL密度对可切除的非小细胞肺癌具有独立的预后影响,在每个病理阶段都有预后影响[66]。2015年,通过对来自29篇文章的8600个数据的荟萃分析,研究人员发现,高水平的CD8+和CD3+ T细胞浸润或高水平的CD4+ T淋巴细胞浸润与肺癌患者更好的OS相关[67]。浸润CD8+ T淋巴细胞在癌巢和间质中的数量是预测IV期NSCLC化疗患者预后的有用生物标志物[68]。2019年,于云芳对非小细胞肺癌患者生存率与免疫相关生物标志物及免疫治疗相关性进行meta分析,发现CD8+ T淋巴细胞肿瘤浸润淋巴细胞与改善OS预后预测相关。进一步结合CD8+ T淋巴细胞肿瘤浸润淋巴细胞、PD-L1表达和TMB (肿瘤免疫微环境)与可靠的预后相关[69]。然而,相关实验发现肿瘤表面存在不同类型的免疫浸润细胞,TIL的大量浸润与患者预后无关,但两种不同的免疫亚群以定义的T淋巴细胞标记物的相对富集为特征,是患者生存的独立预测因子[70]。也有学者认为,耗尽的CD8+ T淋巴细胞主要包括两个不同的亚群:前体耗尽T细胞(Tpex)和最终耗尽的CD8+ T淋巴细胞[45],最终耗尽的T细胞主要发挥细胞毒性作用。如果不进行治疗,最终耗尽的T淋巴细胞将逐渐成为无功能T细胞并诱导凋亡,需要恢复耗尽的CD8+ T淋巴细胞,以提高这两个亚群的功能,从而达到治疗肿瘤的目的[71]。改善CD8+ T淋巴细胞可能是逆转目前癌症免疫治疗困境的一个突破[71]。2021年,Miguel F. Sanmamed等人通过对25例可切除的非小细胞肺癌患者的手术切除肿瘤(TU)和非TU配对肺组织的比较研究,开发了一种先前未描述的“免疫高效”PDX模型,称为免疫PDX模型。CD8+ TIL在非小细胞肺癌患者的TME中扩增,是TIL中最具增生性的部分。由于过量的不可恢复的凋亡TIL,具有丰富的CD8+ TIL的T细胞可能与其他CD4+ TIL群体竞争空间和资源,导致肿瘤的发展[72]。对TIL的研究仍在不断地完善中。

4.2. 外周血T细胞亚群

与TIL相比,外周血循环T淋巴细胞亚群更容易采样、可重复性强,对于非小细胞肺癌的预后影响研究中。2018年,Nataly Manjarrez-Orduno分析了黑色素瘤和NSCLC患者CD4+和CD8+的中枢记忆细胞(CM)和效应细胞(Eff)的比例,发现CM/Eff T细胞比例高与炎症性肿瘤有关,还与纳武单抗治疗非小细胞肺癌后更长的无进展生存期(PFS)相关。这是首次提出循环T淋巴细胞亚群作为非小细胞肺癌患者对检查点抑制剂反应的预测性生物标志物[73]。在2020年,Selene Ottonello等人筛选了74例接受纳武单抗治疗的NSCLC患者,符合条件的患者每14天接受3 mg/kg的纳武利尤单抗治疗,直至死亡或出现不可接受的毒性,或从第一次给药开始长达96周,在第一次给药前、15天、30天和45天采集血液样本,并通过流式细胞术进行表型分析。采用非参数Kruskal-Wallis检验、kakkaplan-meier法、Cox回归分析、随机效应回归分析等方法对数据进行分析,发现总CD3+ T淋巴细胞和不同T淋巴细胞亚群(即CD4+、CD8+和CD3+ CD56+ T淋巴细胞,Tregs除外)出现频率较高的患获得了较好的效果。相比之下,相对较高比例的NK细胞和较高比例的CD8+/CD39+ Tregs与较短的OS (总生存期)和PFS相关[22]。在一项研究中,观察外周学中到基线CD8+ T淋巴细胞较高者与较长PFS和OS相关[74]。虽然通过统计分析,基线CD8+ T淋巴细胞不是OS的独立预后因素,但数据也表明,对于基线外周CD8+ T淋巴细胞低的患者,应谨慎使用ICIs [74]。洪祥灿等回顾性分析了2020年8月至2022年1月在南方医科大学深圳医院诊治的651例肺癌患者的临床资料,选取了50例晚期肺癌患者。分别于治疗前、治疗后1~4周及免疫治疗期间检测静脉血外周血淋巴细胞、CD3+、CD4+、CD8+、B淋巴细胞及NK细胞总数。采用SPSS 26.0软件进行统计分析,发现治疗后CD3+、CD4+、CD4+/CD8+均显著升高,B淋巴细胞数量显著降低(P < 0.05)。治疗前后CD8+和NK细胞数量相近。T细胞亚群不仅作为预测标志物,而且在动态监测和疗效评价方面的作用已逐渐得到证实。因此,T细胞亚群对于非小细胞肺癌免疫治疗,以及疾病发展和预后的评估都很重要。

5. 讨论

免疫检查点抑制剂(ICIs)的出现,无论是单一免疫治疗还是联合治疗,都扩大了非小细胞肺癌患者的标准治疗选择。虽然取得良好效果,但部分人没有受益。筛查受益人群和确定预后对于疾病的诊断和实施下一个治疗计划至关重要。T细胞亚群作为非小细胞肺癌的预后指标具有重要意义,越来越多的学者开始关注免疫治疗过程中T细胞亚群的动态变化。根据CD3+和CD8+ TIL细胞的密度进行分类。Francois Ghiringhelli等人验证了对206名NSCLC患者的两个独立队列的分析,发现当患者被分为三个免疫评分-IC (IS-IC)时,风险比(HR)进一步增加。所有低IS-IC患者在不到18个月的时间内进展,而在训练组和验证组中,36个月时的PFS分别占高IS-IC患者的34%和33%,这表明免疫评分是抗PD-1/PD-L1免疫治疗反应的有效定量和预测性标志物[75]。目前有学者认为免疫评分比目前单独使用的PD-L1染色具有更好的预测价值,可以指导临床医生制定治疗决策策略[76]。免疫评分的引入和肯定进一步证实了T淋巴细胞亚群可以作为预后标志物发挥一定的作用。尽管抗PD-(L) 1疗法已被批准用于非小细胞肺癌患者,但很大一部分患者对其没有反应。PD-L1表达并不总是预测对检查点免疫治疗的反应,也不是一个完美的预测因素。结合T淋巴细胞亚群及其预测效果有望取得更好的效果。

T淋巴细胞亚群也有一定的局限性。目前,大多数实验都是回顾性数据分析,这可能会导致某些偏差。需要进一步的前瞻性研究来验证T淋巴细胞在非小细胞肺癌免疫治疗中的预后作用。T淋巴细胞亚群分型的具体意义也有待进一步研究,各亚型的变异机制研究尚不深入。T淋巴细胞亚群动态监测的时间截止点有待进一步商定。此外,如果NSCLC患者采用免疫治疗联合化疗,化疗药物对免疫细胞的杀伤也是我们在今后的研究中需要关注的因素。

6. 结论

通过对T淋巴细胞的深入研究,TILs和外周循环T淋巴细胞作为非小细胞肺癌的预测因子显示出一定的潜力。综上所述,T淋巴细胞亚群标志物有望发挥更显著的作用,并与其他相关预测标志物联合,也将进一步促进NSCLC免疫治疗的发展。

基 金

YTHDF2基因调控NSCLS中TAMs重塑改变免疫微环境的机制探索。

NOTES

*通讯作者。

参考文献

[1] Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48.
https://doi.org/10.3322/caac.21763
[2] He, T., Cao, J., Xu, J., Lv, W. and Hu, J. (2020) Minimally Invasive Therapies for Early Stage Non-Small Cell Lung Cancer. Chinese Journal of Lung Cancer, 23, 479-486.
[3] Patsoukis, N., Wang, Q., Strauss, L. and Boussiotis, V.A. (2020) Revisiting the PD-1 Pathway. Science Advances, 6, eabd2712.
https://doi.org/10.1126/sciadv.abd2712
[4] Dyck, L. and Mills, K.H.G. (2017) Immune Checkpoints and Their Inhibition in Cancer and Infectious Diseases. European Journal of Immunology, 47, 765-779.
https://doi.org/10.1002/eji.201646875
[5] Raskov, H., Orhan, A., Christensen, J.P. and Gögenur, I. (2020) Cytotoxic CD8+ T Cells in Cancer and Cancer Immunotherapy. British Journal of Cancer, 124, 359-367.
https://doi.org/10.1038/s41416-020-01048-4
[6] Shen, Y., Chen, J. and Li, X. (2023) Research Advances in Immune Checkpoint Drugs for Non-Small Cell Lung Cancer. Journal of Drug Targeting, 31, 700-713.
https://doi.org/10.1080/1061186x.2023.2235098
[7] Cella, E., Zullo, L., Marconi, S., Rossi, G., Coco, S., Dellepiane, C., et al. (2022) Immunotherapy-Chemotherapy Combinations for Non-Small Cell Lung Cancer: Current Trends and Future Perspectives. Expert Opinion on Biological Therapy, 22, 1259-1273.
https://doi.org/10.1080/14712598.2022.2116273
[8] Tang, S., Qin, C., Hu, H., Liu, T., He, Y., Guo, H., et al. (2022) Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Progress, Challenges, and Prospects. Cells, 11, Article No. 320.
https://doi.org/10.3390/cells11030320
[9] Haslam, A. and Prasad, V. (2019) Estimation of the Percentage of US Patients with Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Network Open, 2, e192535.
https://doi.org/10.1001/jamanetworkopen.2019.2535
[10] Wen, S.D. and Shen, B. (2020) Mechanisms and Clinical Research Status of Immunotherapy for Non-Small Cell Lung Cancer. Journal of Nanjing Medical University (Natural Sciences), 40, 1739-1746.
[11] Duffy, M.J. and Crown, J. (2019) Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clinical Chemistry, 65, 1228-1238.
https://doi.org/10.1373/clinchem.2019.303644
[12] Mamdani, H., Matosevic, S., Khalid, A.B., Durm, G. and Jalal, S.I. (2022) Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Frontiers in Immunology, 13, Article ID: 823618.
https://doi.org/10.3389/fimmu.2022.823618
[13] Platini, H., Ferdinand, E., Kohar, K., Prayogo, S., Amirah, S., Komariah, M., et al. (2022) Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Prognostic Markers for Advanced Non-Small-Cell Lung Cancer Treated with Immunotherapy: A Systematic Review and Meta-Analysis. Medicina, 58, Article No. 1069.
https://doi.org/10.3390/medicina58081069
[14] Brueckl, W.M., Ficker, J.H. and Zeitler, G. (2020) Clinically Relevant Prognostic and Predictive Markers for Immune-Checkpoint-Inhibitor (ICI) Therapy in Non-Small Cell Lung Cancer (NSCLC). BMC Cancer, 20, Article No. 1185.
https://doi.org/10.1186/s12885-020-07690-8
[15] Moran, J.A., Adams, D.L., Edelman, M.J., Lopez, P., He, J., Qiao, Y., et al. (2022) Monitoring PD-L1 Expression on Circulating Tumor-Associated Cells in Recurrent Metastatic Non-Small-Cell Lung Carcinoma Predicts Response to Immunotherapy with Radiation Therapy. JCO Precision Oncology, 6, e2200457.
https://doi.org/10.1200/po.22.00457
[16] Yang, J., Huang, C., Fan, Y., Pan, H., Feng, J., Jiang, L., et al. (2021) Camrelizumab in Different PD-L1 Expression Cohorts of Pre-Treated Advanced or Metastatic Non-Small Cell Lung Cancer: A Phase II Study. Cancer Immunology, Immunotherapy, 71, 1393-1402.
https://doi.org/10.1007/s00262-021-03091-3
[17] Herbst, R.S., Baas, P., Kim, D., Felip, E., Pérez-Gracia, J.L., Han, J., et al. (2016) Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. The Lancet, 387, 1540-1550.
https://doi.org/10.1016/s0140-6736(15)01281-7
[18] Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for Pd-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833.
https://doi.org/10.1056/nejmoa1606774
[19] Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N., Balmanoukian, A.S., Eder, J.P., et al. (2015) Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. New England Journal of Medicine, 372, 2018-2028.
https://doi.org/10.1056/nejmoa1501824
[20] Sharma, P., Callahan, M.K., Bono, P., Kim, J., Spiliopoulou, P., Calvo, E., et al. (2016) Nivolumab Monotherapy in Recurrent Metastatic Urothelial Carcinoma (checkmate 032): A Multicentre, Open-Label, Two-Stage, Multi-Arm, Phase 1/2 Trial. The Lancet Oncology, 17, 1590-1598.
https://doi.org/10.1016/s1470-2045(16)30496-x
[21] Socinski, M.A., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., et al. (2018) Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. New England Journal of Medicine, 378, 2288-2301.
https://doi.org/10.1056/nejmoa1716948
[22] Ottonello, S., Genova, C., Cossu, I., Fontana, V., Rijavec, E., Rossi, G., et al. (2020) Association between Response to Nivolumab Treatment and Peripheral Blood Lymphocyte Subsets in Patients with Non-Small Cell Lung Cancer. Frontiers in Immunology, 11, Article No. 125.
https://doi.org/10.3389/fimmu.2020.00125
[23] Li, X., Ma, L., Li, X., et al. (2021) Treatment Efficacy of PD-1 Inhibitor and Its Effect on the Level of T Lymphocyte Subsets and Cytokine in Peripheral Blood of Patients with Advanced Lung Cancer. Chinese Journal of Cancer Biotherapy, 28, 1113-1118.
[24] Miao, K., Zhang, X., Wang, H., Si, X., Ni, J., Zhong, W., et al. (2022) Corrigendum: Peripheral Blood Lymphocyte Subsets Predict the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Frontiers in Immunology, 13, Article ID: 1111230.
https://doi.org/10.3389/fimmu.2022.1111230
[25] Bremnes, R.M., Al-Shibli, K., Donnem, T., Sirera, R., Al-Saad, S., Andersen, S., et al. (2011) The Role of Tumor-Infiltrating Immune Cells and Chronic Inflammation at the Tumor Site on Cancer Development, Progression, and Prognosis: Emphasis on Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 6, 824-833.
https://doi.org/10.1097/jto.0b013e3182037b76
[26] Dunn, G.P., Old, L.J. and Schreiber, R.D. (2004) The Three Es of Cancer Immunoediting. Annual Review of Immunology, 22, 329-360.
https://doi.org/10.1146/annurev.immunol.22.012703.104803
[27] Dunn, G.P., Old, L.J. and Schreiber, R.D. (2004) The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity, 21, 137-148.
https://doi.org/10.1016/j.immuni.2004.07.017
[28] Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570.
https://doi.org/10.1126/science.1203486
[29] Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J., et al. (2001) IFNγ and Lymphocytes Prevent Primary Tumour Development and Shape Tumour Immunogenicity. Nature, 410, 1107-1111.
https://doi.org/10.1038/35074122
[30] Wei, J., Zheng, W., Chapman, N.M., Geiger, T.L. and Chi, H. (2021) T Cell Metabolism in Homeostasis and Cancer Immunity. Current Opinion in Biotechnology, 68, 240-250.
https://doi.org/10.1016/j.copbio.2021.02.003
[31] Woo, E.Y., Yeh, H., Chu, C.S., Schlienger, K., Carroll, R.G., Riley, J.L., et al. (2002) Cutting Edge: Regulatory T Cells from Lung Cancer Patients Directly Inhibit Autologous T Cell Proliferation. The Journal of Immunology, 168, 4272-4276.
https://doi.org/10.4049/jimmunol.168.9.4272
[32] Baitsch, L., Baumgaertner, P., Devêvre, E., Raghav, S.K., Legat, A., Barba, L., et al. (2011) Exhaustion of Tumor-Specific CD8+ T Cells in Metastases from Melanoma Patients. Journal of Clinical Investigation, 121, 2350-2360.
https://doi.org/10.1172/jci46102
[33] Zajac, A.J., Blattman, J.N., Murali-Krishna, K., Sourdive, D.J.D., Suresh, M., Altman, J.D., et al. (1998) Viral Immune Evasion Due to Persistence of Activated T Cells without Effector Function. The Journal of Experimental Medicine, 188, 2205-2213.
https://doi.org/10.1084/jem.188.12.2205
[34] Verdon, D.J., Mulazzani, M. and Jenkins, M.R. (2020) Cellular and Molecular Mechanisms of CD8+ T Cell Differentiation, Dysfunction and Exhaustion. International Journal of Molecular Sciences, 21, Article No. 7357.
https://doi.org/10.3390/ijms21197357
[35] McLane, L.M., Abdel-Hakeem, M.S. and Wherry, E.J. (2019) CD8 T Cell Exhaustion during Chronic Viral Infection and Cancer. Annual Review of Immunology, 37, 457-495.
https://doi.org/10.1146/annurev-immunol-041015-055318
[36] Blank, C.U., Haining, W.N., Held, W., Hogan, P.G., Kallies, A., Lugli, E., et al. (2019) Defining “T Cell Exhaustion”. Nature Reviews Immunology, 19, 665-674.
https://doi.org/10.1038/s41577-019-0221-9
[37] Miggelbrink, A.M., Jackson, J.D., Lorrey, S.J., Srinivasan, E.S., Waibl-Polania, J., Wilkinson, D.S., et al. (2021) CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clinical Cancer Research, 27, 5742-5752.
https://doi.org/10.1158/1078-0432.ccr-21-0206
[38] Sant, A.J. and McMichael, A. (2012) Revealing the Role of CD4+ T Cells in Viral Immunity. Journal of Experimental Medicine, 209, 1391-1395.
https://doi.org/10.1084/jem.20121517
[39] Strutt, T.M., McKinstry, K.K., Dibble, J.P., Winchell, C., Kuang, Y., Curtis, J.D., et al. (2010) Memory CD4+ T Cells Induce Innate Responses Independently of Pathogen. Nature Medicine, 16, 558-564.
https://doi.org/10.1038/nm.2142
[40] Tay, R.E., Richardson, E.K. and Toh, H.C. (2020) Revisiting the Role of CD4+ T Cells in Cancer Immunotherapy—New Insights into Old Paradigms. Cancer Gene Therapy, 28, 5-17.
https://doi.org/10.1038/s41417-020-0183-x
[41] Beuneu, H., Garcia, Z. and Bousso, P. (2006) Cutting Edge: Cognate CD4 Help Promotes Recruitment of Antigen-Specific CD8 T Cells around Dendritic Cells. The Journal of Immunology, 177, 1406-1410.
https://doi.org/10.4049/jimmunol.177.3.1406
[42] Klebanoff, C.A., Gattinoni, L. and Restifo, N.P. (2006) CD8+ T‐Cell Memory in Tumor Immunology and Immunotherapy. Immunological Reviews, 211, 214-224.
https://doi.org/10.1111/j.0105-2896.2006.00391.x
[43] Caza, T. and Landas, S. (2015) Functional and Phenotypic Plasticity of CD4+ T Cell Subsets. BioMed Research International, 2015, Article ID: 521957.
https://doi.org/10.1155/2015/521957
[44] Li, N., Chen, J. and Shi, Y. (2018) Corrigendum to “Magnetic Graphene Solid-Phase Extraction for the Determination of Carbamate Pesticides in Tomatoes Coupled with High Performance Liquid Chromatography” [Talanta 141 (2015) 212-219]. Talanta, 178, 1077.
https://doi.org/10.1016/j.talanta.2017.08.048
[45] Philip, M. and Schietinger, A. (2021) CD8+ T Cell Differentiation and Dysfunction in Cancer. Nature Reviews Immunology, 22, 209-223.
https://doi.org/10.1038/s41577-021-00574-3
[46] Reina-Campos, M., Scharping, N.E. and Goldrath, A.W. (2021) CD8+ T Cell Metabolism in Infection and Cancer. Nature Reviews Immunology, 21, 718-738.
https://doi.org/10.1038/s41577-021-00537-8
[47] Durgeau, A., Virk, Y., Corgnac, S. and Mami-Chouaib, F. (2018) Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Frontiers in Immunology, 9, Article No. 14.
https://doi.org/10.3389/fimmu.2018.00014
[48] Hadrup, S., Donia, M. and Thorstraten, P. (2012) Effector CD4 and CD8 T Cells and Their Role in the Tumor Microenvironment. Cancer Microenvironment, 6, 123-133.
https://doi.org/10.1007/s12307-012-0127-6
[49] Wang, W., Green, M., Choi, J.E., Gijón, M., Kennedy, P.D., Johnson, J.K., et al. (2019) CD8+ T Cells Regulate Tumour Ferroptosis during Cancer Immunotherapy. Nature, 569, 270-274.
https://doi.org/10.1038/s41586-019-1170-y
[50] Phan, A.T., Goldrath, A.W. and Glass, C.K. (2017) Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 46, 714-729.
https://doi.org/10.1016/j.immuni.2017.04.016
[51] Kallies, A., Zehn, D. and Utzschneider, D.T. (2019) Precursor Exhausted T Cells: Key to Successful Immunotherapy? Nature Reviews Immunology, 20, 128-136.
https://doi.org/10.1038/s41577-019-0223-7
[52] Propper, D.J. and Balkwill, F.R. (2022) Harnessing Cytokines and Chemokines for Cancer Therapy. Nature Reviews Clinical Oncology, 19, 237-253.
https://doi.org/10.1038/s41571-021-00588-9
[53] Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. (2006) Type, Density, and Location of Immune Cells within Human Colorectal Tumors Predict Clinical Outcome. Science, 313, 1960-1964.
https://doi.org/10.1126/science.1129139
[54] Pagès, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., et al. (2005) Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer. New England Journal of Medicine, 353, 2654-2666.
https://doi.org/10.1056/nejmoa051424
[55] Azimi, F., Scolyer, R.A., Rumcheva, P., Moncrieff, M., Murali, R., McCarthy, S.W., et al. (2012) Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients with Cutaneous Melanoma. Journal of Clinical Oncology, 30, 2678-2683.
https://doi.org/10.1200/jco.2011.37.8539
[56] Savas, P., Virassamy, B., Ye, C., Salim, A., Mintoff, C.P., Caramia, F., et al. (2018) Single-Cell Profiling of Breast Cancer T Cells Reveals a Tissue-Resident Memory Subset Associated with Improved Prognosis. Nature Medicine, 24, 986-993.
https://doi.org/10.1038/s41591-018-0078-7
[57] Bremnes, R.M., Busund, L., Kilvær, T.L., Andersen, S., Richardsen, E., Paulsen, E.E., et al. (2016) The Role of Tumor-Infiltrating Lymphocytes in Development, Progression, and Prognosis of Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 11, 789-800.
https://doi.org/10.1016/j.jtho.2016.01.015
[58] Ishibashi, Y., Tanaka, S., Tajima, K., Yoshida, T. and Kuwano, H. (2006) Expression of Foxp3 in Non-Small Cell Lung Cancer Patients Is Significantly Higher in Tumor Tissues than in Normal Tissues, Especially in Tumors Smaller than 30 mm. Oncology Reports, 15, 1315-1319.
https://doi.org/10.3892/or.15.5.1315
[59] Kataki, A., Scheid, P., Piet, M., Marie, B., Martinet, N., Martinet, Y., et al. (2002) Tumor Infiltrating Lymphocytes and Macrophages Have a Potential Dual Role in Lung Cancer by Supporting Both Host-Defense and Tumor Progression. Journal of Laboratory and Clinical Medicine, 140, 320-328.
https://doi.org/10.1067/mlc.2002.128317
[60] Rosenberg, S.A. (2005) Cancer Immunotherapy Comes of Age. Nature Clinical Practice Oncology, 2, 115-115.
https://doi.org/10.1038/ncponc0101
[61] Rosenberg, S.A., Spiess, P. and Lafreniere, R. (1986) A New Approach to the Adoptive Immunotherapy of Cancer with Tumor-Infiltrating Lymphocytes. Science, 233, 1318-1321.
https://doi.org/10.1126/science.3489291
[62] Horne, Z.D., Jack, R., Gray, Z.T., Siegfried, J.M., Wilson, D.O., Yousem, S.A., et al. (2011) Increased Levels of Tumor-Infiltrating Lymphocytes Are Associated with Improved Recurrence-Free Survival in Stage 1A Non-Small-Cell Lung Cancer. Journal of Surgical Research, 171, 1-5.
https://doi.org/10.1016/j.jss.2011.03.068
[63] Kilic, A., Landreneau, R.J., Luketich, J.D., Pennathur, A. and Schuchert, M.J. (2011) Density of Tumor-Infiltrating Lymphocytes Correlates with Disease Recurrence and Survival in Patients with Large Non-Small-Cell Lung Cancer Tumors. Journal of Surgical Research, 167, 207-210.
https://doi.org/10.1016/j.jss.2009.08.029
[64] Schalper, K.A., Brown, J., Carvajal-Hausdorf, D., McLaughlin, J., Velcheti, V., Syrigos, K.N., et al. (2015) Objective Measurement and Clinical Significance of TILs in Non-Small Cell Lung Cancer. JNCI: Journal of the National Cancer Institute, 107, dju435.
https://doi.org/10.1093/jnci/dju435
[65] Al-Shibli, K.I., Donnem, T., Al-Saad, S., Persson, M., Bremnes, R.M. and Busund, L. (2008) Prognostic Effect of Epithelial and Stromal Lymphocyte Infiltration in Non-Small Cell Lung Cancer. Clinical Cancer Research, 14, 5220-5227.
https://doi.org/10.1158/1078-0432.ccr-08-0133
[66] Donnem, T., Hald, S.M., Paulsen, E., Richardsen, E., Al-Saad, S., Kilvaer, T.K., et al. (2015) Stromal CD8+ T-Cell Density—A Promising Supplement to TNM Staging in Non-Small Cell Lung Cancer. Clinical Cancer Research, 21, 2635-2643.
https://doi.org/10.1158/1078-0432.ccr-14-1905
[67] Geng, Y., Shao, Y., He, W., Hu, W., Xu, Y., Chen, J., et al. (2015) Prognostic Role of Tumor-Infiltrating Lymphocytes in Lung Cancer: A Meta-Analysis. Cellular Physiology and Biochemistry, 37, 1560-1571.
https://doi.org/10.1159/000438523
[68] Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., et al. (2008) Predominant Infiltration of Macrophages and CD8+ T Cells in Cancer Nests Is a Significant Predictor of Survival in Stage IV Nonsmall Cell Lung Cancer. Cancer, 113, 1387-1395.
https://doi.org/10.1002/cncr.23712
[69] Yu, Y., Zeng, D., Ou, Q., Liu, S., Li, A., Chen, Y., et al. (2019) Association of Survival and Immune-Related Biomarkers with Immunotherapy in Patients with Non-small Cell Lung Cancer: A Meta-Analysis and Individual Patient-Level Analysis. JAMA Network Open, 2, e196879.
https://doi.org/10.1001/jamanetworkopen.2019.6879
[70] Federico, L., McGrail, D.J., Bentebibel, S., Haymaker, C., Ravelli, A., Forget, M., et al. (2022) Distinct Tumor-Infiltrating Lymphocyte Landscapes Are Associated with Clinical Outcomes in Localized Non-Small-Cell Lung Cancer. Annals of Oncology, 33, 42-56.
https://doi.org/10.1016/j.annonc.2021.09.021
[71] Guan, Q., Han, M., Guo, Q., Yan, F., Wang, M., Ning, Q., et al. (2023) Strategies to Reinvigorate Exhausted CD8+ T Cells in Tumor Microenvironment. Frontiers in Immunology, 14, Article ID: 1204363.
https://doi.org/10.3389/fimmu.2023.1204363
[72] Sanmamed, M.F., Nie, X., Desai, S.S., Villaroel-Espindola, F., Badri, T., Zhao, D., et al. (2021) A Burned-Out CD8+ T-Cell Subset Expands in the Tumor Microenvironment and Curbs Cancer Immunotherapy. Cancer Discovery, 11, 1700-1715.
https://doi.org/10.1158/2159-8290.cd-20-0962
[73] Manjarrez-Orduño, N., Menard, L.C., Kansal, S., Fischer, P., Kakrecha, B., Jiang, C., et al. (2018) Circulating T Cell Subpopulations Correlate with Immune Responses at the Tumor Site and Clinical Response to PD1 Inhibition in Non-Small Cell Lung Cancer. Frontiers in Immunology, 9, Article No. 1613.
https://doi.org/10.3389/fimmu.2018.01613
[74] Wu, K., Xia, B., Zhang, J., Li, X., Yang, S., Zhang, M., et al. (2022) Positive Correlation of Peripheral CD8+ T Lymphocytes with Immune-Related Adverse Events and Combinational Prognostic Value in Advanced Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Cancers, 14, Article No. 3568.
https://doi.org/10.3390/cancers14153568
[75] Ghiringhelli, F., Bibeau, F., Greillier, L., Fumet, J., Ilie, A., Monville, F., et al. (2023) Immunoscore Immune Checkpoint Using Spatial Quantitative Analysis of CD8 and PD-L1 Markers Is Predictive of the Efficacy of Anti-PD1/PD-L1 Immunotherapy in Non-Small Cell Lung Cancer. eBioMedicine, 92, 104633.
https://doi.org/10.1016/j.ebiom.2023.104633
[76] Hijazi, A., Antoniotti, C., Cremolini, C. and Galon, J. (2023) Light on Life: Immunoscore Immune-Checkpoint, a Predictor of Immunotherapy Response. OncoImmunology, 12, Article ID: 2243169.
https://doi.org/10.1080/2162402x.2023.2243169