[1]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. https://doi.org/10.3322/caac.21763
|
[2]
|
He, T., Cao, J., Xu, J., Lv, W. and Hu, J. (2020) Minimally Invasive Therapies for Early Stage Non-Small Cell Lung Cancer. Chinese Journal of Lung Cancer, 23, 479-486.
|
[3]
|
Patsoukis, N., Wang, Q., Strauss, L. and Boussiotis, V.A. (2020) Revisiting the PD-1 Pathway. Science Advances, 6, eabd2712. https://doi.org/10.1126/sciadv.abd2712
|
[4]
|
Dyck, L. and Mills, K.H.G. (2017) Immune Checkpoints and Their Inhibition in Cancer and Infectious Diseases. European Journal of Immunology, 47, 765-779. https://doi.org/10.1002/eji.201646875
|
[5]
|
Raskov, H., Orhan, A., Christensen, J.P. and Gögenur, I. (2020) Cytotoxic CD8+ T Cells in Cancer and Cancer Immunotherapy. British Journal of Cancer, 124, 359-367. https://doi.org/10.1038/s41416-020-01048-4
|
[6]
|
Shen, Y., Chen, J. and Li, X. (2023) Research Advances in Immune Checkpoint Drugs for Non-Small Cell Lung Cancer. Journal of Drug Targeting, 31, 700-713. https://doi.org/10.1080/1061186x.2023.2235098
|
[7]
|
Cella, E., Zullo, L., Marconi, S., Rossi, G., Coco, S., Dellepiane, C., et al. (2022) Immunotherapy-Chemotherapy Combinations for Non-Small Cell Lung Cancer: Current Trends and Future Perspectives. Expert Opinion on Biological Therapy, 22, 1259-1273. https://doi.org/10.1080/14712598.2022.2116273
|
[8]
|
Tang, S., Qin, C., Hu, H., Liu, T., He, Y., Guo, H., et al. (2022) Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Progress, Challenges, and Prospects. Cells, 11, Article No. 320. https://doi.org/10.3390/cells11030320
|
[9]
|
Haslam, A. and Prasad, V. (2019) Estimation of the Percentage of US Patients with Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Network Open, 2, e192535. https://doi.org/10.1001/jamanetworkopen.2019.2535
|
[10]
|
Wen, S.D. and Shen, B. (2020) Mechanisms and Clinical Research Status of Immunotherapy for Non-Small Cell Lung Cancer. Journal of Nanjing Medical University (Natural Sciences), 40, 1739-1746.
|
[11]
|
Duffy, M.J. and Crown, J. (2019) Biomarkers for Predicting Response to Immunotherapy with Immune Checkpoint Inhibitors in Cancer Patients. Clinical Chemistry, 65, 1228-1238. https://doi.org/10.1373/clinchem.2019.303644
|
[12]
|
Mamdani, H., Matosevic, S., Khalid, A.B., Durm, G. and Jalal, S.I. (2022) Immunotherapy in Lung Cancer: Current Landscape and Future Directions. Frontiers in Immunology, 13, Article ID: 823618. https://doi.org/10.3389/fimmu.2022.823618
|
[13]
|
Platini, H., Ferdinand, E., Kohar, K., Prayogo, S., Amirah, S., Komariah, M., et al. (2022) Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Prognostic Markers for Advanced Non-Small-Cell Lung Cancer Treated with Immunotherapy: A Systematic Review and Meta-Analysis. Medicina, 58, Article No. 1069. https://doi.org/10.3390/medicina58081069
|
[14]
|
Brueckl, W.M., Ficker, J.H. and Zeitler, G. (2020) Clinically Relevant Prognostic and Predictive Markers for Immune-Checkpoint-Inhibitor (ICI) Therapy in Non-Small Cell Lung Cancer (NSCLC). BMC Cancer, 20, Article No. 1185. https://doi.org/10.1186/s12885-020-07690-8
|
[15]
|
Moran, J.A., Adams, D.L., Edelman, M.J., Lopez, P., He, J., Qiao, Y., et al. (2022) Monitoring PD-L1 Expression on Circulating Tumor-Associated Cells in Recurrent Metastatic Non-Small-Cell Lung Carcinoma Predicts Response to Immunotherapy with Radiation Therapy. JCO Precision Oncology, 6, e2200457. https://doi.org/10.1200/po.22.00457
|
[16]
|
Yang, J., Huang, C., Fan, Y., Pan, H., Feng, J., Jiang, L., et al. (2021) Camrelizumab in Different PD-L1 Expression Cohorts of Pre-Treated Advanced or Metastatic Non-Small Cell Lung Cancer: A Phase II Study. Cancer Immunology, Immunotherapy, 71, 1393-1402. https://doi.org/10.1007/s00262-021-03091-3
|
[17]
|
Herbst, R.S., Baas, P., Kim, D., Felip, E., Pérez-Gracia, J.L., Han, J., et al. (2016) Pembrolizumab versus Docetaxel for Previously Treated, PD-L1-Positive, Advanced Non-Small-Cell Lung Cancer (KEYNOTE-010): A Randomised Controlled Trial. The Lancet, 387, 1540-1550. https://doi.org/10.1016/s0140-6736(15)01281-7
|
[18]
|
Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for Pd-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833. https://doi.org/10.1056/nejmoa1606774
|
[19]
|
Garon, E.B., Rizvi, N.A., Hui, R., Leighl, N., Balmanoukian, A.S., Eder, J.P., et al. (2015) Pembrolizumab for the Treatment of Non-Small-Cell Lung Cancer. New England Journal of Medicine, 372, 2018-2028. https://doi.org/10.1056/nejmoa1501824
|
[20]
|
Sharma, P., Callahan, M.K., Bono, P., Kim, J., Spiliopoulou, P., Calvo, E., et al. (2016) Nivolumab Monotherapy in Recurrent Metastatic Urothelial Carcinoma (checkmate 032): A Multicentre, Open-Label, Two-Stage, Multi-Arm, Phase 1/2 Trial. The Lancet Oncology, 17, 1590-1598. https://doi.org/10.1016/s1470-2045(16)30496-x
|
[21]
|
Socinski, M.A., Jotte, R.M., Cappuzzo, F., Orlandi, F., Stroyakovskiy, D., Nogami, N., et al. (2018) Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. New England Journal of Medicine, 378, 2288-2301. https://doi.org/10.1056/nejmoa1716948
|
[22]
|
Ottonello, S., Genova, C., Cossu, I., Fontana, V., Rijavec, E., Rossi, G., et al. (2020) Association between Response to Nivolumab Treatment and Peripheral Blood Lymphocyte Subsets in Patients with Non-Small Cell Lung Cancer. Frontiers in Immunology, 11, Article No. 125. https://doi.org/10.3389/fimmu.2020.00125
|
[23]
|
Li, X., Ma, L., Li, X., et al. (2021) Treatment Efficacy of PD-1 Inhibitor and Its Effect on the Level of T Lymphocyte Subsets and Cytokine in Peripheral Blood of Patients with Advanced Lung Cancer. Chinese Journal of Cancer Biotherapy, 28, 1113-1118.
|
[24]
|
Miao, K., Zhang, X., Wang, H., Si, X., Ni, J., Zhong, W., et al. (2022) Corrigendum: Peripheral Blood Lymphocyte Subsets Predict the Efficacy of Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Frontiers in Immunology, 13, Article ID: 1111230. https://doi.org/10.3389/fimmu.2022.1111230
|
[25]
|
Bremnes, R.M., Al-Shibli, K., Donnem, T., Sirera, R., Al-Saad, S., Andersen, S., et al. (2011) The Role of Tumor-Infiltrating Immune Cells and Chronic Inflammation at the Tumor Site on Cancer Development, Progression, and Prognosis: Emphasis on Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 6, 824-833. https://doi.org/10.1097/jto.0b013e3182037b76
|
[26]
|
Dunn, G.P., Old, L.J. and Schreiber, R.D. (2004) The Three Es of Cancer Immunoediting. Annual Review of Immunology, 22, 329-360. https://doi.org/10.1146/annurev.immunol.22.012703.104803
|
[27]
|
Dunn, G.P., Old, L.J. and Schreiber, R.D. (2004) The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity, 21, 137-148. https://doi.org/10.1016/j.immuni.2004.07.017
|
[28]
|
Schreiber, R.D., Old, L.J. and Smyth, M.J. (2011) Cancer Immunoediting: Integrating Immunity’s Roles in Cancer Suppression and Promotion. Science, 331, 1565-1570. https://doi.org/10.1126/science.1203486
|
[29]
|
Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J., et al. (2001) IFNγ and Lymphocytes Prevent Primary Tumour Development and Shape Tumour Immunogenicity. Nature, 410, 1107-1111. https://doi.org/10.1038/35074122
|
[30]
|
Wei, J., Zheng, W., Chapman, N.M., Geiger, T.L. and Chi, H. (2021) T Cell Metabolism in Homeostasis and Cancer Immunity. Current Opinion in Biotechnology, 68, 240-250. https://doi.org/10.1016/j.copbio.2021.02.003
|
[31]
|
Woo, E.Y., Yeh, H., Chu, C.S., Schlienger, K., Carroll, R.G., Riley, J.L., et al. (2002) Cutting Edge: Regulatory T Cells from Lung Cancer Patients Directly Inhibit Autologous T Cell Proliferation. The Journal of Immunology, 168, 4272-4276. https://doi.org/10.4049/jimmunol.168.9.4272
|
[32]
|
Baitsch, L., Baumgaertner, P., Devêvre, E., Raghav, S.K., Legat, A., Barba, L., et al. (2011) Exhaustion of Tumor-Specific CD8+ T Cells in Metastases from Melanoma Patients. Journal of Clinical Investigation, 121, 2350-2360. https://doi.org/10.1172/jci46102
|
[33]
|
Zajac, A.J., Blattman, J.N., Murali-Krishna, K., Sourdive, D.J.D., Suresh, M., Altman, J.D., et al. (1998) Viral Immune Evasion Due to Persistence of Activated T Cells without Effector Function. The Journal of Experimental Medicine, 188, 2205-2213. https://doi.org/10.1084/jem.188.12.2205
|
[34]
|
Verdon, D.J., Mulazzani, M. and Jenkins, M.R. (2020) Cellular and Molecular Mechanisms of CD8+ T Cell Differentiation, Dysfunction and Exhaustion. International Journal of Molecular Sciences, 21, Article No. 7357. https://doi.org/10.3390/ijms21197357
|
[35]
|
McLane, L.M., Abdel-Hakeem, M.S. and Wherry, E.J. (2019) CD8 T Cell Exhaustion during Chronic Viral Infection and Cancer. Annual Review of Immunology, 37, 457-495. https://doi.org/10.1146/annurev-immunol-041015-055318
|
[36]
|
Blank, C.U., Haining, W.N., Held, W., Hogan, P.G., Kallies, A., Lugli, E., et al. (2019) Defining “T Cell Exhaustion”. Nature Reviews Immunology, 19, 665-674. https://doi.org/10.1038/s41577-019-0221-9
|
[37]
|
Miggelbrink, A.M., Jackson, J.D., Lorrey, S.J., Srinivasan, E.S., Waibl-Polania, J., Wilkinson, D.S., et al. (2021) CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clinical Cancer Research, 27, 5742-5752. https://doi.org/10.1158/1078-0432.ccr-21-0206
|
[38]
|
Sant, A.J. and McMichael, A. (2012) Revealing the Role of CD4+ T Cells in Viral Immunity. Journal of Experimental Medicine, 209, 1391-1395. https://doi.org/10.1084/jem.20121517
|
[39]
|
Strutt, T.M., McKinstry, K.K., Dibble, J.P., Winchell, C., Kuang, Y., Curtis, J.D., et al. (2010) Memory CD4+ T Cells Induce Innate Responses Independently of Pathogen. Nature Medicine, 16, 558-564. https://doi.org/10.1038/nm.2142
|
[40]
|
Tay, R.E., Richardson, E.K. and Toh, H.C. (2020) Revisiting the Role of CD4+ T Cells in Cancer Immunotherapy—New Insights into Old Paradigms. Cancer Gene Therapy, 28, 5-17. https://doi.org/10.1038/s41417-020-0183-x
|
[41]
|
Beuneu, H., Garcia, Z. and Bousso, P. (2006) Cutting Edge: Cognate CD4 Help Promotes Recruitment of Antigen-Specific CD8 T Cells around Dendritic Cells. The Journal of Immunology, 177, 1406-1410. https://doi.org/10.4049/jimmunol.177.3.1406
|
[42]
|
Klebanoff, C.A., Gattinoni, L. and Restifo, N.P. (2006) CD8+ T‐Cell Memory in Tumor Immunology and Immunotherapy. Immunological Reviews, 211, 214-224. https://doi.org/10.1111/j.0105-2896.2006.00391.x
|
[43]
|
Caza, T. and Landas, S. (2015) Functional and Phenotypic Plasticity of CD4+ T Cell Subsets. BioMed Research International, 2015, Article ID: 521957. https://doi.org/10.1155/2015/521957
|
[44]
|
Li, N., Chen, J. and Shi, Y. (2018) Corrigendum to “Magnetic Graphene Solid-Phase Extraction for the Determination of Carbamate Pesticides in Tomatoes Coupled with High Performance Liquid Chromatography” [Talanta 141 (2015) 212-219]. Talanta, 178, 1077. https://doi.org/10.1016/j.talanta.2017.08.048
|
[45]
|
Philip, M. and Schietinger, A. (2021) CD8+ T Cell Differentiation and Dysfunction in Cancer. Nature Reviews Immunology, 22, 209-223. https://doi.org/10.1038/s41577-021-00574-3
|
[46]
|
Reina-Campos, M., Scharping, N.E. and Goldrath, A.W. (2021) CD8+ T Cell Metabolism in Infection and Cancer. Nature Reviews Immunology, 21, 718-738. https://doi.org/10.1038/s41577-021-00537-8
|
[47]
|
Durgeau, A., Virk, Y., Corgnac, S. and Mami-Chouaib, F. (2018) Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy. Frontiers in Immunology, 9, Article No. 14. https://doi.org/10.3389/fimmu.2018.00014
|
[48]
|
Hadrup, S., Donia, M. and Thorstraten, P. (2012) Effector CD4 and CD8 T Cells and Their Role in the Tumor Microenvironment. Cancer Microenvironment, 6, 123-133. https://doi.org/10.1007/s12307-012-0127-6
|
[49]
|
Wang, W., Green, M., Choi, J.E., Gijón, M., Kennedy, P.D., Johnson, J.K., et al. (2019) CD8+ T Cells Regulate Tumour Ferroptosis during Cancer Immunotherapy. Nature, 569, 270-274. https://doi.org/10.1038/s41586-019-1170-y
|
[50]
|
Phan, A.T., Goldrath, A.W. and Glass, C.K. (2017) Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 46, 714-729. https://doi.org/10.1016/j.immuni.2017.04.016
|
[51]
|
Kallies, A., Zehn, D. and Utzschneider, D.T. (2019) Precursor Exhausted T Cells: Key to Successful Immunotherapy? Nature Reviews Immunology, 20, 128-136. https://doi.org/10.1038/s41577-019-0223-7
|
[52]
|
Propper, D.J. and Balkwill, F.R. (2022) Harnessing Cytokines and Chemokines for Cancer Therapy. Nature Reviews Clinical Oncology, 19, 237-253. https://doi.org/10.1038/s41571-021-00588-9
|
[53]
|
Galon, J., Costes, A., Sanchez-Cabo, F., Kirilovsky, A., Mlecnik, B., Lagorce-Pagès, C., et al. (2006) Type, Density, and Location of Immune Cells within Human Colorectal Tumors Predict Clinical Outcome. Science, 313, 1960-1964. https://doi.org/10.1126/science.1129139
|
[54]
|
Pagès, F., Berger, A., Camus, M., Sanchez-Cabo, F., Costes, A., Molidor, R., et al. (2005) Effector Memory T Cells, Early Metastasis, and Survival in Colorectal Cancer. New England Journal of Medicine, 353, 2654-2666. https://doi.org/10.1056/nejmoa051424
|
[55]
|
Azimi, F., Scolyer, R.A., Rumcheva, P., Moncrieff, M., Murali, R., McCarthy, S.W., et al. (2012) Tumor-Infiltrating Lymphocyte Grade Is an Independent Predictor of Sentinel Lymph Node Status and Survival in Patients with Cutaneous Melanoma. Journal of Clinical Oncology, 30, 2678-2683. https://doi.org/10.1200/jco.2011.37.8539
|
[56]
|
Savas, P., Virassamy, B., Ye, C., Salim, A., Mintoff, C.P., Caramia, F., et al. (2018) Single-Cell Profiling of Breast Cancer T Cells Reveals a Tissue-Resident Memory Subset Associated with Improved Prognosis. Nature Medicine, 24, 986-993. https://doi.org/10.1038/s41591-018-0078-7
|
[57]
|
Bremnes, R.M., Busund, L., Kilvær, T.L., Andersen, S., Richardsen, E., Paulsen, E.E., et al. (2016) The Role of Tumor-Infiltrating Lymphocytes in Development, Progression, and Prognosis of Non-Small Cell Lung Cancer. Journal of Thoracic Oncology, 11, 789-800. https://doi.org/10.1016/j.jtho.2016.01.015
|
[58]
|
Ishibashi, Y., Tanaka, S., Tajima, K., Yoshida, T. and Kuwano, H. (2006) Expression of Foxp3 in Non-Small Cell Lung Cancer Patients Is Significantly Higher in Tumor Tissues than in Normal Tissues, Especially in Tumors Smaller than 30 mm. Oncology Reports, 15, 1315-1319. https://doi.org/10.3892/or.15.5.1315
|
[59]
|
Kataki, A., Scheid, P., Piet, M., Marie, B., Martinet, N., Martinet, Y., et al. (2002) Tumor Infiltrating Lymphocytes and Macrophages Have a Potential Dual Role in Lung Cancer by Supporting Both Host-Defense and Tumor Progression. Journal of Laboratory and Clinical Medicine, 140, 320-328. https://doi.org/10.1067/mlc.2002.128317
|
[60]
|
Rosenberg, S.A. (2005) Cancer Immunotherapy Comes of Age. Nature Clinical Practice Oncology, 2, 115-115. https://doi.org/10.1038/ncponc0101
|
[61]
|
Rosenberg, S.A., Spiess, P. and Lafreniere, R. (1986) A New Approach to the Adoptive Immunotherapy of Cancer with Tumor-Infiltrating Lymphocytes. Science, 233, 1318-1321. https://doi.org/10.1126/science.3489291
|
[62]
|
Horne, Z.D., Jack, R., Gray, Z.T., Siegfried, J.M., Wilson, D.O., Yousem, S.A., et al. (2011) Increased Levels of Tumor-Infiltrating Lymphocytes Are Associated with Improved Recurrence-Free Survival in Stage 1A Non-Small-Cell Lung Cancer. Journal of Surgical Research, 171, 1-5. https://doi.org/10.1016/j.jss.2011.03.068
|
[63]
|
Kilic, A., Landreneau, R.J., Luketich, J.D., Pennathur, A. and Schuchert, M.J. (2011) Density of Tumor-Infiltrating Lymphocytes Correlates with Disease Recurrence and Survival in Patients with Large Non-Small-Cell Lung Cancer Tumors. Journal of Surgical Research, 167, 207-210. https://doi.org/10.1016/j.jss.2009.08.029
|
[64]
|
Schalper, K.A., Brown, J., Carvajal-Hausdorf, D., McLaughlin, J., Velcheti, V., Syrigos, K.N., et al. (2015) Objective Measurement and Clinical Significance of TILs in Non-Small Cell Lung Cancer. JNCI: Journal of the National Cancer Institute, 107, dju435. https://doi.org/10.1093/jnci/dju435
|
[65]
|
Al-Shibli, K.I., Donnem, T., Al-Saad, S., Persson, M., Bremnes, R.M. and Busund, L. (2008) Prognostic Effect of Epithelial and Stromal Lymphocyte Infiltration in Non-Small Cell Lung Cancer. Clinical Cancer Research, 14, 5220-5227. https://doi.org/10.1158/1078-0432.ccr-08-0133
|
[66]
|
Donnem, T., Hald, S.M., Paulsen, E., Richardsen, E., Al-Saad, S., Kilvaer, T.K., et al. (2015) Stromal CD8+ T-Cell Density—A Promising Supplement to TNM Staging in Non-Small Cell Lung Cancer. Clinical Cancer Research, 21, 2635-2643. https://doi.org/10.1158/1078-0432.ccr-14-1905
|
[67]
|
Geng, Y., Shao, Y., He, W., Hu, W., Xu, Y., Chen, J., et al. (2015) Prognostic Role of Tumor-Infiltrating Lymphocytes in Lung Cancer: A Meta-Analysis. Cellular Physiology and Biochemistry, 37, 1560-1571. https://doi.org/10.1159/000438523
|
[68]
|
Kawai, O., Ishii, G., Kubota, K., Murata, Y., Naito, Y., Mizuno, T., et al. (2008) Predominant Infiltration of Macrophages and CD8+ T Cells in Cancer Nests Is a Significant Predictor of Survival in Stage IV Nonsmall Cell Lung Cancer. Cancer, 113, 1387-1395. https://doi.org/10.1002/cncr.23712
|
[69]
|
Yu, Y., Zeng, D., Ou, Q., Liu, S., Li, A., Chen, Y., et al. (2019) Association of Survival and Immune-Related Biomarkers with Immunotherapy in Patients with Non-small Cell Lung Cancer: A Meta-Analysis and Individual Patient-Level Analysis. JAMA Network Open, 2, e196879. https://doi.org/10.1001/jamanetworkopen.2019.6879
|
[70]
|
Federico, L., McGrail, D.J., Bentebibel, S., Haymaker, C., Ravelli, A., Forget, M., et al. (2022) Distinct Tumor-Infiltrating Lymphocyte Landscapes Are Associated with Clinical Outcomes in Localized Non-Small-Cell Lung Cancer. Annals of Oncology, 33, 42-56. https://doi.org/10.1016/j.annonc.2021.09.021
|
[71]
|
Guan, Q., Han, M., Guo, Q., Yan, F., Wang, M., Ning, Q., et al. (2023) Strategies to Reinvigorate Exhausted CD8+ T Cells in Tumor Microenvironment. Frontiers in Immunology, 14, Article ID: 1204363. https://doi.org/10.3389/fimmu.2023.1204363
|
[72]
|
Sanmamed, M.F., Nie, X., Desai, S.S., Villaroel-Espindola, F., Badri, T., Zhao, D., et al. (2021) A Burned-Out CD8+ T-Cell Subset Expands in the Tumor Microenvironment and Curbs Cancer Immunotherapy. Cancer Discovery, 11, 1700-1715. https://doi.org/10.1158/2159-8290.cd-20-0962
|
[73]
|
Manjarrez-Orduño, N., Menard, L.C., Kansal, S., Fischer, P., Kakrecha, B., Jiang, C., et al. (2018) Circulating T Cell Subpopulations Correlate with Immune Responses at the Tumor Site and Clinical Response to PD1 Inhibition in Non-Small Cell Lung Cancer. Frontiers in Immunology, 9, Article No. 1613. https://doi.org/10.3389/fimmu.2018.01613
|
[74]
|
Wu, K., Xia, B., Zhang, J., Li, X., Yang, S., Zhang, M., et al. (2022) Positive Correlation of Peripheral CD8+ T Lymphocytes with Immune-Related Adverse Events and Combinational Prognostic Value in Advanced Non-Small Cell Lung Cancer Patients Receiving Immune Checkpoint Inhibitors. Cancers, 14, Article No. 3568. https://doi.org/10.3390/cancers14153568
|
[75]
|
Ghiringhelli, F., Bibeau, F., Greillier, L., Fumet, J., Ilie, A., Monville, F., et al. (2023) Immunoscore Immune Checkpoint Using Spatial Quantitative Analysis of CD8 and PD-L1 Markers Is Predictive of the Efficacy of Anti-PD1/PD-L1 Immunotherapy in Non-Small Cell Lung Cancer. eBioMedicine, 92, 104633. https://doi.org/10.1016/j.ebiom.2023.104633
|
[76]
|
Hijazi, A., Antoniotti, C., Cremolini, C. and Galon, J. (2023) Light on Life: Immunoscore Immune-Checkpoint, a Predictor of Immunotherapy Response. OncoImmunology, 12, Article ID: 2243169. https://doi.org/10.1080/2162402x.2023.2243169
|