[1]
|
苏丹. 稀土基单分子磁体的磁性与多铁性研究[D]: [硕士学位论文]. 北京: 中国科学院大学(中国科学院物理研究所), 2024.
|
[2]
|
Bogani, L. and Wernsdorfer, W. (2008) Molecular Spintronics Using Single-Molecule Magnets. Nature Materials, 7, 179-186. https://doi.org/10.1038/nmat2133
|
[3]
|
Affronte, M., Troiani, F., Ghirri, A., Candini, A., Evangelisti, M., Corradini, V., et al. (2007) Single Molecule Magnets for Quantum Computation. Journal of Physics D: Applied Physics, 40, 2999-3004. https://doi.org/10.1088/0022-3727/40/10/s01
|
[4]
|
Awschalom, D.D. and DiVincenzo, D.P. (1995) Complex Dynamics of Mesoscopic Magnets. Physics Today, 48, 43-48. https://doi.org/10.1063/1.881448
|
[5]
|
Sessoli, R., Gatteschi, D., Caneschi, A. and Novak, M.A. (1993) Magnetic Bistability in a Metal-Ion Cluster. Nature, 365, 141-143. https://doi.org/10.1038/365141a0
|
[6]
|
Murugesu, M., Habrych, M., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2004) Single-Molecule Magnets: A Mn25 Complex with a Record s = 51/2 Spin for a Molecular Species. Journal of the American Chemical Society, 126, 4766-4767. https://doi.org/10.1021/ja0316824
|
[7]
|
Murugesu, M., Takahashi, S., Wilson, A., Abboud, K.A., Wernsdorfer, W., Hill, S., et al. (2008) Large Mn25 Single-Molecule Magnet with Spin s = 51/2: Magnetic and High-Frequency Electron Paramagnetic Resonance Spectroscopic Characterization of a Giant Spin State. Inorganic Chemistry, 47, 9459-9470. https://doi.org/10.1021/ic801142p
|
[8]
|
Tasiopoulos, A.J., Vinslava, A., Wernsdorfer, W., Abboud, K.A. and Christou, G. (2004) Giant Single‐Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes. Angewandte Chemie International Edition, 116, 2169-2173. https://doi.org/10.1002/ange.200353352
|
[9]
|
Milios, C.J., Vinslava, A., Wernsdorfer, W., et al. (2007) A Record Anisotropy Barrier for a Single-Molecule Magnet. Journal of the American Chemical Society, 129, 2754-2755.
|
[10]
|
Costes, J., Dahan, F., Dupuis, A. and Laurent, J. (1996) A Genuine Example of a Discrete Bimetallic (Cu, Gd) Complex: Structural Determination and Magnetic Properties. Inorganic Chemistry, 35, 2400-2402. https://doi.org/10.1021/ic951382q
|
[11]
|
Bencini, A., Benelli, C., Caneschi, A., Carlin, R.L., Dei, A. and Gatteschi, D. (1985) Crystal and Molecular Structure of and Magnetic Coupling in Two Complexes Containing Gadolinium(III) and Copper(II) Ions. Journal of the American Chemical Society, 107, 8128-8136. https://doi.org/10.1021/ja00312a054
|
[12]
|
Costes, J., Dahan, F., Dupuis, A. and Laurent, J. (1997) Experimental Evidence of a Ferromagnetic Ground State (s = 9/2) for a Dinuclear Gd(III)-Ni(II) Complex. Inorganic Chemistry, 36, 4284-4286. https://doi.org/10.1021/ic970720f
|
[13]
|
Stemmler, A.J., Kampf, J.W., Kirk, M.L., Atasi, B.H. and Pecoraro, V.L. (1999) The Preparation, Characterization, and Magnetism of Copper 15-Metallacrown-5 Lanthanide Complexes. Inorganic Chemistry, 38, 2807-2817. https://doi.org/10.1021/ic9800233
|
[14]
|
Liu, J., Chen, Y., Zheng, Y., Lin, W., Ungur, L., Wernsdorfer, W., et al. (2013) Switching the Anisotropy Barrier of a Single-Ion Magnet by Symmetry Change from Quasi-D5h to Quasi-oh. Chemical Science, 4, 3310-3316. https://doi.org/10.1039/c3sc50843a
|
[15]
|
Chen, Y., Liu, J., Ungur, L., Liu, J., Li, Q., Wang, L., et al. (2016) Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Journal of the American Chemical Society, 138, 2829-2837. https://doi.org/10.1021/jacs.5b13584
|
[16]
|
Canaj, A.B., Dey, S., Martí, E.R., Wilson, C., Rajaraman, G. and Murrie, M. (2019) Insight into D6h Symmetry: Targeting Strong Axiality in Stable Dysprosium(III) Hexagonal Bipyramidal Single‐Ion Magnets. Angewandte Chemie International Edition, 58, 14146-14151. https://doi.org/10.1002/anie.201907686
|
[17]
|
Wen, H., Liu, S., Xie, X., Bao, J., Liu, C. and Chen, J. (2015) A Family of Nickel-Lanthanide Heterometallic Dinuclear Complexes Derived from a Chiral Schiff-Base Ligand Exhibiting Single-Molecule Magnet Behaviors. Inorganica Chimica Acta, 435, 274-282. https://doi.org/10.1016/j.ica.2015.07.009
|
[18]
|
Li, Z., Li, X., Yan, Y., Hou, L., Zhang, W. and Wang, Y. (2018) Tunable Emission and Selective Luminescence Sensing in a Series of Lanthanide Metal-Organic Frameworks with Uncoordinated Lewis Basic Triazolyl Sites. Crystal Growth & Design, 18, 2031-2039. https://doi.org/10.1021/acs.cgd.7b01453
|
[19]
|
Zhong, L., Chen, W., Li, X., OuYang, Z., Yang, M., Zhang, Y., et al. (2020) Four Dinuclear and One-Dimensional-Chain Dysprosium and Terbium Complexes Based on 2-Hydroxy-3-Methoxybenzoic Acid: Structures, Fluorescence, Single-Molecule-Magnet, and Ab Initio Investigation. Inorganic Chemistry, 59, 4414-4423. https://doi.org/10.1021/acs.inorgchem.9b03555
|
[20]
|
Yu, Y., Pan, X., Cui, C., Luo, X., Li, N., Mei, H., et al. (2020) A Series Three-Dimensional Ln4Cr4 (Ln = Gd, Tb, Er) Heterometallic Cluster-Based Coordination Polymers Containing Interesting Nanotubes Exhibiting High Magnetic Entropy. Inorganic Chemistry, 59, 5593-5599. https://doi.org/10.1021/acs.inorgchem.0c00281
|
[21]
|
Wen, H., Hu, J., Yang, K., Zhang, J., Liu, S., Liao, J., et al. (2020) Family of Chiral ZnII-LnIII (Ln = Dy and Tb) Heterometallic Complexes Derived from the Amine-Phenol Ligand Showing Multifunctional Properties. Inorganic Chemistry, 59, 2811-2824. https://doi.org/10.1021/acs.inorgchem.9b03164
|
[22]
|
Tian, Y., Stroppa, A., Chai, Y., Barone, P., Perez-Mato, M., Picozzi, S., et al. (2014) High-Temperature Ferroelectricity and Strong Magnetoelectric Effects in a Hybrid Organic-Inorganic Perovskite Framework. Physica Status Solidi (RRL)—Rapid Research Letters, 9, 62-67. https://doi.org/10.1002/pssr.201409470
|
[23]
|
Zhao, F.H., Li, H., Che, Y.X., Zheng, J.M., Vieru, V., Chibotaru, L.F., Grandjean, F. and Long, G.J. (2014) Synthesis, Structure, and Magnetic Properties of Dy2Co2L10(bipy)2 and Ln2Ni2L10(bipy)2, Ln = La, Gd, Tb, Dy, and Ho: Slow Magnetic Relaxation in Dy2Co2L10(bipy)2 and Dy2Ni2L10(bipy)2. Inorganic Chemistry, 53, 9785-9799.
|
[24]
|
Li, X., Min, F., Wang, C., Lin, S., Liu, Z. and Tang, J. (2015) Utilizing 3d-4f Magnetic Interaction to Slow the Magnetic Relaxation of Heterometallic Complexes. Inorganic Chemistry, 54, 4337-4344. https://doi.org/10.1021/acs.inorgchem.5b00019
|
[25]
|
Li, Y., Shang, Q., Zhang, Y., Yang, E. and Zhao, X. (2016) Fine Tuning of the Anisotropy Barrier by Ligand Substitution Observed in Linear {Dy2Ni2} Clusters. Chemistry—A European Journal, 22, 18840-18849. https://doi.org/10.1002/chem.201603800
|
[26]
|
Mondal, K.C., Kostakis, G.E., Lan, Y., Wernsdorfer, W., Anson, C.E. and Powell, A.K. (2011) Defect-Dicubane Ni2Ln2 (Ln = Dy, Tb) Single Molecule Magnets. Inorganic Chemistry, 50, 11604-11611. https://doi.org/10.1021/ic2015397
|
[27]
|
Zhao, L., Wu, J., Ke, H. and Tang, J. (2014) Family of Defect-Dicubane Ni4Ln2 (Ln = Gd, Tb, Dy, Ho) and Ni4Y2 Complexes: Rare Tb(III) and Ho(III) Examples Showing SMM Behavior. Inorganic Chemistry, 53, 3519-3525. https://doi.org/10.1021/ic402973g
|
[28]
|
Zou, H., Sheng, L., Liang, F., Chen, Z. and Zhang, Y. (2015) Experimental and Theoretical Investigations of Four 3d-4f Butterfly Single-Molecule Magnets. Dalton Transactions, 44, 18544-18552. https://doi.org/10.1039/c5dt03368c
|
[29]
|
Chandrasekhar, V., Bag, P., Kroener, W., Gieb, K. and Müller, P. (2013) Pentanuclear Heterometallic {Ni2Ln3} (Ln = Gd, Dy, Tb, Ho) Assemblies. Single-Molecule Magnet Behavior and Multistep Relaxation in the Dysprosium Derivative. Inorganic Chemistry, 52, 13078-13086. https://doi.org/10.1021/ic4019025
|
[30]
|
Canaj, A.B., Tzimopoulos, D.I., Siczek, M., Lis, T., Inglis, R. and Milios, C.J. (2015) Enneanuclear [Ni6Ln3] Cages: [LnIII3] Triangles Capping [NiII6] Trigonal Prisms Including a [Ni6Dy3] Single-Molecule Magnet. Inorganic Chemistry, 54, 7089-7095. https://doi.org/10.1021/acs.inorgchem.5b01149
|
[31]
|
Wu, S., Ruan, Z., Huang, G., Zheng, J., Vieru, V., Taran, G., et al. (2021) Field-Induced Oscillation of Magnetization Blocking Barrier in a Holmium Metallacrown Single-Molecule Magnet. Chem, 7, 982-992. https://doi.org/10.1016/j.chempr.2020.12.022
|
[32]
|
Maity, S., Ghosh, T.K., Ito, S., Bhunia, P., Ishida, T. and Ghosh, A. (2022) Structures and Magnetic Properties of Carbonato-Bridged Hexanuclear NiII4LnIII2 (Ln = Gd, Tb, Dy) Complexes Formed by Atmospheric Carbon Dioxide Fixation in the Absence of an External Base. Crystal Growth & Design, 22, 4332-4342. https://doi.org/10.1021/acs.cgd.2c00298
|
[33]
|
Pointillart, F., Bernot, K., Sessoli, R. and Gatteschi, D. (2007) Effects of 3d-4f Magnetic Exchange Interactions on the Dynamics of the Magnetization of DyIII‐MII‐DyIII Trinuclear Clusters. Chemistry—A European Journal, 13, 1602-1609. https://doi.org/10.1002/chem.200601194
|
[34]
|
Chandrasekhar, V., Pandian, B.M., Boomishankar, R., Steiner, A., Vittal, J.J., Houri, A., et al. (2008) Trinuclear Heterobimetallic Ni2Ln Complexes [L2Ni2Ln][ClO4] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er; Lh3 = (s)p[n(me)n═Ch-C6H3-2-Oh-3-Ome]3): From Simple Paramagnetic Complexes to Single-Molecule Magnet Behavior. Inorganic Chemistry, 47, 4918-4929. https://doi.org/10.1021/ic800199x
|
[35]
|
Sutter, J., Dhers, S., Rajamani, R., Ramasesha, S., Costes, J., Duhayon, C., et al. (2009) Hetero-Metallic {3d-4f-5d} Complexes: Preparation and Magnetic Behavior of Trinuclear [(Lme2Ni-Ln){w(cn)8}] Compounds (Ln = Gd, Tb, Dy, Ho, Er, Y; Lme2 = Schiff Base) and Variable SMM Characteristics for the Tb Derivative. Inorganic Chemistry, 48, 5820-5828. https://doi.org/10.1021/ic900003m
|
[36]
|
Colacio, E., Ruiz-Sanchez, J., White, F.J. and Brechin, E.K. (2011) Strategy for the Rational Design of Asymmetric Triply Bridged Dinuclear 3d-4f Single-Molecule Magnets. Inorganic Chemistry, 50, 7268-7273. https://doi.org/10.1021/ic2008599
|
[37]
|
Gao, Y., Zhao, L., Xu, X., Xu, G., Guo, Y., Tang, J., et al. (2011) Heterometallic Cubanes: Syntheses, Structures, and Magnetic Properties of Lanthanide(III)-Nickel(II) Architectures. Inorganic Chemistry, 50, 1304-1308. https://doi.org/10.1021/ic101849h
|
[38]
|
Colacio, E., Ruiz, J., Mota, A.J., Palacios, M.A., Cremades, E., Ruiz, E., et al. (2012) Family of Carboxylate-and Nitrate-Diphenoxo Triply Bridged Dinuclear NiIILnIII Complexes (Ln = Eu, Gd, Tb, Ho, Er, Y): Synthesis, Experimental and Theoretical Magneto-Structural Studies, and Single-Molecule Magnet Behavior. Inorganic Chemistry, 51, 5857-5868. https://doi.org/10.1021/ic3004596
|
[39]
|
Peng, J., Zhang, Q., Kong, X., Zheng, Y., Ren, Y., Long, L., et al. (2012) High-Nuclearity 3d-4f Clusters as Enhanced Magnetic Coolers and Molecular Magnets. Journal of the American Chemical Society, 134, 3314-3317. https://doi.org/10.1021/ja209752z
|
[40]
|
Sakamoto, S., Fujinami, T., Nishi, K., Matsumoto, N., Mochida, N., Ishida, T., Sunatsuki, Y. and Re, N. (2013) Carbonato-Bridged NiII2LnIII2 (LnIII = GdIII, TbIII, DyIII) Complexes Generated by Atmospheric CO2 Fixation and Their Single-Molecule-Magnet Behavior: [(μ4-CO3)2{NiII(3-MeOsaltn)(MeOH or H2O)LnIII(NO3)}2]∙Solvent [3-MeOsaltn = N,N’-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato]. Inorganic Chemistry, 52, 7218-7229.
|
[41]
|
Towatari, M., Nishi, K., Fujinami, T., Matsumoto, N., Sunatsuki, Y., Kojima, M., et al. (2013) Syntheses, Structures, and Magnetic Properties of Acetato-and Diphenolato-Bridged 3d-4f Binuclear Complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln-(hfac)2] (M = ZnII, CuII, NiII, CoII; Ln = LaIII, GdIII, TbIII, DyIII; 3-MeOsaltn = N,N’-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = Acetato; hfac = Hexafluoroacetylacetonato; x = 0 or 1). Inorganic Chemistry, 52, 6160-6178.
|
[42]
|
Ahmed, N., Das, C., Vaidya, S., Langley, S.K., Murray, K.S. and Shanmugam, M. (2014) Nickel(II)-Lanthanide(III) Magnetic Exchange Coupling Influencing Single‐molecule Magnetic Features in {Ni2Ln2} Complexes. Chemistry—A European Journal, 20, 14235-14239. https://doi.org/10.1002/chem.201404393
|
[43]
|
Goura, J., Guillaume, R., Rivière, E. and Chandrasekhar, V. (2014) Hexanuclear, Heterometallic, Ni3Ln3 Complexes Possessing O-Capped Homo-and Heterometallic Structural Subunits: SMM Behavior of the Dysprosium Analogue. Inorganic Chemistry, 53, 7815-7823. https://doi.org/10.1021/ic403090z
|
[44]
|
Moreno Pineda, E., Chilton, N.F., Tuna, F., Winpenny, R.E.P. and McInnes, E.J.L. (2015) Systematic Study of a Family of Butterfly-Like {M2Ln2} Molecular Magnets (M = MgII, MnIII, CoII, NiII, and CuII; Ln = YIII, GdIII, TbIII, DyIII, HoIII, and ErIII). Inorganic Chemistry, 54, 5930-5941. https://doi.org/10.1021/acs.inorgchem.5b00746
|
[45]
|
Zhang, S., Li, H., Duan, E., Han, Z., Li, L., Tang, J., et al. (2016) A 3D Heterometallic Coordination Polymer Constructed by Trimeric {NiDy2} Single-Molecule Magnet Units. Inorganic Chemistry, 55, 1202-1207. https://doi.org/10.1021/acs.inorgchem.5b02378
|
[46]
|
Liu, M., Hu, K., Liu, C., Cui, A. and Kou, H. (2017) Metallocyclic Ni4Ln2M2 Single-Molecule Magnets. Dalton Transactions, 46, 6544-6552. https://doi.org/10.1039/c7dt00948h
|
[47]
|
Wu, H., Li, M., Zhang, S., Ke, H., Zhang, Y., Zhuang, G., et al. (2017) Magnetic Interaction Affecting the Zero-Field Single-Molecule Magnet Behaviors in Isomorphic {NiII2DyIII2} and {CoII2DyIII2} Tetranuclear Complexes. Inorganic Chemistry, 56, 11387-11397. https://doi.org/10.1021/acs.inorgchem.7b01840
|
[48]
|
Canaj, A.B., Tzimopoulos, D.I., Kalofolias, D.A., Siczek, M., Lis, T., Murrie, M., et al. (2018) Heterometallic Lanthanide-Centred [NIII6LnIII] Rings. Dalton Transactions, 47, 12863-12867. https://doi.org/10.1039/c8dt02855a
|
[49]
|
Fan, S., Xu, S., Zheng, X., Yan, Z., Kong, X., Long, L., et al. (2018) Four 3d-4f Heterometallic Ln45M7 Clusters Protected by Mixed Ligands. CrystEngComm, 20, 2120-2125. https://doi.org/10.1039/c8ce00173a
|
[50]
|
Mandal, S., Ghosh, S., Takahashi, D., Christou, G. and Mohanta, S. (2018) Single‐Crystal to Single‐Crystal Transformations and Magnetic Properties of a Series of “Butterfly” NiII2LnIII2 Compounds: SMM Behavior of the Dysprosium(III) Analogue. European Journal of Inorganic Chemistry, 2018, 2793-2804. https://doi.org/10.1002/ejic.201800359
|
[51]
|
Pei, S., Hu, Z., Chen, Z., Yu, S., Li, B., Liang, Y., et al. (2018) Heterometallic Hexanuclear Ni4M2 (M = Dy, Y) Complexes: Structure and Single-Molecule Magnet for the Dy(III) Derivative. Dalton Transactions, 47, 1801-1807. https://doi.org/10.1039/c7dt04003b
|
[52]
|
Bhanja, A., Herchel, R., Trávníček, Z. and Ray, D. (2019) Two Types of Hexanuclear Partial Tetracubane [Ni4Ln2] (Ln = Dy, Tb, Ho) Complexes of Thioether-Based Schiff Base Ligands: Synthesis, Structure, and Comparison of Magnetic Properties. Inorganic Chemistry, 58, 12184-12198. https://doi.org/10.1021/acs.inorgchem.9b01517
|
[53]
|
Ge, J., Chen, Z., Qiu, Y., Huo, D., Zhang, Y., Wang, P., et al. (2019) Modulating Magnetic Property of Phthalocyanine Supported MII-DyIII (M = Ni, Zn) Heterodinuclear Complexes. Inorganic Chemistry, 58, 9387-9396. https://doi.org/10.1021/acs.inorgchem.9b01179
|
[54]
|
Mayans, J., Saez, Q., Font-Bardia, M. and Escuer, A. (2019) Enhancement of Magnetic Relaxation Properties with 3d Diamagnetic Cations in [ZnIILnIII] and [NiIILnIII], LnIII = Kramers Lanthanides. Dalton Transactions, 48, 641-652. https://doi.org/10.1039/c8dt03679a
|
[55]
|
Meseguer, C., Palacios, M.A., Mota, A.J., Drahoš, B., Brechin, E.K., Navarrete, R., et al. (2019) Effect of Π-Aromatic Spacers on the Magnetic Properties and Slow Relaxation of Double Stranded Metallacyclophanes with a LnIII-MII-MII-LnIII (LnIII = GdIII, DyIII, YIII; MII = NIII, CoII) Linear Topology. Polyhedron, 170, 373-387. https://doi.org/10.1016/j.poly.2019.05.054
|
[56]
|
Zhang, J., Liu, W., Wang, C., Xu, S., Liu, B. and Dong, Y. (2019) Syntheses and Properties of Three Types of 3,4‐Dichlorobenzoate‐Based Ni(II)‐Ln(III) Heterometallic Clusters. ChemistrySelect, 4, 12418-12423. https://doi.org/10.1002/slct.201902628
|
[57]
|
Zhou, H., Dong, R., Wang, Z., Wu, L., Liu, Y. and Shen, X. (2019) The Influence of d‐f Coupling on Slow Magnetic Relaxation in NiIILnIIIMIII (Ln = Gd, Tb, Dy; M = Cr, Fe, Co) Clusters. European Journal of Inorganic Chemistry, 2019, 2361-2367. https://doi.org/10.1002/ejic.201900263
|
[58]
|
Bhanja, A., Schulze, M., Herchel, R., Moreno-Pineda, E., Wernsdorfer, W. and Ray, D. (2020) Selective Coordination of Self-Assembled Hexanuclear [Ni4Ln2] and [Ni2Mn2Ln2] (Ln = DyIII, TbIII, and HoIII) Complexes: Stepwise Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry, 59, 17929-17944. https://doi.org/10.1021/acs.inorgchem.0c02148
|
[59]
|
Maity, S., Ghosh, T.K., Gómez-García, C.J. and Ghosh, A. (2020) Hexanuclear NiII4LnIII2 Complexes with SMM Behavior at Zero Field for Ln = Tb, Dy, Ho. Crystal Growth & Design, 20, 7300-7311. https://doi.org/10.1021/acs.cgd.0c00957
|
[60]
|
Shukla, P., Roy, S., Dolui, D., Cañón‐Mancisidor, W. and Das, S. (2020) Pentanuclear Spirocyclic Ni4Ln Derivatives: Field Induced Slow Magnetic Relaxation in the Dysprosium and Erbium Analogues. European Journal of Inorganic Chemistry, 2020, 823-832. https://doi.org/10.1002/ejic.201901350
|
[61]
|
Yang, P., Yu, S., Quan, L., Hu, H., Liu, D., Liang, Y., et al. (2020) Structure and Magnetic Properties of Two Discrete 3d‐4f Heterometallic Complexes. ChemistrySelect, 5, 9946-9951. https://doi.org/10.1002/slct.202002611
|
[62]
|
Antkowiak, M., Majee, M.C., Maity, M., Mondal, D., Kaj, M., Lesiów, M., et al. (2021) Generalized Heisenberg-Type Magnetic Phenomena in Coordination Polymers with Nickel-Lanthanide Dinuclear Units. The Journal of Physical Chemistry C, 125, 11182-11196. https://doi.org/10.1021/acs.jpcc.1c01947
|
[63]
|
Wang, X., Han, J., Huang, X. and Li, L. (2021) LnIII-NIII Heterometallic Compounds Linked by Nitronyl Nitroxides: Structure and Magnetism. Inorganic Chemistry Communications, 134, Article ID: 108983. https://doi.org/10.1016/j.inoche.2021.108983
|
[64]
|
Yang, P., Hu, H., Yu, S., Liu, D., Liang, Y., Zou, H., et al. (2021) Superb Alkali-Resistant DyIII2NiII4 Single-Molecule Magnet. Inorganic Chemistry, 60, 14752-14758. https://doi.org/10.1021/acs.inorgchem.1c01963
|
[65]
|
Yu, S., Zhang, Q., Chen, Z., Zou, H., Hu, H., Liu, D., et al. (2021) Structure, Assembly Mechanism and Magnetic Properties of Heterometallic Dodecanuclear Nanoclusters DyIII4MII8 (M = Ni, Co). Inorganic Chemistry Frontiers, 8, 5214-5224. https://doi.org/10.1039/d1qi01051d
|
[66]
|
Zeng, M., Hu, K., Liu, C. and Kou, H. (2021) Heterotrimetallic Ni2Ln2Fe3 Chain Complexes Based on [Fe(1-Ch3im)-(Cn)5]2−. Dalton Transactions, 50, 6427-6431. https://doi.org/10.1039/d1dt00693b
|
[67]
|
Zheng, J., Zhang, Y., Shen, Y., Chen, F., Liu, B. and Zhang, J. (2021) Syntheses and Magnetic Properties of a Series of Discrete Ni(II)-Ln(III) Heterometallic Complexes Based on 2,3-Dichlorobenzoate and 2,2’-Bipyridine. Polyhedron, 206, Article ID: 115328. https://doi.org/10.1016/j.poly.2021.115328
|
[68]
|
Yu, S., Hu, H., Zou, H., Liu, D., Liang, Y., Liang, F., et al. (2022) Two Heterometallic Nanoclusters [DyIII4NiII8] and [DyIII10MnIII4MnII2]: Structure, Assembly Mechanism, and Magnetic Properties. Inorganic Chemistry, 61, 3655-3663. https://doi.org/10.1021/acs.inorgchem.1c03768
|
[69]
|
Alouani-Dahmouni, N.E., Rabelo, R., Mayans, J., Moliner, N., Stiriba, S., Julve, M., et al. (2023) Solvatotuning of the Field-Induced Slow Magnetic Relaxation through a Single-Crystal-to-Single-Crystal Transformation in Pentanuclear Gadolinium(III)-Nickel(II) Complexes. Crystal Growth & Design, 23, 5403-5408. https://doi.org/10.1021/acs.cgd.3c00511
|
[70]
|
Dutta, B., Guizouarn, T., Pointillart, F., Kotrle, K., Herchel, R. and Ray, D. (2023) Lanthanoid Coordination Prompts Unusually Distorted Pseudo-Octahedral NiII Coordination in Heterodinuclear Ni-Ln Complexes: Synthesis, Structure and Understanding of Magnetic Behaviour through Experiment and Computation. Dalton Transactions, 52, 10402-10414. https://doi.org/10.1039/d3dt01387a
|
[71]
|
Jing, Y., Wang, J., Kong, M., Wang, G., Zhang, Y. and Song, Y. (2023) Detailed Magnetic Properties and Theoretical Calculation in Ferromagnetic Coupling DyIII-MII 3d-4f Complexes Based on a 1,4,7,10Tetraazacyclododecane Derivative. Inorganica Chimica Acta, 546, Article ID: 121301. https://doi.org/10.1016/j.ica.2022.121301
|
[72]
|
Li, G., Tang, H., Gao, R., Wang, Y., Sun, X. and Zhang, K. (2023) Tuning Quantum Tunneling in Isomorphic {MII2DyIII2} “Butterfly” System via 3d-4f Magnetic Interaction. Crystal Growth & Design, 23, 1575-1580. https://doi.org/10.1021/acs.cgd.2c01198
|
[73]
|
Liu, H., Yu, C., Wang, H. and Pan, Z. (2023) Synthesis, Crystal Structures and Magnetic Properties of Two Ni-Dy Heterometallic Complexes with the Structural Topologies Regulated by Employing Different Schiff Base Ligands. Polyhedron, 243, Article ID: 116566. https://doi.org/10.1016/j.poly.2023.116566
|
[74]
|
Ruan, Z., Lai, J., Li, J., Zhao, X., Huang, G., Wu, S., et al. (2023) Deciphering the Enigma of a Temperature-Dependent Best-Performance Field in Single-Molecule Magnets. The Journal of Physical Chemistry C, 127, 14450-14457. https://doi.org/10.1021/acs.jpcc.3c02541
|
[75]
|
Shen, Y., Qu, T., Zhang, X., Chen, F., Liu, B. and Zhang, J. (2023) Six Nickel-Lanthanoid Heterometallic Complexes Based on 2,5-Dichlorobenzoate and Phen: Syntheses, Structures and Magnetic Properties. Inorganica Chimica Acta, 546, Article ID: 121295. https://doi.org/10.1016/j.ica.2022.121295
|