[1]
|
Jiang, S., Zhang, Y., Yang, Y., Huang, Y., Ma, G., Luo, Y., et al. (2019) Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection. ACS Applied Materials & Interfaces, 11, 10554-10558. https://doi.org/10.1021/acsami.9b00010
|
[2]
|
Hao, Y., Fang, M., Xu, C., Ying, Z., Wang, H., Zhang, R., et al. (2021) A Graphene-Laminated Electrode with High Glucose Oxidase Loading for Highly-Sensitive Glucose Detection. Journal of Materials Science & Technology, 66, 57-63. https://doi.org/10.1016/j.jmst.2020.04.070
|
[3]
|
Madden, J., Barrett, C., Laffir, F.R., Thompson, M., Galvin, P. and O’Riordan, A. (2021) On-Chip Glucose Detection Based on Glucose Oxidase Immobilized on a Platinum-Modified, Gold Microband Electrode. Biosensors, 11, Article 249. https://doi.org/10.3390/bios11080249
|
[4]
|
Zha, S., Li, H., Law, G., Wong, K. and All, A.H. (2023) Sensitive and Responsive Upconversion Nanoprobes for Fluorescence Turn-On Detection of Glucose Concentration. Materials & Design, 227, Article ID: 111800. https://doi.org/10.1016/j.matdes.2023.111800
|
[5]
|
Jin, H., Zeng, W., Qian, W., Li, L., Ji, P., Li, Z., et al. (2024) Accelerated Reconstruction of ZIF-67 with Significantly Enhanced Glucose Detection Sensitivity. Nano Research, 17, 4737-4743. https://doi.org/10.1007/s12274-023-6409-0
|
[6]
|
Chen, X., Dou, X., Qiu, W., Hong, Y. and Chen, Y. (2023) A Glucose-Sensitive Microgel Operating at Physiological Conditions for Glucose Detecting and Insulin Delivery. European Polymer Journal, 195, Article ID: 112236. https://doi.org/10.1016/j.eurpolymj.2023.112236
|
[7]
|
Hou, Z., Gao, T., Liu, X., Guo, W., Bai, L., Wang, W., et al. (2023) Dual Detection of Human Motion and Glucose in Sweat with Polydopamine and Glucose Oxidase Doped Self-Healing Nanocomposite Hydrogels. International Journal of Biological Macromolecules, 252, Article ID: 126473. https://doi.org/10.1016/j.ijbiomac.2023.126473
|
[8]
|
Wu, M., Zhang, Y., Liu, Q., Huang, H., Wang, X., Shi, Z., et al. (2019) A Smart Hydrogel System for Visual Detection of Glucose. Biosensors and Bioelectronics, 142, Article ID: 111547. https://doi.org/10.1016/j.bios.2019.111547
|
[9]
|
Li, X., Lv, J., Zhao, J., Ling, G. and Zhang, P. (2024) Swellable Colorimetric Microneedles for Glucose Detection Based on Glucose Oxidase-Like Gold Nanoparticles. Analytica Chimica Acta, 1288, Article ID: 342152. https://doi.org/10.1016/j.aca.2023.342152
|
[10]
|
Rernglit, W., Teanphonkrang, S., Suginta, W. and Schulte, A. (2019) Amperometric Enzymatic Sensing of Glucose Using Porous Carbon Nanotube Films Soaked with Glucose Oxidase. Microchimica Acta, 186, Article No. 616. https://doi.org/10.1007/s00604-019-3740-y
|
[11]
|
Jarnda, K.V., Wang, D., Qurrat-Ul-Ain, Anaman, R., Johnson, V.E., Roberts, G.P., et al. (2023) Recent Advances in Electrochemical Non-Enzymatic Glucose Sensor for the Detection of Glucose in Tears and Saliva: A Review. Sensors and Actuators A: Physical, 363, Article ID: 114778. https://doi.org/10.1016/j.sna.2023.114778
|
[12]
|
Ma, R., Wang, Y., Sha, Z., et al. (2024) Te-Au Nanowires with Multiple Enzyme-Like Activities for Glucose Detection. Journal of Materials Science, 59, 1-17.
|
[13]
|
Han, Z., Zhang, X., Yuan, H., Li, Z., Li, G., Zhang, H., et al. (2022) Graphene Oxide/Gold Nanoparticle/Graphite Fiber Microelectrodes for Directing Electron Transfer of Glucose Oxidase and Glucose Detection. Journal of Power Sources, 521, Article ID: 230956. https://doi.org/10.1016/j.jpowsour.2021.230956
|
[14]
|
Chen, C., Fu, J., Chang, J., Huang, S., Yeh, T., Hung, J., et al. (2018) Bismuth Oxyfluoride/Bismuth Oxyiodide Nanocomposites Enhance Visible-Light-Driven Photocatalytic Activity. Journal of Colloid and Interface Science, 532, 375-386. https://doi.org/10.1016/j.jcis.2018.07.130
|
[15]
|
Siao, C., Chen, H., Chen, L., Chang, J., Yeh, T. and Chen, C. (2018) Controlled Hydrothermal Synthesis of Bismuth Oxychloride/Bismuth Oxybromide/Bismuth Oxyiodide Composites Exhibiting Visible-Light Photocatalytic Degradation of 2-Hydroxybenzoic Acid and Crystal Violet. Journal of Colloid and Interface Science, 526, 322-336. https://doi.org/10.1016/j.jcis.2018.04.097
|
[16]
|
Zhang, T., Yue, X., Gao, L., Qiu, F., Xu, J., Rong, J., et al. (2017) Hierarchically Porous Bismuth Oxide/Layered Double Hydroxide Composites: Preparation, Characterization and Iodine Adsorption. Journal of Cleaner Production, 144, 220-227. https://doi.org/10.1016/j.jclepro.2017.01.030
|
[17]
|
Lee, Y., Dai, Y., Fu, J. and Chen, C. (2017) A Series of Bismuth-Oxychloride/Bismuth-Oxyiodide/Graphene-Oxide Nanocomposites: Synthesis, Characterization, and Photcatalytic Activity and Mechanism. Molecular Catalysis, 432, 196-209. https://doi.org/10.1016/j.mcat.2017.01.002
|
[18]
|
Cai, J., Zhang, Y., Qian, T., Li, X., Chen, Z. and Zhang, L. (2022) Bismuth Oxybromide/Bismuth Oxyiodide Nanojunctions Decorated on Flexible Carbon Fiber Cloth as Easily Recyclable Photocatalyst for Removing Various Pollutants from Wastewater. Journal of Colloid and Interface Science, 608, 2660-2671. https://doi.org/10.1016/j.jcis.2021.10.188
|
[19]
|
Luo, Y., Zhang, M., Yin, H., Yao, J., Chen, S. and Liu, X. (2019) One Pot Controllable Synthesis of Palygorskite/Bismuth Oxyiodide Hierarchical Microspheres for Improved Visible-Light Photocatalytic Performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, Article ID: 123573. https://doi.org/10.1016/j.colsurfa.2019.06.038
|
[20]
|
Pei, Z. and Guo, H. (2023) Synthesis of Sio2-Doped Biox (X=Cl, Br) II-Type Heterojunctions and 2H-MoS2-Doped SiO2@Biox Z-Scheme Heterojunctions: A Comparative Study. Journal of Physics and Chemistry of Solids, 176, Article ID: 111236. https://doi.org/10.1016/j.jpcs.2023.111236
|
[21]
|
Lv, J., Hu, Q., Cao, C. and Zhao, Y. (2018) Modulation of Valence Band Maximum Edge and Photocatalytic Activity of Biox by Incorporation of Halides. Chemosphere, 191, 427-437. https://doi.org/10.1016/j.chemosphere.2017.09.149
|
[22]
|
Wang, J., Bei, J., Guo, X., Ding, Y., Chen, T., Lu, B., et al. (2022) Ultrasensitive Photoelectrochemical Immunosensor for Carcinoembryonic Antigen Detection Based on Pillar[5]arene-Functionalized Au Nanoparticles and Hollow PANI Hybrid BiOBr Heterojunction. Biosensors and Bioelectronics, 208, Article ID: 114220. https://doi.org/10.1016/j.bios.2022.114220
|
[23]
|
Wang, J., Zhou, Q., Fan, C., Guo, X., Bei, J., Chen, T., et al. (2024) Ultrasensitive and Specific Photoelectrochemical Sensor for Hydrogen Peroxide Detection Based on Pillar[5]arene-Functionalized Au Nanoparticles and MWNTs Hybrid Biobr Heterojunction. Microchimica Acta, 191, Article No. 266. https://doi.org/10.1007/s00604-024-06302-7
|
[24]
|
Chen, J., Li, H., Zhou, X., Li, E., Wang, Y., Guo, Y., et al. (2017) Efficient Synthesis of Hollow Silica Microspheres Useful for Porous Silica Ceramics. Ceramics International, 43, 13907-13912. https://doi.org/10.1016/j.ceramint.2017.07.118
|
[25]
|
Wang, J., Guo, X., Zhou, Q., Cai, Y., Lu, B., Wang, Y., et al. (2024) Pillar[5]arene Functionalized Au NPs and BIOX (Cl/Br/I) Heterojunction Constructed the Enhanced Photo-Electrochemical Sensor for Ultrasensitive Detection of Serotonin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 688, Article ID: 133511. https://doi.org/10.1016/j.colsurfa.2024.133511
|
[26]
|
Wang, J., Zhou, L., Bei, J., Zhao, Q., Li, X., He, J., et al. (2022) An Enhanced Photo-Electrochemical Sensor Constructed from Pillar[5]arene Functionalized Au NPs for Ultrasensitive Detection of Caffeic Acid. Talanta, 243, Article ID: 123322. https://doi.org/10.1016/j.talanta.2022.123322
|
[27]
|
Xing, R., Yang, H., Li, S., Yang, J., Zhao, X., Wang, Q., et al. (2016) A Sensitive and Reliable Rutin Electrochemical Sensor Based on Palladium Phthalocyanine-MWCNTs-Nafion Nanocomposite. Journal of Solid State Electrochemistry, 21, 1219-1228. https://doi.org/10.1007/s10008-016-3447-5
|
[28]
|
Wang, J., Lu, C., Chen, T., Hu, L., Du, Y., Yao, Y., et al. (2019) Simply Synthesized Nitrogen-Doped Graphene Quantum Dot (NGQD)-Modified Electrode for the Ultrasensitive Photoelectrochemical Detection of Dopamine. Nanophotonics, 9, 3831-3839. https://doi.org/10.1515/nanoph-2019-0418
|
[29]
|
Wang, J., Zhou, L., Bei, J., Xie, M., Zhu, X., Chen, T., et al. (2022) An Specific Photoelectrochemical Sensor Based on Pillar[5]arenes Functionalized Gold Nanoparticles and Bismuth Oxybromide Nanoflowers for Bovine Hemoglobin Recognition. Journal of Colloid and Interface Science, 620, 187-198. https://doi.org/10.1016/j.jcis.2022.04.014
|