[1]
|
Hong, W., Park, S., Jeong, S., Lim, G. and Kim, J. (2011) Evaluation of the Energy Efficiencies of Pre-Cast Composite Columns. Indoor and Built Environment, 21, 176-183. https://doi.org/10.1177/1420326x11420126
|
[2]
|
Arslan, M.H., Korkmaz, H.H. and Gulay, F.G. (2006) Damage and Failure Pattern of Prefabricated Structures after Major Earthquakes in Turkey and Shortfalls of the Turkish Earthquake Code. Engineering Failure Analysis, 13, 537-557. https://doi.org/10.1016/j.engfailanal.2005.02.006
|
[3]
|
刘恢先, 主编. 唐山大地震震害[M]. 北京: 地震出版社, 1986.
|
[4]
|
张瀑, 鲁兆红, 淡浩. 汶川地震中预制装配整体结构的震害调查分析[J]. 四川建筑科学研究, 2010, 36(3): 129-133.
|
[5]
|
清华大学土木工程结构专家组, 西南交通大学土木工程结构专家组, 北京交通大学土木工程结构专家组, 等. 汶川地震建筑震害分析[J]. 建筑结构学报, 2008, 29(4): 1-9.
|
[6]
|
邸小坛. 绵阳市城区建筑震害调查与鉴定原则[C]//中国土木工程学会, 中国建筑学会. 汶川地震建筑震害调查与灾后重建分析报告. 北京: 中国建筑工业出版社, 2008: 344-351.
|
[7]
|
Johal, S. and Nasser, G.D. (1999) Successful Testing of PROGRESS Five Story Pre-Cast Building Lead to Innovative Seismic Solutions. PCI Journal, 44, 120-123. https://doi.org/10.15554/pcij.11011999.42.67
|
[8]
|
Stanton, J., Stone, W.C. and Cheok, G.S. (1997) A Hybrid Reinforced Precast Frame for Seismic Regions. PCI Journal, 42, 20-23. https://doi.org/10.15554/pcij.03011997.20.23
|
[9]
|
苏小卒, 朱伯龙. 预应力混凝土框架的反复荷载试验及有限元全过程滞回分析[J]. 同济大学学报, 1987, 15(1): 35-46.
|
[10]
|
余志武, 罗小勇. 水平低周反复荷载作用下无粘结部分预应力混凝土框架的抗震性能研究[J]. 建筑结构学报, 1996, 17(2): 30-36.
|
[11]
|
黄小坤, 田春雨. 预制装配式混凝土结构研究[J]. 住宅产业, 2010(9): 28-32.
|
[12]
|
柳炳康, 田井锋, 张瑜中, 等. 低周反复荷载下预压装配式PC框架延性性能和耗能能力[J]. 建筑结构学报, 2007, 28(3): 74-81.
|
[13]
|
王晓东. 装配式大板结构的抗震性能分析[D]: [硕士学位论文]. 哈尔滨: 中国地震局工程力学研究所, 2009.
|
[14]
|
孙巍巍. 后张无粘结预应力装配式短肢剪力墙抗震能力及设计方法研究[D]: [博士学位论文]. 南京: 东南大学, 2007.
|
[15]
|
封浩. 工业化住宅技术体系研究——基于“万科”装配式住宅设计[D]: [硕士学位论文]. 上海: 同济大学, 2009.
|
[16]
|
Kiyoshi, N. (2001) Damage Controlled Seismic Design by Precast Prestressed. Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan.
|
[17]
|
Kato, H. and Ichisawa, Y. (2002) Experimental Study on Seismic Performance of Pre-Cast Pre-Stressed Concrete Building. Proceedings of the First FIB Congress, Osaka, 13-19 October 2002.
|
[18]
|
COST CI. (1999) Control of the Semi-Rigid Behavior of Civil Engineering Structural Connections. Final Report. European Commission EUR 19244.
|
[19]
|
Cheung, A.K.F. and Leung, C.K.Y. (2011) Effective Joining of Pre-Cast Concrete Slabs with Self-Compacting HSFRCC. Journal of Advanced Concrete Technology, 9, 41-49. https://doi.org/10.3151/jact.9.41
|
[20]
|
范力, 吕西林, 赵斌, 张继承. 装配式预制混凝土框架结构拟动力试验研究[J]. 地震工程与工程振动, 2007, 27(6): 1-9.
|
[21]
|
黄祥海. 新型全预制装配式混凝土框架节点的研究[D]: [硕士学位论文]. 南京: 东南大学, 2006.
|
[22]
|
董挺峰, 李振宝, 崔邯龙, 等. 低周反复荷载下装配式框架连接的性能[J]. 河北建筑科技学院学报, 2006, 23(1): 27-30.
|
[23]
|
宋国华. 装配式钢筋混凝土结构铅直接合部抗震性能研究及非线性分析[D]: [硕士学位论文]. 合肥: 合肥工业大学, 1999.
|
[24]
|
柳炳康, 张瑜中, 晋哲锋, 等. 预压装配式预应力混凝土框架接合部抗震性能试验研究[J]. 建筑结构学报, 2005, 26(2): 64-69.
|
[25]
|
丁阳, 张雪松, 李忠献, 等. 装配式钢骨混凝土框架中节点的抗震性能试验[C]//中国钢结构协会钢-混凝土组合结构分会第十次年会论文集. 2005: 325-329.
|
[26]
|
丁里宁, 郭正兴, 梁培新, 等. 预制装配式框架预应力柱脚节点抗震性能试验研究[C]//第二届结构工程新进展国际论坛论文集. 2008: 172-179.
|
[27]
|
陈申一. 新型预应力装配整体式混凝土框架设计与施工研究[D]: [博士学位论文]. 南京: 东南大学, 2007.
|
[28]
|
林宗凡. 国外装配式混凝土结构中的摩擦耗能技术综述[J]. 建筑科学, 1994(3): 77-80.
|
[29]
|
Castiglioni, C.A., Kanyilmaz, A. and Calado, L. (2012) Experimental Analysis of Seismic Resistant Composite Steel Frames with Dissipative Devices. Journal of Constructional Steel Research, 76, 1-12. https://doi.org/10.1016/j.jcsr.2012.03.027
|
[30]
|
Andriono, T. (1989) Seismic Resistant Design of Base Isolated Multistorey Structures. Ph.D. Thesis, University of Canterbury.
|
[31]
|
Cancellara, D. and De Angelis, F. (2017) Assessment and Dynamic Nonlinear Analysis of Different Base Isolation Systems for a Multi-Storey RC Building Irregular in Plan. Computers & Structures, 180, 74-88. https://doi.org/10.1016/j.compstruc.2016.02.012
|
[32]
|
Morgen, B.G. and Kurama, Y.C. (2004) A Friction Damper for Post-Tensioned Precast Concrete Moment Frames. PCI Journal, 49, 112-133. https://doi.org/10.15554/pcij.07012004.112.133
|
[33]
|
彭凌云, 周锡元, 闫维明. 建筑结构的分布式阻尼减震方法[J]. 东南大学学报(自然科学版), 2005, 35(z1): 45-48.
|
[34]
|
周云, 邓雪松, 吴从晓. 高层建筑耗能减震新体系概念与实现[J]. 工程抗震与加固改造, 2007(6): 1-9.
|
[35]
|
翁大根, 王姝, 任晓崧, 等. 消能减震加固措施在多层装配式框架中的应用[J]. 四川建筑科学研究, 2007(S1): 31-35, 66.
|
[36]
|
卫杰彬, 谭平, 匡珍, 等. 高层装配式层间隔震结构的抗震性能及破坏失效模式研究[J]. 土木工程学报, 2012, 45(S1): 171-176.
|
[37]
|
张文芳. 盒式房屋层间摩擦隔震体系地震反应的研究[J]. 山西建筑, 2002, 28(3): 1-3.
|
[38]
|
佘立永. 装配式现代竹结构房屋设计与研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2009.
|
[39]
|
张学林, 张忠伟, 陈连禄. 集成工业化住宅外墙板系统水密性能实验[J]. 墙材革新与建筑节能, 2009(7): 37-39.
|
[40]
|
周全. PC结构住宅工业化模板体系研究[D]: [硕士学位论文]. 上海: 同济大学, 2009.
|
[41]
|
薛伟辰, 王东方. 预制混凝土板、墙体系发展现状[J]. 工业建筑, 2002, 32(12): 57-60.
|
[42]
|
刘名瑞. 我国集成住宅技术情景发展初探[J]. 建筑学报, 2004(4): 73-74.
|
[43]
|
李湘州. 21世纪建材、建筑业“大革命”装配式建筑[J]. 建材发展, 2003(4): 5-6.
|
[44]
|
Chen, Y., Galal, K. and Athienitis, A.K. (2010) Modeling, Design and Thermal Performance of a BIPV/T System Thermally Coupled with a Ventilated Concrete Slab in a Low Energy Solar House: Part 2, Ventilated Concrete Slab. Solar Energy, 84, 1908-1919. https://doi.org/10.1016/j.solener.2010.06.012
|
[45]
|
Golić, K., Kosorić, V. and Furundžić, A.K. (2011) General Model of Solar Water Heating System Integration in Residential Building Refurbishment—Potential Energy Savings and Environmental Impact. Renewable and Sustainable Energy Reviews, 15, 1533-1544. https://doi.org/10.1016/j.rser.2010.11.052
|
[46]
|
Wang, C. and Chan, T. (2023) Seismic Design and Parametric Study of Steel Modular Frames with Distributed Seismic Resistance. Thin-Walled Structures, 182, Article 110325. https://doi.org/10.1016/j.tws.2022.110325
|
[47]
|
Palermo, A., Pampanin, S. and Buchanan, A.H. (2006) Experimental Investigations on LVL Seismic Resistant Wall and Frame Subassemblies. First European Conference on Earthquake Engineering and Seismology (ECEES), Geneva, 3-8 September 2006, 983.
|
[48]
|
Xiang, Y., Wei, Y., Wang, Y. and Meng, K. (2019) Seismic Resistance Performance of Shear Wall Structure of Assembled Coastal Buildings. Journal of Coastal Research, 83, 267-271. https://doi.org/10.2112/si83-043.1
|
[49]
|
Lv, X., Yu, Z. and Shan, Z. (2021) Seismic Behaviour of Frame Structures with Assembly of Prefabricated Concrete Beam. Journal of Building Engineering, 40, Article 102765. https://doi.org/10.1016/j.jobe.2021.102765
|