癌症中的S100蛋白
S100 Proteins in Cancer
DOI: 10.12677/acm.2024.1492430, PDF, HTML, XML,   
作者: 石梦瑶:山东大学齐鲁医院(青岛)检验科,山东 青岛
关键词: S100癌症生物标志物S100 Cancer Biomarkers
摘要: S100蛋白是一组低分子量的钙结合蛋白,该家族成员在人类基因组中有多种不同的表达形式,它们通过与靶蛋白结合以及调节细胞内信息传递途径等机制,在多种细胞和组织的生理和病理过程中发挥着核心作用。在肿瘤学领域,S100蛋白因其在癌症的发生、发展、转移以及预后中的潜在作用而受到广泛关注。由于S100蛋白在癌症中的重要性,S100家族成员也被证明是有前途的诊断标志物和可能的治疗新靶点,用于癌症的诊断、预后评估和治疗监测。全文就S100蛋白及其在不同癌症类型中的研究进展作一综述,旨在为癌症的综合诊疗提供更全面的参考。
Abstract: S100 proteins are a group of low molecular weight calcium-binding proteins. Members of this family are expressed in various forms in the human genome, and they play a central role in the physiological and pathological processes of many cells and tissues. This is achieved through mechanisms such as binding to target proteins and regulating intracellular information transmission pathways. In the field of oncology, S100 proteins have garnered significant attention due to their potential role in the occurrence, development, metastasis, and prognosis of cancer. Given their substantial impact on cancer, members of the S100 family have shown promise as valuable diagnostic markers and potentially novel therapeutic targets for cancer diagnosis, prognosis assessment, and treatment monitoring. This article provides a review of S100 proteins research progress in different types of cancer with the aim to offer a more comprehensive reference for the comprehensive diagnosis and treatment of cancer.
文章引用:石梦瑶. 癌症中的S100蛋白[J]. 临床医学进展, 2024, 14(9): 71-78. https://doi.org/10.12677/acm.2024.1492430

1. 引言

1965年,Blake W. Moore从牛的大脑中分离出一种在中性pH值条件下可完全溶解于100%饱和硫酸铵溶液的蛋白质,这种神经系统特有的可溶性蛋白质被命名为“S-100”[1]。S100蛋白是通过螺旋–环–螺旋结构结合钙离子的胞质蛋白,是EF-Hand家族中最大的亚群,通常为二聚体结构,由两个同源但不同的分子组成,分别定义为S100A和S100B [2]。此后的进一步研究发现了更多的S100相关蛋白,目前已知已有25个家族成员,S100蛋白广泛表达于脊椎动物的各种组织中,它们的表达不仅限于神经组织。研究表明,这些蛋白质与大量不同的靶标相互作用,从而参与在Ca2+体内平衡、增殖、分化、细胞凋亡、炎症和细胞迁移等基本细胞过程中[2] [3]。目前,S100蛋白已被证实与多种疾病有关,例如炎症性疾病、自身免疫性疾病以及神经系统疾病[4]-[6],它们的多样性和重要性已被广泛接受,任何失调都可能产生严重的后果。另外,研究显示S100蛋白在多种类型癌症的发生进展中同样起着至关重要的作用,S100家族成员也被证明是有前途的诊断标志物和可能的治疗新靶点,如S100B已经在临床环境中用于恶性黑色素瘤的诊断和治疗监测,S100B水平能够灵敏的检测恶性黑色素瘤的转移性生长,特别是在IV期疾病中,其中S100B优于其他实验室指标。同时治疗前S100B水平可预测黑色素瘤患者的总生存期,与S100B水平升高的患者相比,S100B水平正常的黑色素瘤患者的生存期明显更长[7]-[10]。然而,目前对S100蛋白家族成员的了解仍然有限,S100蛋白的复杂作用尚未完全解开,需要更多地关注这组独特的蛋白。

2. S100蛋白家族成员与癌症

2.1. 肺癌

肺癌是全球最常见的癌症,主要包括非小细胞肺癌和小细胞肺癌两种类型,2022年估计有250万新发病例,已经超过乳腺癌成为发病率第一的恶性肿瘤,同时也是因癌症死亡的首位原因[11]。在肺癌中某些特定的S100家族成员的表达和活性可能发生变化,这些变化与肺癌的发展、预后和治疗响应密切相关。S100蛋白通过激活细胞增殖和生长相关的信号通路促进肺癌细胞的增殖和存活,它们也可能参与调控与癌细胞逃避凋亡相关的途径,如S100A10过表达通过激活Akt-mTOR信号通路促进糖酵解,从而促进肺腺癌细胞的增殖和侵袭[12]。S100A4蛋白通过激活下游NF-κB信号通路,调节肺癌细胞的生物活性[13]。Hou等[14]的研究显示肺癌患者的血清S100A10水平显著升高,晚期肺癌患者血清S100A10水平显著高于早期肺癌患者,淋巴结转移患者的血清S100A10水平显著高于无淋巴结转移的患者。某些S100家族成员与肺癌细胞的迁移和侵袭相关,S100蛋白能够调节细胞骨架的重组和细胞附着力,促进肺癌细胞的迁移和侵袭[15]。Sumardika等[16]指出癌细胞或正常细胞(包括上皮细胞和炎症细胞)分泌的S100A8/A9以自分泌或旁分泌方式通过S100A8/A9传感器受体刺激癌细胞,导致癌细胞转移进展。此外,S100蛋白还通过调节上皮–间质转化和细胞外基质重塑等途径,促进肺癌细胞的转移及对周围组织的侵袭[13] [17] [18]。同时,S100蛋白参与炎症和免疫反应,与免疫细胞在肿瘤内相互作用,并且可能影响肿瘤与宿主组织之间的相互作用,改变肿瘤微环境,如S100A8/A9在肺癌的炎症反应中起作用,并影响免疫细胞的调节[16]。一些S100蛋白家族成员也参与肿瘤血管生成,并与肺癌细胞的耐药性相关[19] [20]。研究表明,S100蛋白可能通过调节肿瘤细胞的凋亡、细胞周期和DNA修复等途径,影响肺癌细胞对化疗药物的敏感性[21] [22]。在治疗策略方面,尽管靶向S100蛋白的治疗尚不普遍,但一些研究在考虑利用S100家族作为新型分子靶点。例如,抑制特定S100蛋白的小分子化合物、中和性抗体或S100蛋白和其受体相互作用的阻断剂可能具有治疗潜力[23] [24]。总之,S100蛋白在肺癌中的变化及其参与的多种作用机制使得它们成为肺癌生物学和潜在治疗研究的目标。然而,要将S100蛋白作为有效的治疗靶点纳入临床应用,还需要进一步的详尽研究。

2.2. 乳腺癌

乳腺癌是全球女性最常见的癌症,也是癌症死亡的主要原因[11]。S100蛋白在乳腺癌组织和细胞中的表达通常增多,它们在乳腺癌中的作用机制涉及细胞增殖、迁移和侵袭、细胞凋亡抑制以及血管生成等多个方面,并且与肿瘤的侵袭性和预后密切相关[25]-[29]。研究指出,S100蛋白可以通过与细胞周期相关的蛋白,如cyclin和CDK相互作用,促进乳腺癌细胞的增殖和增强生长能力[25] [30]。同时,S100蛋白可以通过调节细胞骨架蛋白和转录调节因子的活性,促进乳腺癌细胞的迁移和侵袭能力,从而促进肿瘤的转移和扩散,还可能调节肿瘤细胞与基质细胞之间的相互作用,从而影响肿瘤微环境和肿瘤的侵袭性[15] [26]。另外,S100蛋白通过与凋亡相关信号通路的调节,抑制乳腺癌细胞的凋亡,从而增加肿瘤细胞的存活能力。研究表明,FOXD2-AS1/S100A1/Hippo轴参与乳腺癌的肿瘤发生和进展[27],STC1通过促进乳腺癌细胞中EGFR和ERK信号转导的磷酸化来上调S100A4的表达,S100A4介导STC1对血管生成和肺成纤维细胞的影响[28],在未来,这些可能有助于确定更有效的乳腺癌治疗方法。S100蛋白在乳腺癌中的变化与乳腺癌的进展和复发密切相关,可能为该疾病的诊断、预测和治疗提供重要的信息。一些特定的S100家族成员,比如S100A8、S100A9、S100A11和S100P的高mRNA表达与乳腺癌患者较差的预后显著相关,可能促进肿瘤的生长和转移,并可能成为有潜力的治疗靶点[29] [31] [32]。研究显示S100蛋白家族的成员可能是EGFR信号转导的直接靶标,作为Ca2+传感器的S100蛋白可能在EGF诱导的肿瘤细胞生长和转移中发挥作用,有助于曲妥珠单抗耐药性和细胞迁移,并且它们可能是HER2阳性乳腺癌的药物靶点[33]。针对S100蛋白的治疗策略在乳腺癌治疗中尚处于早期研究阶段,包括开发特异性针对S100蛋白的抗体直接作用于肿瘤细胞或其微环境和开发小分子抑制剂用于抑制S100与其受体或其他作用蛋白的相互作用,以此来干扰S100蛋白在肿瘤进展中的作用[33] [34]。基于S100蛋白的治疗手段仍需在基础研究和临床试验中进一步的验证和完善。目前为止,尚无基于S100蛋白家族的治疗方法在标准乳腺癌治疗中被广泛应用。

2.3. 结直肠癌

结直肠癌作为全球第三大常见癌症,发病率占全球所有癌症的9.6%,死亡率仅次于肺癌居于第二位[11]。结直肠癌组织和细胞中S100蛋白的表达水平通常会显著升高,它们可能通过以下多种机制发挥作用:(1) 促进细胞增殖和存活:S100蛋白通过与细胞内的生长因子、细胞周期调节蛋白或凋亡相关蛋白相互作用,促进结直肠癌细胞的增殖和生存。研究显示,结肠癌上皮细胞中S100A8/A9的表达增加,通过激活NF-κB、ERK-MAPK和其他信号通路来增强炎症因子的分泌[35]。(2) 促进细胞迁移和侵袭:S100蛋白通过调节上皮–间质转化和细胞骨架蛋白、基质金属蛋白酶等相关蛋白的表达和活性,促进结直肠癌细胞的迁移和侵袭,从而促进肿瘤的生长和扩散。研究显示S100A8促进结直肠癌TGF-β/USF2轴的上皮–间充质转化和转移,肿瘤细胞中S100A8的表达与结直肠癌患者总生存期差相关。同时,S100A8通过CXCL5/CXCR2生物轴促进结肠癌细胞增殖、侵袭和转移[35] [36]。(3) 调节免疫应答:S100蛋白与肿瘤免疫微环境的改变有关,它们通过与肿瘤相关的免疫细胞相互作用,调节免疫细胞的功能,影响肿瘤的免疫逃逸。Fukuda等[37]通过浸润免疫细胞分析显示,与I/II期S100-PNI阴性肿瘤相比,S100-PNI阳性肿瘤的基质淋巴细胞反应显着降低。S100-PNI是I/II期结直肠癌的不良预后因素,可能与肿瘤中的免疫抑制有关。(4) 促进肿瘤血管生成:S100蛋白通过调控血管内皮生长因子等相关因子的表达和活性,促进结直肠癌的血管生成和营养供应[38]。(5) 与预后相关:一些研究表明,S100蛋白的高表达可能与结直肠癌患者的预后不良相关,S100蛋白可能成为结直肠癌治疗的潜在靶点,通过干预S100蛋白的表达或功能,可以有望抑制结直肠癌的发展和蔓延。有研究观察到S100A10过表达与晚期结直肠癌相关。同时,高表达的S100A1与较差的总生存期(OS)和无病生存期(DFS)相关,S100A2和S100A11的过表达与结直肠癌的不良DFS相关[39]。特别是S100A4已被证明是抗癌治疗靶点,在人类结直肠癌细胞中,S100A4的mRNA和蛋白质水平都被甲基丁酸英烯醇减弱[39]。Cho等[40]在结直肠癌小鼠模型实验中得出靶向S100A8/A9-PRR轴可改善结肠炎症和结肠炎相关结直肠癌,该轴可作为结肠炎和结直肠癌的潜在治疗靶点。目前,结直肠癌患者的常规治疗还是基于手术、化疗以及靶向药物和免疫检查点抑制剂,S100蛋白在结直肠癌中的变化对于该疾病的发病机制、诊断和治疗具有重要的意义,进一步的研究将有助于深入理解S100蛋白在结直肠癌中的作用机制,并为临床治疗提供新的思路和方法。

2.4. 前列腺癌

前列腺癌是全球男性常见的肿瘤,仅次于肺癌[11]。一些研究表明,S100蛋白的高表达与前列腺癌的发生和发展密切相关。S100蛋白在前列腺癌的作用机制涉及多个方面,S100蛋白可以通过与多种细胞信号通路相互作用,包括NF-κB、RAGE和ERK等信号通路,促进前列腺癌细胞的增殖和侵袭[41]-[44]。S100蛋白也可以通过与细胞内钙离子相互作用,影响肿瘤细胞的凋亡和细胞周期调控,从而促进肿瘤的发展[45]。另外,S100蛋白的表达还可能影响肿瘤微环境和血管新生,促进肿瘤的生长和转移[46] [47]。因此,S100蛋白可能在前列腺癌的发生和发展中发挥重要作用,是一个潜在的治疗靶点和生物标志物。其中一个特别受关注的成员是S100A9,这种蛋白在前列腺癌病变中表达增加,并与疾病的进展相关[44] [45]。S100A4也在前列腺癌的侵袭和转移中发挥重要作用[48] [49]。尽管S100蛋白与前列腺癌的发生和发展有关,但它们在前列腺癌治疗中的作用尚未成熟。针对S100蛋白的靶向治疗,比如小分子抑制剂、抗体和免疫疗法等,均旨在通过抑制S100蛋白的功能来阻止肿瘤的增殖和转移,从而改善治疗效果[23] [49]。然而,这些治疗手段仍然处于探索性研究和早期临床试验阶段,需要更多的临床研究来验证针对S100靶点的治疗在前列腺癌中的安全性和有效性。

2.5. 胃癌

胃癌是消化系统最常见的恶性肿瘤之一,也是全球癌症相关死亡的主要原因。在胃癌组织中,S100蛋白的表达量往往会显著增加,与正常组织相比呈现明显的差异。这种增加的表达量与胃癌的进展和预后密切相关,S100蛋白的高表达可以促进胃癌细胞的增殖、侵袭和转移能力,从而加速肿瘤的发展和恶化。研究表明S100A3在胃癌组织中的平均表达水平是邻近非肿瘤组织中的2.5倍,与胃癌肿瘤分化和TNM分期相关,在低分化和晚期胃癌组织中表达相对较高[50]。此外,S100蛋白可以通过影响细胞凋亡相关的信号通路,抑制胃癌细胞的凋亡,使肿瘤细胞能够存活并继续增殖。研究发现,S100A11在胃癌中通过NF-κB通路被肝细胞生长因子(HGF)上调,并在胃癌的细胞增殖和侵袭中发挥作用[51]。同时,S100A11的高表达与胃癌患者生存率低有关,其通过调节MMP活性和上皮间充质转化过程发挥其作为肿瘤促进剂的作用。更重要的是,S100A11特异性靶向不仅可以控制肿瘤进展,还可以使化疗细胞毒性反应敏感,从而具有双重治疗益处[52]。研究显示S100A10通过调节Src/ANXA2/AKT/mTOR信号通路促进肿瘤有氧糖酵解并加速恶性肿瘤生长[53]。另外,S100蛋白可以通过促进血管内皮生长因子的表达和释放,促进血管新生,使肿瘤细胞获得更多的营养和氧气,从而促进肿瘤的生长和扩散[38] [54]。某些S100蛋白家族成员的表达与胃癌患者的总生存期相关,其中S100A3、S100A5、S100A7、S100A11、S100A13、S100Z和S100G的表达增加与较差的生存率密切相关,而S100A8、S100A9、S100B和S100P与胃癌患者的较好预后相关[55]。综上所述,S100蛋白在胃癌中可以通过促进细胞增殖和侵袭、促进血管新生以及抑制细胞凋亡等机制,对胃癌的发生和发展起着重要的作用。因此,S100蛋白可能成为胃癌的治疗靶点和预后评估的标志物。目前将S100蛋白作为直接治疗靶点的研究还处于初步阶段,尚无任何已确定的针对S100的治疗手段在胃癌标准治疗中被广泛使用,仍需要更多的科学研究来探究如何有效地将其作为治疗的靶点。

3. 小结与展望

越来越多的证据表明,S100蛋白家族成员的表达改变见于各种类型的癌症,它们可以通过多种途径调节癌细胞的增殖和分化,与迅速的细胞增殖和肿瘤的侵袭性、恶性程度相关联。S100蛋白家族成员也被研究作为肿瘤诊断和预后评估的潜在标志物,鉴于S100蛋白在癌症的发展中扮演的角色,它们有望成为新的治疗靶点,基于S100蛋白的抑制剂和中和抗体的临床试验将有助于评估这些靶点的治疗潜力,并改善癌症患者的临床管理。随着我们对这个家族在不同类型癌症中的具体机制进行深入了解,未来可能会有更多的成员帮助诊断、监测和潜在的癌症治疗。总之,S100蛋白与癌症的关系是多面的,需要综合基础研究与临床应用的不断探索。随着研究的深入,我们有望更好地理解这些复杂的相互作用,从而为癌症的诊断和治疗带来创新。

参考文献

[1] Moore, B.W. (1965) A Soluble Protein Characteristic of the Nervous System. Biochemical and Biophysical Research Communications, 19, 739-744.
https://doi.org/10.1016/0006-291x(65)90320-7
[2] Gifford, J.L., Walsh, M.P. and Vogel, H.J. (2007) Structures and Metal-Ion-Binding Properties of the Ca2+-Binding Helix-Loop-Helix EF-Hand Motifs. Biochemical Journal, 405, 199-221.
https://doi.org/10.1042/bj20070255
[3] Santamaria-Kisiel, L., Rintala-Dempsey, A.C. and Shaw, G.S. (2006) Calcium-Dependent and Independent Interactions of the S100 Protein Family. Biochemical Journal, 396, 201-214.
https://doi.org/10.1042/bj20060195
[4] Austermann, J., Spiekermann, C. and Roth, J. (2018) S100 Proteins in Rheumatic Diseases. Nature Reviews Rheumatology, 14, 528-541.
https://doi.org/10.1038/s41584-018-0058-9
[5] Holzinger, D., Foell, D. and Kessel, C. (2018) The Role of S100 Proteins in the Pathogenesis and Monitoring of Autoinflammatory Diseases. Molecular and Cellular Pediatrics, 5, Article No. 7.
https://doi.org/10.1186/s40348-018-0085-2
[6] Gonzalez-Martinez, T., Perez-Piñera, P., Díaz-Esnal, B. and Vega, J.A. (2003) S-100 Proteins in the Human Peripheral Nervous System. Microscopy Research and Technique, 60, 633-638.
https://doi.org/10.1002/jemt.10304
[7] Harpio, R. and Einarsson, R. (2004) S100 Proteins as Cancer Biomarkers with Focus on S100B in Malignant Melanoma. Clinical Biochemistry, 37, 512-518.
https://doi.org/10.1016/j.clinbiochem.2004.05.012
[8] Janka, E.A., Ványai, B., Szabó, I.L., Toka-Farkas, T., Várvölgyi, T., Kapitány, A., et al. (2023) Primary Tumour Category, Site of Metastasis, and Baseline Serum S100B and LDH Are Independent Prognostic Factors for Survival in Metastatic Melanoma Patients Treated with Anti-PD-1. Frontiers in Oncology, 13, Article 1237643.
https://doi.org/10.3389/fonc.2023.1237643
[9] Ertekin, S.S., Podlipnik, S., Ribero, S., Molina, R., Rios, J., Carrera, C., et al. (2020) Monthly Changes in Serum Levels of S100B Protein as a Predictor of Metastasis Development in High-Risk Melanoma Patients. Journal of the European Academy of Dermatology and Venereology, 34, 1482-1488.
https://doi.org/10.1111/jdv.16212
[10] Amaral, T., Seeber, O., Mersi, E., Sanchez, S., Thomas, I., Meiwes, A., et al. (2020) Primary Resistance to PD-1-Based Immunotherapy—A Study in 319 Patients with Stage IV Melanoma. Cancers, 12, Article 1027.
https://doi.org/10.3390/cancers12041027
[11] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[12] Wang, H., Sun, Z., Zhao, W., et al. (2023) S100A10 Promotes Proliferation and Invasion of Lung Adenocarcinoma Cells by Activating the Akt-mTOR Signaling Pathway. Journal of Southern Medical University, 43, 733-740.
https://doi.org/10.12122/j.issn.1673-4254.2023.05.08
[13] Stewart, R.L., Carpenter, B.L., West, D.S., Knifley, T., Liu, L., Wang, C., et al. (2016) S100A4 Drives Non-Small Cell Lung Cancer Invasion, Associates with Poor Prognosis, and Is Effectively Targeted by the FDA-Approved Anti-Helminthic Agent Niclosamide. Oncotarget, 7, 34630-34642.
https://doi.org/10.18632/oncotarget.8969
[14] Hou, Y., Zhang, J., Guo, J. and Chen, H. (2021) Clinical Significance of Serum S100A10 in Lung Cancer. Journal of International Medical Research, 49, Article 030006052110496.
https://doi.org/10.1177/03000605211049653
[15] Park, W., Gray, J.M., Holewinski, R.J., Andresson, T., So, J.Y., Carmona-Rivera, C., et al. (2023) Apoptosis-Induced Nuclear Expulsion in Tumor Cells Drives S100a4-Mediated Metastatic Outgrowth through the RAGE Pathway. Nature Cancer, 4, 419-435.
https://doi.org/10.1038/s43018-023-00524-z
[16] Sumardika, I.W., Chen, Y., Tomonobu, N., Kinoshita, R., Ruma, I.M.W., Sato, H., et al. (2019) Neuroplastin-β Mediates S100a8/a9-Induced Lung Cancer Disseminative Progression. Molecular Carcinogenesis, 58, 980-995.
https://doi.org/10.1002/mc.22987
[17] Hua, T., Liu, S., Xin, X., Cai, L., Shi, R., Chi, S., et al. (2016) S100A4 Promotes Endometrial Cancer Progress through Epithelial-Mesenchymal Transition Regulation. Oncology Reports, 35, 3419-3426.
https://doi.org/10.3892/or.2016.4760
[18] Bulk, E., Sargin, B., Krug, U., Hascher, A., Jun, Y., Knop, M., et al. (2008) S100A2 Induces Metastasis in Non-Small Cell Lung Cancer. Clinical Cancer Research, 15, 22-29.
https://doi.org/10.1158/1078-0432.ccr-08-0953
[19] Gianni, M., Terao, M., Kurosaki, M., Paroni, G., Brunelli, L., Pastorelli, R., et al. (2022) Correction: S100A3 a Partner Protein Regulating the Stability/activity of Rarα and Pml-Rarα in Cellular Models of Breast/Lung Cancer and Acute Myeloid Leukemia. Oncogene, 42, 254-258.
https://doi.org/10.1038/s41388-022-02564-8
[20] Mahmood, M.Q., Ward, C., Muller, H.K., Sohal, S.S. and Walters, E.H. (2017) Epithelial Mesenchymal Transition (EMT) and Non-Small Cell Lung Cancer (NSCLC): A Mutual Association with Airway Disease. Medical Oncology, 34, Article No. 45.
https://doi.org/10.1007/s12032-017-0900-y
[21] Gianni, M., Terao, M., Kurosaki, M., Paroni, G., Brunelli, L., Pastorelli, R., et al. (2018) S100A3 a Partner Protein Regulating the Stability/Activity of RARα and PML-RARα in Cellular Models of Breast/Lung Cancer and Acute Myeloid Leukemia. Oncogene, 38, 2482-2500.
https://doi.org/10.1038/s41388-018-0599-z
[22] Orre, L.M., Panizza, E., Kaminskyy, V.O., Vernet, E., Gräslund, T., Zhivotovsky, B., et al. (2013) S100A4 Interacts with P53 in the Nucleus and Promotes P53 Degradation. Oncogene, 32, 5531-5540.
https://doi.org/10.1038/onc.2013.213
[23] Arumugam, T. and Logsdon, C.D. (2010) S100P: A Novel Therapeutic Target for Cancer. Amino Acids, 41, 893-899.
https://doi.org/10.1007/s00726-010-0496-4
[24] He, X., Xu, X., Khan, A.Q. and Ling, W. (2017) High Expression of S100A6 Predicts Unfavorable Prognosis of Lung Squamous Cell Cancer. Medical Science Monitor, 23, 5011-5017.
https://doi.org/10.12659/msm.904279
[25] Sung, M. and Simon, R. (2004) Candidate Epitope Identification Using Peptide Property Models: Application to Cancer Immunotherapy. Methods, 34, 460-467.
https://doi.org/10.1016/j.ymeth.2004.06.001
[26] Heinecke, J.L., Ridnour, L.A., Cheng, R.Y.S., Switzer, C.H., Lizardo, M.M., Khanna, C., et al. (2014) Tumor Microenvironment-Based Feed-Forward Regulation of NOS2 in Breast Cancer Progression. Proceedings of the National Academy of Sciences, 111, 6323-6328.
https://doi.org/10.1073/pnas.1401799111
[27] Huang, P. and Xue, J. (2020) Long Non‑coding RNA FOXD2‑AS1 Regulates the Tumorigenesis and Progression of Breast Cancer via the S100 Calcium Binding Protein A1/Hippo Signaling Pathway. International Journal of Molecular Medicine, 46, 1477-1489.
https://doi.org/10.3892/ijmm.2020.4699
[28] Liu, A., Li, Y., Lu, S., Cai, C., Zou, F. and Meng, X. (2023) Stanniocalcin 1 Promotes Lung Metastasis of Breast Cancer by Enhancing EGFR-ERK-S100A4 Signaling. Cell Death & Disease, 14, Article No. 395.
https://doi.org/10.1038/s41419-023-05911-z
[29] Zhang, S., Wang, Z., Liu, W., Lei, R., Shan, J., Li, L., et al. (2017) Distinct Prognostic Values of S100 mRNA Expression in Breast Cancer. Scientific Reports, 7, Article No. 39786.
https://doi.org/10.1038/srep39786
[30] Aka, J.A. and Lin, S. (2012) Correction: Comparison of Functional Proteomic Analyses of Human Breast Cancer Cell Lines T47D and MCF7. PLOS ONE, 7, e31532.
https://doi.org/10.1371/annotation/18f08a33-35e1-4bf9-8d21-476757dccbef
[31] Cong, Y., Cui, Y., Wang, S., Jiang, L., Cao, J., Zhu, S., et al. (2020) Calcium-Binding Protein S100P Promotes Tumor Progression but Enhances Chemosensitivity in Breast Cancer. Frontiers in Oncology, 10, Article 5660302.
https://doi.org/10.3389/fonc.2020.566302
[32] Lee, S., Cho, Y., Li, Y., et al. (2024) Cancer-Cell Derived S100A11 Promotes Macrophage Recruitment in ER+ Breast Cancer.
[33] Nava, M., Dutta, P., Zemke, N.R., Farias-Eisner, R., Vadgama, J.V. and Wu, Y. (2019) Transcriptomic and Chip-Sequence Interrogation of EGFR Signaling in HER2+ Breast Cancer Cells Reveals a Dynamic Chromatin Landscape and S100 Genes as Targets. BMC Medical Genomics, 12, Article No. 32.
https://doi.org/10.1186/s12920-019-0477-8
[34] Wang, Y., Li, S., Hu, M., Yang, Y., McCabe, E., Zhang, L., et al. (2024) Universal STING Mimic Boosts Antitumour Immunity via Preferential Activation of Tumour Control Signalling Pathways. Nature Nanotechnology, 19, 856-866.
https://doi.org/10.1038/s41565-024-01624-2
[35] Chen, L., Shu, P., Zhang, X., Ye, S., Tian, L., Shen, S., et al. (2024) S100a8-Mediated Inflammatory Signaling Drives Colorectal Cancer Progression via the CXCL5/CXCR2 Axis. Journal of Cancer, 15, 3452-3465.
https://doi.org/10.7150/jca.92588
[36] Li, S., Zhang, J., Qian, S., Wu, X., Sun, L., Ling, T., et al. (2021) S100A8 Promotes Epithelial-Mesenchymal Transition and Metastasis under TGF-β/USF2 Axis in Colorectal Cancer. Cancer Communications, 41, 154-170.
https://doi.org/10.1002/cac2.12130
[37] Fukuda, Y., Tanaka, Y., Eto, K., Ukai, N., Sonobe, S., Takahashi, H., et al. (2022) S100-Stained Perineural Invasion Is Associated with Worse Prognosis in Stage I/II Colorectal Cancer: Its Possible Association with Immunosuppression in the Tumor. Pathology International, 72, 117-127.
https://doi.org/10.1111/pin.13195
[38] Wang, H., Duan, L., Zou, Z., Li, H., Yuan, S., Chen, X., et al. (2022) Activation of the PI3k/Akt/mTOR/p70S6K Pathway Is Involved in S100A4-Induced Viability and Migration in Colorectal Cancer Cells: Erratum. International Journal of Medical Sciences, 19, 352-352.
https://doi.org/10.7150/ijms.69070
[39] Hsieh, Y., Cheng, Y., Wei, P. and Yang, P. (2022) Repurposing of Ingenol Mebutate for Treating Human Colorectal Cancer by Targeting S100 Calcium-Binding Protein A4 (S100A4). Toxicology and Applied Pharmacology, 449, Article 116134.
https://doi.org/10.1016/j.taap.2022.116134
[40] Cho, E., Mun, S., Kim, H.K., Ham, Y.S., Gil, W.J. and Yang, C. (2023) Colon-Targeted S100A8/A9-Specific Peptide Systems Ameliorate Colitis and Colitis-Associated Colorectal Cancer in Mouse Models. Acta Pharmacologica Sinica, 45, 581-593.
https://doi.org/10.1038/s41401-023-01188-2
[41] Hermani, A., Deservi, B., Medunjanin, S., Tessier, P. and Mayer, D. (2006) S100A8 and S100A9 Activate MAP Kinase and NF-Κb Signaling Pathways and Trigger Translocation of RAGE in Human Prostate Cancer Cells. Experimental Cell Research, 312, 184-197.
https://doi.org/10.1016/j.yexcr.2005.10.013
[42] Palanissami, G. and Paul, S.F.D. (2023) Ages and RAGE: Metabolic and Molecular Signatures of the Glycation-Inflammation Axis in Malignant or Metastatic Cancers. Exploration of Targeted Anti-Tumor Therapy, 4, 812-849.
https://doi.org/10.37349/etat.2023.00170
[43] Zhu, W., Xue, Y., Liang, C., Zhang, R., Zhang, Z., Li, H., et al. (2016) S100A16 Promotes Cell Proliferation and Metastasis via AKT and ERK Cell Signaling Pathways in Human Prostate Cancer. Tumor Biology, 37, 12241-12250.
https://doi.org/10.1007/s13277-016-5096-9
[44] Lv, Z., Li, W. and Wei, X. (2020) S100A9 Promotes Prostate Cancer Cell Invasion by Activating TLR4/NF-Κb/Integrin Β1/FAK Signaling. OncoTargets and Therapy, 13, 6443-6452.
https://doi.org/10.2147/ott.s192250
[45] Vogl, T., Gharibyan, A.L. and Morozova-Roche, L.A. (2012) Pro-Inflammatory S100A8 and S100A9 Proteins: Self-Assembly into Multifunctional Native and Amyloid Complexes. International Journal of Molecular Sciences, 13, 2893-2917.
https://doi.org/10.3390/ijms13032893
[46] Papaevangelou, E., Esteves, A.M., Dasgupta, P. and Galustian, C. (2023) Cyto-IL-15 Synergizes with the STING Agonist ADU-S100 to Eliminate Prostate Tumors and Confer Durable Immunity in Mouse Models. Frontiers in Immunology, 14, Article 1196829.
https://doi.org/10.3389/fimmu.2023.1196829
[47] Han, D., Guo, C., Cheng, H., Lu, J., Hou, Z., Zhang, X., et al. (2024) Downregulation of S100A11 Promotes T Cell Infiltration by Regulating Cancer-Associated Fibroblasts in Prostate Cancer. International Immunopharmacology, 128, Article 111323.
https://doi.org/10.1016/j.intimp.2023.111323
[48] Kim, B., Jung, S., Kim, H., Kwon, J., Song, M., Kim, M.K., et al. (2021) The Role of S100A4 for Bone Metastasis in Prostate Cancer Cells. BMC Cancer, 21, Article No. 137.
https://doi.org/10.1186/s12885-021-07850-4
[49] Ruma, I.M.W., Kinoshita, R., Tomonobu, N., Inoue, Y., Kondo, E., Yamauchi, A., et al. (2018) Embigin Promotes Prostate Cancer Progression by S100A4-Dependent and Independent Mechanisms. Cancers, 10, Article 239.
https://doi.org/10.3390/cancers10070239
[50] Liu, J., Li, X., Dong, G., Zhang, H., Chen, D., Du, J., et al. (2008) In Silico Analysis and Verification of S100 Gene Expression in Gastric Cancer. BMC Cancer, 8, Article No. 261.
https://doi.org/10.1186/1471-2407-8-261
[51] Koh, S.A. and Lee, K.H. (2018) HGF-Mediated S100A11 Over-Expression Enhances Proliferation and Invasion of Gastric Cancer. American Journal of Translational Research, 10, 3385-3394.
[52] Cui, Y., Li, L., Li, Z., Yin, J., Lane, J., Ji, J., et al. (2021) Dual Effects of Targeting S100A11 on Suppressing Cellular Metastatic Properties and Sensitizing Drug Response in Gastric Cancer. Cancer Cell International, 21, Article No. 243.
https://doi.org/10.1186/s12935-021-01949-1
[53] Li, Y., Li, X., Li, L., Zhou, R., Sikong, Y., Gu, X., et al. (2020) S100A10 Accelerates Aerobic Glycolysis and Malignant Growth by Activating mTOR-Signaling Pathway in Gastric Cancer. Frontiers in Cell and Developmental Biology, 8, Article 559486.
https://doi.org/10.3389/fcell.2020.559486
[54] Feng, L., Zheng, X., Zhou, L., Fu, B., Yu, Y., Lu, S., et al. (2011) Correlation between Expression of S100A4 and VEGF-C, and Lymph Node Metastasis and Prognosis in Gastric Carcinoma. Journal of International Medical Research, 39, 1333-1343.
https://doi.org/10.1177/147323001103900420
[55] Wang, C., Luo, J., Rong, J., He, S., Zhang, L. and Zheng, F. (2019) Distinct Prognostic Roles of S100 mRNA Expression in Gastric Cancer. PathologyResearch and Practice, 215, 127-136.
https://doi.org/10.1016/j.prp.2018.10.034