[1]
|
Jiao, H., Zhou, Z., Li, B., Xiao, Y., Li, M., Zeng, H., et al. (2021) The Mechanism of Facultative Intracellular Parasitism of Brucella. International Journal of Molecular Sciences, 22, Article 3673. https://doi.org/10.3390/ijms22073673
|
[2]
|
Qureshi, K.A., Parvez, A., Fahmy, N.A., Abdel Hady, B.H., Kumar, S., Ganguly, A., et al. (2023) Brucellosis: Epidemiology, Pathogenesis, Diagnosis and Treatment–a Comprehensive Review. Annals of Medicine, 55, Article ID: 2295398. https://doi.org/10.1080/07853890.2023.2295398
|
[3]
|
地里下提∙阿不力孜, 范俊, 马良. 布鲁氏菌性脊柱炎诊断及治疗专家共识[J]. 中国防痨杂志, 2022, 44(6): 531-538.
|
[4]
|
Serafino, A., Bertinat, Y.A., Bueno, J., Pittaluga, J.R., Birnberg Weiss, F., Milillo, M.A., et al. (2024) Beyond Its Preferential Niche: Brucella Abortus RNA Down-Modulates the IFN-γ-Induced MHC-I Expression in Epithelial and Endothelial Cells. PLOS ONE, 19, e0306429. https://doi.org/10.1371/journal.pone.0306429
|
[5]
|
Mohsenpour, B., Hajibagheri, K., Afrasiabian, S., Ghaderi, E. and Ghasembegloo, S. (2015) ABO Blood Groups and Susceptibility to Brucellosis. Japanese Journal of Infectious Diseases, 68, 124-127. https://doi.org/10.7883/yoken.jjid.2014.185
|
[6]
|
Su, L., Cao, Y., Liu, Y., Zhang, J. and Zhang, G. (2022) Analysis of Clinical Characteristics and Blood Cell in Adult Patients with Brucella Bloodstream Infection of Different Blood Groups. Indian Journal of Hematology and Blood Transfusion, 39, 429-434. https://doi.org/10.1007/s12288-022-01617-y
|
[7]
|
Marim, F.M., Franco, M.M.C., Gomes, M.T.R., Miraglia, M.C., Giambartolomei, G.H. and Oliveira, S.C. (2016) The Role of NLRP3 and AIM2 in Inflammasome Activation during Brucella Abortus Infection. Seminars in Immunopathology, 39, 215-223. https://doi.org/10.1007/s00281-016-0581-1
|
[8]
|
Costa Franco, M.M.S., Marim, F.M., Alves-Silva, J., Cerqueira, D., Rungue, M., Tavares, I.P., et al. (2019) AIM2 Senses Brucella Abortus DNA in Dendritic Cells to Induce Il-1β Secretion, Pyroptosis and Resistance to Bacterial Infection in Mice. Microbes and Infection, 21, 85-93. https://doi.org/10.1016/j.micinf.2018.09.001
|
[9]
|
Su, X., Zhao, S. and Song, Y. (2022) Expression of NLRP3 and AIM2 Inflammasome in Peripheral Blood in Chinese Patients with Acute and Chronic Brucellosis. Scientific Reports, 12, Article No. 15123. https://doi.org/10.1038/s41598-022-19398-9
|
[10]
|
Abu Nowar, H., Al Dalahmeh, A., Alrabadi, M., Jabali, S., Kakich, M., Alqsous, N., et al. (2024) Exploring the Complex Landscape of Spine Brucellosis. Cureus, 16, e51761. https://doi.org/10.7759/cureus.51761
|
[11]
|
Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E.M. and Xie, C. (2017) Osteoblast-Osteoclast Interactions. Connective Tissue Research, 59, 99-107. https://doi.org/10.1080/03008207.2017.1290085
|
[12]
|
Udagawa, N., Koide, M., Nakamura, M., Nakamichi, Y., Yamashita, T., Uehara, S., et al. (2020) Osteoclast Differentiation by RANKL and OPG Signaling Pathways. Journal of Bone and Mineral Metabolism, 39, 19-26. https://doi.org/10.1007/s00774-020-01162-6
|
[13]
|
Yasuda, H. (2021) Discovery of the RANKL/RANK/OPG System. Journal of Bone and Mineral Metabolism, 39, 2-11. https://doi.org/10.1007/s00774-020-01175-1
|
[14]
|
Hooshiar, S.H., Tobeiha, M. and Jafarnejad, S. (2022) Soy Isoflavones and Bone Health: Focus on the RANKL/RANK/ OPG Pathway. BioMed Research International, 2022, Article ID: 8862278. https://doi.org/10.1155/2022/8862278
|
[15]
|
程增玉, 姜雯, 徐浩东, 等. 基于核因子-κB受体活化因子受体/骨保护素探讨复方雷公藤外敷剂改善Ⅱ型胶原诱导型关节炎模型大鼠骨破坏[J]. 中国中医骨伤科杂志, 2023, 31(2): 12-17, 23.
|
[16]
|
Ono, T., Hayashi, M., Sasaki, F. and Nakashima, T. (2020) RANKL Biology: Bone Metabolism, the Immune System, and Beyond. Inflammation and Regeneration, 40, Article No. 2. https://doi.org/10.1186/s41232-019-0111-3
|
[17]
|
Tobeiha, M., Moghadasian, M.H., Amin, N. and Jafarnejad, S. (2020) RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. BioMed Research International, 2020, Article ID: 6910312. https://doi.org/10.1155/2020/6910312
|
[18]
|
王鑫, 丁家波. 布鲁氏菌病关节炎的致病机制研究进展[J]. 生命科学, 2020, 32(11): 1237-1242.
|
[19]
|
Giambartolomei, G.H., Arriola Benitez, P.C. and Delpino, M.V. (2017) Brucella and Osteoarticular Cell Activation: Partners in Crime. Frontiers in Microbiology, 8, Article 256. https://doi.org/10.3389/fmicb.2017.00256
|
[20]
|
Šiširak, M. (2015) Osteoarticular Complications of Brucellosis: The Diagnostic Value and Importance of Detection Matrix Metalloproteinases. Acta Medica Academica, 44, 1-9. https://doi.org/10.5644/ama2006-124.121
|
[21]
|
Mixon, A., Savage, A., Bahar-Moni, A.S., Adouni, M. and Faisal, T. (2021) An in Vitro Investigation to Understand the Synergistic Role of Mmps-1 and 9 on Articular Cartilage Biomechanical Properties. Scientific Reports, 11, Article No. 14409. https://doi.org/10.1038/s41598-021-93744-1
|
[22]
|
Pesce Viglietti, A.I., Arriola Benitez, P.C., Gentilini, M.V., Velásquez, L.N., Fossati, C.A., Giambartolomei, G.H., et al. (2016) Brucella Abortus Invasion of Osteocytes Modulates Connexin 43 and Integrin Expression and Induces Osteoclastogenesis via Receptor Activator of NF-κB Ligand and Tumor Necrosis Factor α Secretion. Infection and Immunity, 84, 11-20. https://doi.org/10.1128/iai.01049-15
|
[23]
|
Pesce Viglietti, A.I., Giambartolomei, G.H. and Delpino, M.V. (2019) Endocrine Modulation of Brucella Abortus-Infected Osteocytes Function and Osteoclastogenesis via Modulation of RANKL/OPG. Microbes and Infection, 21, 287-295. https://doi.org/10.1016/j.micinf.2019.01.004
|
[24]
|
Hu, X., Shang, X., Wang, L., Fan, J., Wang, Y., Lv, J., et al. (2020) The Role of CXCR3 and Its Ligands Expression in Brucellar Spondylitis. BMC Immunology, 21, Article No. 59. https://doi.org/10.1186/s12865-020-00390-9
|
[25]
|
Hassanshahi, F., Noroozi Karimabad, M., Miranzadeh, E., Hassanshahi, G., Torabizadeh, S.A. and Jebali, A. (2023) The Serum Level of CXCL9, CXCL10, and CXCL11 and the Expression of CXCR3 of Peripheral Blood Mononuclear Cells in Brucellosis Patients. Current Microbiology, 80, Article No. 201. https://doi.org/10.1007/s00284-023-03230-2
|
[26]
|
Kumari, G., Doimari, S., Suman Kumar, M., Singh, M. and Singh, D.K. (2021) MLVA Typing of Brucella melitensis and B. Abortus Isolates of Animal and Human Origin from India. Animal Biotechnology, 34, 375-383. https://doi.org/10.1080/10495398.2021.1971685
|
[27]
|
Akar, K. and Erganis, O. (2022) Evaluation of the Genetic Profiles of Brucella melitensis Strain from Turkey Using Multilocus Variable Number Tandem Repeat Analysis (MLVA) and Multilocus Sequence Typing (MLST) Techniques. Veterinary Microbiology, 269, Article ID: 109423. https://doi.org/10.1016/j.vetmic.2022.109423
|
[28]
|
Özmen, M., Özgen, E.K., Sayı, O., Karadeniz Pütür, E., Okumuş, B., İba Yılmaz, S., et al. (2023) Genotyping of Brucella Isolates from Animals and Humans by Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA). Comparative Immunology, Microbiology and Infectious Diseases, 96, Article ID: 101981. https://doi.org/10.1016/j.cimid.2023.101981
|
[29]
|
Pelerito, A., Nunes, A., Grilo, T., Isidro, J., Silva, C., Ferreira, A.C., et al. (2021) Genetic Characterization of Brucella Spp.: Whole Genome Sequencing-Based Approach for the Determination of Multiple Locus Variable Number Tandem Repeat Profiles. Frontiers in Microbiology, 12, Article 740068. https://doi.org/10.3389/fmicb.2021.740068
|
[30]
|
Shome, R., Krithiga, N., Shankaranarayana, P.B., Jegadesan, S., Udayakumar S, V., Shome, B.R., et al. (2016) Genotyping of Indian Antigenic, Vaccine, and Field Brucella spp. Using Multilocus Sequence Typing. The Journal of Infection in Developing Countries, 10, 237-244. https://doi.org/10.3855/jidc.6617
|
[31]
|
Piao, D., Liu, X., Di, D., Xiao, P., Zhao, Z., Xu, L., et al. (2018) Genetic Polymorphisms Identify in Species/Biovars of Brucella Isolated in China between 1953 and 2013 by MLST. BMC Microbiology, 18, Article No. 7. https://doi.org/10.1186/s12866-018-1149-0
|
[32]
|
Tan, Q., Wang, Y., Liu, Y., Tao, Z., Yu, C., Huang, Y., et al. (2023) Molecular Epidemiological Characteristics of Brucella in Guizhou Province, China, from 2009 to 2021. Frontiers in Microbiology, 14, Article 1188469. https://doi.org/10.3389/fmicb.2023.1188469
|
[33]
|
Abdel-Glil, M.Y., Thomas, P., Brandt, C., Melzer, F., Subbaiyan, A., Chaudhuri, P., et al. (2022) Core Genome Multilocus Sequence Typing Scheme for Improved Characterization and Epidemiological Surveillance of Pathogenic Brucella. Journal of Clinical Microbiology, 60, e0031122. https://doi.org/10.1128/jcm.00311-22
|
[34]
|
Khan, A., Melzer, F., Sayour, A., Shell, W., Linde, J., Abdel-Glil, M., et al. (2021) Whole-Genome Sequencing for Tracing the Genetic Diversity of Brucella abortus and Brucella melitensis Isolated from Livestock in Egypt. Pathogens, 10, Article 759. https://doi.org/10.3390/pathogens10060759
|
[35]
|
Janowicz, A., De Massis, F., Ancora, M., Cammà, C., Patavino, C., Battisti, A., et al. (2018) Core Genome Multilocus Sequence Typing and Single Nucleotide Polymorphism Analysis in the Epidemiology of Brucella melitensis Infections. Journal of Clinical Microbiology, 56, e00517-18. https://doi.org/10.1128/jcm.00517-18
|
[36]
|
Holzer, K., Wareth, G., El‐Diasty, M., Abdel‐Hamid, N.H., Hamdy, M.E.R., Moustafa, S.A., et al. (2022) Tracking the Distribution, Genetic Diversity and Lineage of Brucella melitensis Recovered from Humans and Animals in Egypt Based on Core‐Genome SNP Analysis and in Silico MLVA‐16. Transboundary and Emerging Diseases, 69, 3952-3963. https://doi.org/10.1111/tbed.14768
|
[37]
|
Dadar, M., Brangsch, H., Alamian, S., Neubauer, H. and Wareth, G. (2023) Whole-Genome Sequencing for Genetic Diversity Analysis of Iranian Brucella Spp. Isolated from Humans and Livestock. One Health, 16, Article ID: 100483. https://doi.org/10.1016/j.onehlt.2023.100483
|
[38]
|
Ma, H., Xu, H., Wang, X., Bu, Z., Yao, T., Zheng, Z., et al. (2023) Molecular Characterization and Antimicrobial Susceptibility of Human Brucella in Northeast China. Frontiers in Microbiology, 14, Article 1137932. https://doi.org/10.3389/fmicb.2023.1137932
|
[39]
|
Di Bonaventura, G., Angeletti, S., Ianni, A., Petitti, T. and Gherardi, G. (2021) Microbiological Laboratory Diagnosis of Human Brucellosis: An Overview. Pathogens, 10, Article 1623. https://doi.org/10.3390/pathogens10121623
|
[40]
|
Yagupsky, P., Morata, P. and Colmenero, J.D. (2019) Laboratory Diagnosis of Human Brucellosis. Clinical Microbiology Reviews, 33, e00073-19. https://doi.org/10.1128/cmr.00073-19
|
[41]
|
宋利桃, 尉瑞平, 米景川, 等. 布鲁菌病三种血清学检测方法一致性研究[J]. 医学动物防制, 2021, 37(1): 68-70, 74.
|
[42]
|
魏娜. 虎红平板凝集试验与试管凝集试验检测人布鲁菌病抗体的应用探讨[J]. 中国医药指南, 2022, 20(6): 104-106.
|
[43]
|
高玉芬, 李淑慧, 杜晓敏. 试管凝集试验与虎红平板凝集试验对布鲁氏杆菌病的诊断价值[J]. 临床医学研究与实践, 2021, 6(5): 114-115, 118.
|
[44]
|
Ta, N., Yu, R., Liang, H., Zhang, W., Song, L., Fan, M., et al. (2022) Analysis of Laboratory and Serological Test Results in Patients with Acute Brucellosis during Follow‐Up. Journal of Clinical Laboratory Analysis, 36, e24205. https://doi.org/10.1002/jcla.24205
|
[45]
|
Dong, S., Xiao, D., Liu, J., Bi, H., Zheng, Z., Wang, L., et al. (2021) Fluorescence Polarization Assay Improves the Rapid Detection of Human Brucellosis in China. Infectious Diseases of Poverty, 10, Article No. 46. https://doi.org/10.1186/s40249-021-00834-3
|
[46]
|
Suo, B., He, J., Wu, C. and Wang, D. (2021) Comparison of Different Laboratory Methods for Clinical Detection of Brucella Infection. Bulletin of Experimental Biology and Medicine, 172, 223-227. https://doi.org/10.1007/s10517-021-05367-1
|
[47]
|
Xu, N., Wang, W., Chen, F., Li, W. and Wang, G. (2020) ELISA Is Superior to Bacterial Culture and Agglutination Test in the Diagnosis of Brucellosis in an Endemic Area in China. BMC Infectious Diseases, 20, Article No. 11. https://doi.org/10.1186/s12879-019-4729-1
|
[48]
|
Pang, B., Zhao, C., Li, L., Song, X., Xu, K., Wang, J., et al. (2018) Development of a Low-Cost Paper-Based ELISA Method for Rapid Escherichia Coli O157: H7 Detection. Analytical Biochemistry, 542, 58-62. https://doi.org/10.1016/j.ab.2017.11.010
|
[49]
|
Yin, D., Bai, Q., Wu, X., Li, H., Shao, J., Sun, M., et al. (2021) A Multi-Epitope Fusion Protein-Based P-Elisa Method for Diagnosing Bovine and Goat Brucellosis. Frontiers in Veterinary Science, 8, Article 708008. https://doi.org/10.3389/fvets.2021.708008
|
[50]
|
Yin, D., Bai, Q., Wu, X., Li, H., Shao, J., Sun, M., et al. (2021) Paper-Based ELISA Diagnosis Technology for Human Brucellosis Based on a Multiepitope Fusion Protein. PLOS Neglected Tropical Diseases, 15, e0009695. https://doi.org/10.1371/journal.pntd.0009695
|
[51]
|
Koçman, E.E., Erensoy, M.S., Taşbakan, M. and Çiçeklioğlu, M. (2018) Comparison of Standard Agglutination Tests, Enzyme Immunoassay, and Coombs Gel Test Used in Laboratory Diagnosis of Human Brucellosis. Turkish Journal of Medical Sciences, 48, 62-67. https://doi.org/10.3906/sag-1707-122
|
[52]
|
沈红霞, 倪柏锋, 王彬, 等. 动物布鲁氏菌病抗体补体结合试验与cELISA检测结果比较[J]. 浙江畜牧兽医, 2021, 46(1): 1-4.
|
[53]
|
王淑云, 刘熹, 荣蓉, 等. 五种布鲁菌血清学检测方法对比分析[J]. 中华预防医学杂志, 2016, 50(2): 175-178.
|
[54]
|
巫秀红, 刘庆斌, 张永红, 等. 布鲁氏菌荧光定量PCR检测方法的建立[J]. 北京农学院学报, 2021, 36(3): 78-82.
|
[55]
|
Becker, G.N. and Tuon, F.F. (2021) Comparative Study of IS711 and Bcsp31-Based Polymerase Chain Reaction (PCR) for the Diagnosis of Human Brucellosis in Whole Blood and Serum Samples. Journal of Microbiological Methods, 183, Article ID: 106182. https://doi.org/10.1016/j.mimet.2021.106182
|
[56]
|
Abdel-Hamid, N.H., Beleta, E.I.M., Kelany, M.A., Ismail, R.I., Shalaby, N.A. and Khafagi, M.H.M. (2021) Validation of Real-Time Polymerase Chain Reaction versus Conventional Polymerase Chain Reaction for Diagnosis of Brucellosis in Cattle Sera. Veterinary World, 14, 144-154. https://doi.org/10.14202/vetworld.2021.144-154
|
[57]
|
Green, M.R. and Sambrook, J. (2019) Nested Polymerase Chain Reaction (PCR). Cold Spring Harbor Protocols, No. 2. https://doi.org/10.1101/pdb.prot095182
|
[58]
|
Rahbarnia, L., Farajnia, S., Naghili, B., et al. (2021) Comparative Evaluation of Nested Polymerase Chain Reaction for Rapid Diagnosis of Human Brucellosis. Archives of Razi Institute, 76, 203-211.
|
[59]
|
Tian, G.Z. (2021) A Nested-Polymerase Chain Reaction Assay to Identify and Genotype Brucella. Biomedical and Environmental Sciences, 34, 227-231.
|
[60]
|
Chen, B., Jiang, Y., Cao, X., Liu, C., Zhang, N. and Shi, D. (2021) Droplet Digital PCR as an Emerging Tool in Detecting Pathogens Nucleic Acids in Infectious Diseases. Clinica Chimica Acta, 517, 156-161. https://doi.org/10.1016/j.cca.2021.02.008
|
[61]
|
梅力, 王英超, 程汝佳, 等. 1种布鲁氏菌微滴式数字PCR检测方法的建立[J]. 畜牧兽医学报, 2021, 52(6): 1753-1759.
|
[62]
|
Huang, T., Li, L., Liu, X., Chen, Q., Fang, X., Kong, J., et al. (2020) Loop-Mediated Isothermal Amplification Technique: Principle, Development and Wide Application in Food Safety. Analytical Methods, 12, 5551-5561. https://doi.org/10.1039/d0ay01768j
|
[63]
|
Moeini-Zanjani, A., Pournajaf, A., Ferdosi-Shahandashti, E., Gholami, M., Masjedian, F., Khafri, S., et al. (2020) Comparison of Loop-Mediated Isothermal Amplification and Conventional PCR Tests for Diagnosis of Common Brucella Species. BMC Research Notes, 13, Article No. 533. https://doi.org/10.1186/s13104-020-05377-8
|
[64]
|
Li, S., Liu, Y., Wang, Y., Chen, H., Liu, C. and Wang, Y. (2019) lateral Flow Biosensor Combined with Loop-Mediated Isothermal Amplification for Simple, Rapid, Sensitive, and Reliable Detection of Brucella Spp. Infection and Drug Resistance, 12, 2343-2353. https://doi.org/10.2147/idr.s211644
|
[65]
|
刘佳音, 姜海. 我国布鲁氏菌病诊断方法应用及思考[J]. 中华流行病学杂志, 2021, 42(1): 160-163.
|
[66]
|
Kazemi, S., Mirzaei, R., Sholeh, M., Karampoor, S., Keramat, F., Saidijam, M., et al. (2021) microRNAs in Human Brucellosis: A Promising Therapeutic Approach and Biomarker for Diagnosis and Treatment. Immunity, Inflammation and Disease, 9, 1209-1218. https://doi.org/10.1002/iid3.519
|
[67]
|
Zhang, C., Fu, Q., Ding, M., Chen, T., Lu, X., Zhong, Y., et al. (2019) Comprehensive Analysis of Differentially Expressed Serum Micrornas in Humans Responding to Brucella Infection. Annals of Translational Medicine, 7, 301-301. https://doi.org/10.21037/atm.2019.05.74
|
[68]
|
Rezaeepoor, M., Keramat, F., Jourghasemi, S., Rahmanpour, M., Lipsa, A., Hajilooi, M., et al. (2024) MicroRNA-21 Expression as an Auxiliary Diagnostic Biomarker of Acute Brucellosis. Molecular Biology Reports, 51, Article No. 264. https://doi.org/10.1007/s11033-023-09193-8
|