[1]
|
Moore, B.W. (1965) A Soluble Protein Characteristic of the Nervous System. Biochemical and Biophysical Research Communications, 19, 739-744. https://doi.org/10.1016/0006-291x(65)90320-7
|
[2]
|
Gifford, J.L., Walsh, M.P. and Vogel, H.J. (2007) Structures and Metal-Ion-Binding Properties of the Ca2+-Binding Helix-Loop-Helix EF-Hand Motifs. Biochemical Journal, 405, 199-221. https://doi.org/10.1042/bj20070255
|
[3]
|
Santamaria-Kisiel, L., Rintala-Dempsey, A.C. and Shaw, G.S. (2006) Calcium-Dependent and Independent Interactions of the S100 Protein Family. Biochemical Journal, 396, 201-214. https://doi.org/10.1042/bj20060195
|
[4]
|
Austermann, J., Spiekermann, C. and Roth, J. (2018) S100 Proteins in Rheumatic Diseases. Nature Reviews Rheumatology, 14, 528-541. https://doi.org/10.1038/s41584-018-0058-9
|
[5]
|
Holzinger, D., Foell, D. and Kessel, C. (2018) The Role of S100 Proteins in the Pathogenesis and Monitoring of Autoinflammatory Diseases. Molecular and Cellular Pediatrics, 5, Article No. 7. https://doi.org/10.1186/s40348-018-0085-2
|
[6]
|
Gonzalez-Martinez, T., Perez-Piñera, P., Díaz-Esnal, B. and Vega, J.A. (2003) S-100 Proteins in the Human Peripheral Nervous System. Microscopy Research and Technique, 60, 633-638. https://doi.org/10.1002/jemt.10304
|
[7]
|
Harpio, R. and Einarsson, R. (2004) S100 Proteins as Cancer Biomarkers with Focus on S100B in Malignant Melanoma. Clinical Biochemistry, 37, 512-518. https://doi.org/10.1016/j.clinbiochem.2004.05.012
|
[8]
|
Janka, E.A., Ványai, B., Szabó, I.L., Toka-Farkas, T., Várvölgyi, T., Kapitány, A., et al. (2023) Primary Tumour Category, Site of Metastasis, and Baseline Serum S100B and LDH Are Independent Prognostic Factors for Survival in Metastatic Melanoma Patients Treated with Anti-PD-1. Frontiers in Oncology, 13, Article 1237643. https://doi.org/10.3389/fonc.2023.1237643
|
[9]
|
Ertekin, S.S., Podlipnik, S., Ribero, S., Molina, R., Rios, J., Carrera, C., et al. (2020) Monthly Changes in Serum Levels of S100B Protein as a Predictor of Metastasis Development in High-Risk Melanoma Patients. Journal of the European Academy of Dermatology and Venereology, 34, 1482-1488. https://doi.org/10.1111/jdv.16212
|
[10]
|
Amaral, T., Seeber, O., Mersi, E., Sanchez, S., Thomas, I., Meiwes, A., et al. (2020) Primary Resistance to PD-1-Based Immunotherapy—A Study in 319 Patients with Stage IV Melanoma. Cancers, 12, Article 1027. https://doi.org/10.3390/cancers12041027
|
[11]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[12]
|
Wang, H., Sun, Z., Zhao, W., et al. (2023) S100A10 Promotes Proliferation and Invasion of Lung Adenocarcinoma Cells by Activating the Akt-mTOR Signaling Pathway. Journal of Southern Medical University, 43, 733-740. https://doi.org/10.12122/j.issn.1673-4254.2023.05.08
|
[13]
|
Stewart, R.L., Carpenter, B.L., West, D.S., Knifley, T., Liu, L., Wang, C., et al. (2016) S100A4 Drives Non-Small Cell Lung Cancer Invasion, Associates with Poor Prognosis, and Is Effectively Targeted by the FDA-Approved Anti-Helminthic Agent Niclosamide. Oncotarget, 7, 34630-34642. https://doi.org/10.18632/oncotarget.8969
|
[14]
|
Hou, Y., Zhang, J., Guo, J. and Chen, H. (2021) Clinical Significance of Serum S100A10 in Lung Cancer. Journal of International Medical Research, 49, Article 030006052110496. https://doi.org/10.1177/03000605211049653
|
[15]
|
Park, W., Gray, J.M., Holewinski, R.J., Andresson, T., So, J.Y., Carmona-Rivera, C., et al. (2023) Apoptosis-Induced Nuclear Expulsion in Tumor Cells Drives S100a4-Mediated Metastatic Outgrowth through the RAGE Pathway. Nature Cancer, 4, 419-435. https://doi.org/10.1038/s43018-023-00524-z
|
[16]
|
Sumardika, I.W., Chen, Y., Tomonobu, N., Kinoshita, R., Ruma, I.M.W., Sato, H., et al. (2019) Neuroplastin-β Mediates S100a8/a9-Induced Lung Cancer Disseminative Progression. Molecular Carcinogenesis, 58, 980-995. https://doi.org/10.1002/mc.22987
|
[17]
|
Hua, T., Liu, S., Xin, X., Cai, L., Shi, R., Chi, S., et al. (2016) S100A4 Promotes Endometrial Cancer Progress through Epithelial-Mesenchymal Transition Regulation. Oncology Reports, 35, 3419-3426. https://doi.org/10.3892/or.2016.4760
|
[18]
|
Bulk, E., Sargin, B., Krug, U., Hascher, A., Jun, Y., Knop, M., et al. (2008) S100A2 Induces Metastasis in Non-Small Cell Lung Cancer. Clinical Cancer Research, 15, 22-29. https://doi.org/10.1158/1078-0432.ccr-08-0953
|
[19]
|
Gianni, M., Terao, M., Kurosaki, M., Paroni, G., Brunelli, L., Pastorelli, R., et al. (2022) Correction: S100A3 a Partner Protein Regulating the Stability/activity of Rarα and Pml-Rarα in Cellular Models of Breast/Lung Cancer and Acute Myeloid Leukemia. Oncogene, 42, 254-258. https://doi.org/10.1038/s41388-022-02564-8
|
[20]
|
Mahmood, M.Q., Ward, C., Muller, H.K., Sohal, S.S. and Walters, E.H. (2017) Epithelial Mesenchymal Transition (EMT) and Non-Small Cell Lung Cancer (NSCLC): A Mutual Association with Airway Disease. Medical Oncology, 34, Article No. 45. https://doi.org/10.1007/s12032-017-0900-y
|
[21]
|
Gianni, M., Terao, M., Kurosaki, M., Paroni, G., Brunelli, L., Pastorelli, R., et al. (2018) S100A3 a Partner Protein Regulating the Stability/Activity of RARα and PML-RARα in Cellular Models of Breast/Lung Cancer and Acute Myeloid Leukemia. Oncogene, 38, 2482-2500. https://doi.org/10.1038/s41388-018-0599-z
|
[22]
|
Orre, L.M., Panizza, E., Kaminskyy, V.O., Vernet, E., Gräslund, T., Zhivotovsky, B., et al. (2013) S100A4 Interacts with P53 in the Nucleus and Promotes P53 Degradation. Oncogene, 32, 5531-5540. https://doi.org/10.1038/onc.2013.213
|
[23]
|
Arumugam, T. and Logsdon, C.D. (2010) S100P: A Novel Therapeutic Target for Cancer. Amino Acids, 41, 893-899. https://doi.org/10.1007/s00726-010-0496-4
|
[24]
|
He, X., Xu, X., Khan, A.Q. and Ling, W. (2017) High Expression of S100A6 Predicts Unfavorable Prognosis of Lung Squamous Cell Cancer. Medical Science Monitor, 23, 5011-5017. https://doi.org/10.12659/msm.904279
|
[25]
|
Sung, M. and Simon, R. (2004) Candidate Epitope Identification Using Peptide Property Models: Application to Cancer Immunotherapy. Methods, 34, 460-467. https://doi.org/10.1016/j.ymeth.2004.06.001
|
[26]
|
Heinecke, J.L., Ridnour, L.A., Cheng, R.Y.S., Switzer, C.H., Lizardo, M.M., Khanna, C., et al. (2014) Tumor Microenvironment-Based Feed-Forward Regulation of NOS2 in Breast Cancer Progression. Proceedings of the National Academy of Sciences, 111, 6323-6328. https://doi.org/10.1073/pnas.1401799111
|
[27]
|
Huang, P. and Xue, J. (2020) Long Non‑coding RNA FOXD2‑AS1 Regulates the Tumorigenesis and Progression of Breast Cancer via the S100 Calcium Binding Protein A1/Hippo Signaling Pathway. International Journal of Molecular Medicine, 46, 1477-1489. https://doi.org/10.3892/ijmm.2020.4699
|
[28]
|
Liu, A., Li, Y., Lu, S., Cai, C., Zou, F. and Meng, X. (2023) Stanniocalcin 1 Promotes Lung Metastasis of Breast Cancer by Enhancing EGFR-ERK-S100A4 Signaling. Cell Death & Disease, 14, Article No. 395. https://doi.org/10.1038/s41419-023-05911-z
|
[29]
|
Zhang, S., Wang, Z., Liu, W., Lei, R., Shan, J., Li, L., et al. (2017) Distinct Prognostic Values of S100 mRNA Expression in Breast Cancer. Scientific Reports, 7, Article No. 39786. https://doi.org/10.1038/srep39786
|
[30]
|
Aka, J.A. and Lin, S. (2012) Correction: Comparison of Functional Proteomic Analyses of Human Breast Cancer Cell Lines T47D and MCF7. PLOS ONE, 7, e31532. https://doi.org/10.1371/annotation/18f08a33-35e1-4bf9-8d21-476757dccbef
|
[31]
|
Cong, Y., Cui, Y., Wang, S., Jiang, L., Cao, J., Zhu, S., et al. (2020) Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. Frontiers in Oncology, 10, Article 5660302. https://doi.org/10.3389/fonc.2020.566302
|
[32]
|
Lee, S., Cho, Y., Li, Y., et al. (2024) Cancer-Cell Derived S100A11 Promotes Macrophage Recruitment in ER+ Breast Cancer.
|
[33]
|
Nava, M., Dutta, P., Zemke, N.R., Farias-Eisner, R., Vadgama, J.V. and Wu, Y. (2019) Transcriptomic and Chip-Sequence Interrogation of EGFR Signaling in HER2+ Breast Cancer Cells Reveals a Dynamic Chromatin Landscape and S100 Genes as Targets. BMC Medical Genomics, 12, Article No. 32. https://doi.org/10.1186/s12920-019-0477-8
|
[34]
|
Wang, Y., Li, S., Hu, M., Yang, Y., McCabe, E., Zhang, L., et al. (2024) Universal STING Mimic Boosts Antitumour Immunity via Preferential Activation of Tumour Control Signalling Pathways. Nature Nanotechnology, 19, 856-866. https://doi.org/10.1038/s41565-024-01624-2
|
[35]
|
Chen, L., Shu, P., Zhang, X., Ye, S., Tian, L., Shen, S., et al. (2024) S100a8-Mediated Inflammatory Signaling Drives Colorectal Cancer Progression via the CXCL5/CXCR2 Axis. Journal of Cancer, 15, 3452-3465. https://doi.org/10.7150/jca.92588
|
[36]
|
Li, S., Zhang, J., Qian, S., Wu, X., Sun, L., Ling, T., et al. (2021) S100A8 Promotes Epithelial-Mesenchymal Transition and Metastasis under TGF-β/USF2 Axis in Colorectal Cancer. Cancer Communications, 41, 154-170. https://doi.org/10.1002/cac2.12130
|
[37]
|
Fukuda, Y., Tanaka, Y., Eto, K., Ukai, N., Sonobe, S., Takahashi, H., et al. (2022) S100-Stained Perineural Invasion Is Associated with Worse Prognosis in Stage I/II Colorectal Cancer: Its Possible Association with Immunosuppression in the Tumor. Pathology International, 72, 117-127. https://doi.org/10.1111/pin.13195
|
[38]
|
Wang, H., Duan, L., Zou, Z., Li, H., Yuan, S., Chen, X., et al. (2022) Activation of the PI3k/Akt/mTOR/p70S6K Pathway Is Involved in S100A4-Induced Viability and Migration in Colorectal Cancer Cells: Erratum. International Journal of Medical Sciences, 19, 352-352. https://doi.org/10.7150/ijms.69070
|
[39]
|
Hsieh, Y., Cheng, Y., Wei, P. and Yang, P. (2022) Repurposing of Ingenol Mebutate for Treating Human Colorectal Cancer by Targeting S100 Calcium-Binding Protein A4 (S100A4). Toxicology and Applied Pharmacology, 449, Article 116134. https://doi.org/10.1016/j.taap.2022.116134
|
[40]
|
Cho, E., Mun, S., Kim, H.K., Ham, Y.S., Gil, W.J. and Yang, C. (2023) Colon-Targeted S100A8/A9-Specific Peptide Systems Ameliorate Colitis and Colitis-Associated Colorectal Cancer in Mouse Models. Acta Pharmacologica Sinica, 45, 581-593. https://doi.org/10.1038/s41401-023-01188-2
|
[41]
|
Hermani, A., Deservi, B., Medunjanin, S., Tessier, P. and Mayer, D. (2006) S100A8 and S100A9 Activate MAP Kinase and NF-Κb Signaling Pathways and Trigger Translocation of RAGE in Human Prostate Cancer Cells. Experimental Cell Research, 312, 184-197. https://doi.org/10.1016/j.yexcr.2005.10.013
|
[42]
|
Palanissami, G. and Paul, S.F.D. (2023) Ages and RAGE: Metabolic and Molecular Signatures of the Glycation-Inflammation Axis in Malignant or Metastatic Cancers. Exploration of Targeted Anti-Tumor Therapy, 4, 812-849. https://doi.org/10.37349/etat.2023.00170
|
[43]
|
Zhu, W., Xue, Y., Liang, C., Zhang, R., Zhang, Z., Li, H., et al. (2016) S100A16 Promotes Cell Proliferation and Metastasis via AKT and ERK Cell Signaling Pathways in Human Prostate Cancer. Tumor Biology, 37, 12241-12250. https://doi.org/10.1007/s13277-016-5096-9
|
[44]
|
Lv, Z., Li, W. and Wei, X. (2020) S100A9 Promotes Prostate Cancer Cell Invasion by Activating TLR4/NF-Κb/Integrin Β1/FAK Signaling. OncoTargets and Therapy, 13, 6443-6452. https://doi.org/10.2147/ott.s192250
|
[45]
|
Vogl, T., Gharibyan, A.L. and Morozova-Roche, L.A. (2012) Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes. International Journal of Molecular Sciences, 13, 2893-2917. https://doi.org/10.3390/ijms13032893
|
[46]
|
Papaevangelou, E., Esteves, A.M., Dasgupta, P. and Galustian, C. (2023) Cyto-IL-15 Synergizes with the STING Agonist ADU-S100 to Eliminate Prostate Tumors and Confer Durable Immunity in Mouse Models. Frontiers in Immunology, 14, Article 1196829. https://doi.org/10.3389/fimmu.2023.1196829
|
[47]
|
Han, D., Guo, C., Cheng, H., Lu, J., Hou, Z., Zhang, X., et al. (2024) Downregulation of S100A11 Promotes T Cell Infiltration by Regulating Cancer-Associated Fibroblasts in Prostate Cancer. International Immunopharmacology, 128, Article 111323. https://doi.org/10.1016/j.intimp.2023.111323
|
[48]
|
Kim, B., Jung, S., Kim, H., Kwon, J., Song, M., Kim, M.K., et al. (2021) The Role of S100A4 for Bone Metastasis in Prostate Cancer Cells. BMC Cancer, 21, Article No. 137. https://doi.org/10.1186/s12885-021-07850-4
|
[49]
|
Ruma, I.M.W., Kinoshita, R., Tomonobu, N., Inoue, Y., Kondo, E., Yamauchi, A., et al. (2018) Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and Independent Mechanisms. Cancers, 10, Article 239. https://doi.org/10.3390/cancers10070239
|
[50]
|
Liu, J., Li, X., Dong, G., Zhang, H., Chen, D., Du, J., et al. (2008) In Silico Analysis and Verification of S100 Gene Expression in Gastric Cancer. BMC Cancer, 8, Article No. 261. https://doi.org/10.1186/1471-2407-8-261
|
[51]
|
Koh, S.A. and Lee, K.H. (2018) HGF-Mediated S100A11 Over-Expression Enhances Proliferation and Invasion of Gastric Cancer. American Journal of Translational Research, 10, 3385-3394.
|
[52]
|
Cui, Y., Li, L., Li, Z., Yin, J., Lane, J., Ji, J., et al. (2021) Dual Effects of Targeting S100A11 on Suppressing Cellular Metastatic Properties and Sensitizing Drug Response in Gastric Cancer. Cancer Cell International, 21, Article No. 243. https://doi.org/10.1186/s12935-021-01949-1
|
[53]
|
Li, Y., Li, X., Li, L., Zhou, R., Sikong, Y., Gu, X., et al. (2020) S100A10 Accelerates Aerobic Glycolysis and Malignant Growth by Activating mTOR-Signaling Pathway in Gastric Cancer. Frontiers in Cell and Developmental Biology, 8, Article 559486. https://doi.org/10.3389/fcell.2020.559486
|
[54]
|
Feng, L., Zheng, X., Zhou, L., Fu, B., Yu, Y., Lu, S., et al. (2011) Correlation between Expression of S100A4 and VEGF-C, and Lymph Node Metastasis and Prognosis in Gastric Carcinoma. Journal of International Medical Research, 39, 1333-1343. https://doi.org/10.1177/147323001103900420
|
[55]
|
Wang, C., Luo, J., Rong, J., He, S., Zhang, L. and Zheng, F. (2019) Distinct Prognostic Roles of S100 mRNA Expression in Gastric Cancer. Pathology—Research and Practice, 215, 127-136. https://doi.org/10.1016/j.prp.2018.10.034
|