[1]
|
Kugler, E.C., Greenwood, J. and MacDonald, R.B. (2021) The “Neuro-Glial-Vascular” Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Frontiers in Cell and Developmental Biology, 9, Article ID: 732820. https://doi.org/10.3389/fcell.2021.732820
|
[2]
|
Höppener, J.W.M., Ahrén, B. and Lips, C.J.M. (2000) Islet Amyloid and Type 2 Diabetes Mellitus. New England Journal of Medicine, 343, 411-419. https://doi.org/10.1056/nejm200008103430607
|
[3]
|
Mathiesen, D.S., Lund, A., Vilsbøll, T., Knop, F.K. and Bagger, J.I. (2021) Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Frontiers in Endocrinology, 11, Article ID: 617400. https://doi.org/10.3389/fendo.2020.617400
|
[4]
|
Menezes, R., Martins, I., Ferreira, S. and Raimundo, A. (2021) Islet Amyloid Polypeptide & Amyloid Beta Peptide Roles in Alzheimer’s Disease: Two Triggers, One Disease. Neural Regeneration Research, 16, 1127-1130. https://doi.org/10.4103/1673-5374.300323
|
[5]
|
Banks, W.A., Sharma, P., Bullock, K.M., Hansen, K.M., Ludwig, N. and Whiteside, T.L. (2020) Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. International Journal of Molecular Sciences, 21, Article No. 4407. https://doi.org/10.3390/ijms21124407
|
[6]
|
Zhang, N., Xing, Y., Yu, Y., Liu, C., Jin, B., Huo, L., et al. (2020) Influence of Human Amylin on the Membrane Stability of Rat Primary Hippocampal Neurons. Aging, 12, 8923-8938. https://doi.org/10.18632/aging.103105
|
[7]
|
Burillo, J., Fernández-Rhodes, M., Piquero, M., López-Alvarado, P., Menéndez, J.C., Jiménez, B., et al. (2021) Human Amylin Aggregates Release within Exosomes as a Protective Mechanism in Pancreatic β Cells: Pancreatic β-Hippocampal Cell Communication. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1868, Article ID: 118971. https://doi.org/10.1016/j.bbamcr.2021.118971
|
[8]
|
Wang, Y. and Westermark, G.T. (2021) The Amyloid Forming Peptides Islet Amyloid Polypeptide and Amyloid β Interact at the Molecular Level. International Journal of Molecular Sciences, 22, Article No. 11153. https://doi.org/10.3390/ijms222011153
|
[9]
|
Al Adem, K., Shanti, A., Srivastava, A., Homouz, D., Thomas, S.A., Khair, M., et al. (2022) Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Frontiers in Molecular Biosciences, 9, Article ID: 842582. https://doi.org/10.3389/fmolb.2022.842582
|
[10]
|
Bharadwaj, P., Solomon, T., Sahoo, B.R., Ignasiak, K., Gaskin, S., Rowles, J., et al. (2020) Amylin and Beta Amyloid Proteins Interact to Form Amorphous Heterocomplexes with Enhanced Toxicity in Neuronal Cells. Scientific Reports, 10, Article No. 10356. https://doi.org/10.1038/s41598-020-66602-9
|
[11]
|
Nakamura, T., Oh, C., Zhang, X. and Lipton, S.A. (2021) Protein S-Nitrosylation and Oxidation Contribute to Protein Misfolding in Neurodegeneration. Free Radical Biology and Medicine, 172, 562-577. https://doi.org/10.1016/j.freeradbiomed.2021.07.002
|
[12]
|
Roham, P.H., Save, S.N. and Sharma, S. (2022) Human Islet Amyloid Polypeptide: A Therapeutic Target for the Management of Type 2 Diabetes Mellitus. Journal of Pharmaceutical Analysis, 12, 556-569. https://doi.org/10.1016/j.jpha.2022.04.001
|
[13]
|
Pinho, J., Quintas-Neves, M., Dogan, I., Reetz, K., Reich, A. and Costa, A.S. (2021) Incident Stroke in Patients with Alzheimer’s Disease: Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 16385. https://doi.org/10.1038/s41598-021-95821-x
|
[14]
|
Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42. https://doi.org/10.1016/j.neuron.2017.07.030
|
[15]
|
Filosa, J.A., Morrison, H.W., Iddings, J.A., Du, W. and Kim, K.J. (2016) Beyond Neurovascular Coupling, Role of Astrocytes in the Regulation of Vascular Tone. Neuroscience, 323, 96-109. https://doi.org/10.1016/j.neuroscience.2015.03.064
|
[16]
|
Albariqi, M., Engelsman, S., Eijkelkamp, N. and Höppener, J. (2020) Amyloid Proteins and Peripheral Neuropathy. Cells, 9, Article No. 1553. https://doi.org/10.3390/cells9061553
|
[17]
|
Fu, W., Vukojevic, V., Patel, A., Soudy, R., MacTavish, D., Westaway, D., et al. (2017) Role of Microglial Amylin Receptors in Mediating Beta Amyloid (aβ)-Induced Inflammation. Journal of Neuroinflammation, 14, Article No. 199. https://doi.org/10.1186/s12974-017-0972-9
|
[18]
|
Nuñez-Diaz, C., Pocevičiūtė, D., Schultz, N., Welinder, C., Swärd, K. and Wennström, M. (2023) Contraction of Human Brain Vascular Pericytes in Response to Islet Amyloid Polypeptide Is Reversed by Pramlintide. Molecular Brain, 16, Article No. 125. https://doi.org/10.1186/s13041-023-01013-1
|
[19]
|
Ly, H., Verma, N., Wu, F., Liu, M., Saatman, K.E., Nelson, P.T., et al. (2017) Brain Microvascular Injury and White Matter Disease Provoked by Diabetes‐Associated Hyperamylinemia. Annals of Neurology, 82, 208-222. https://doi.org/10.1002/ana.24992
|
[20]
|
Srodulski, S., Sharma, S., Bachstetter, A.B., Brelsfoard, J.M., Pascual, C., Xie, X.S., et al. (2014) Neuroinflammation and Neurologic Deficits in Diabetes Linked to Brain Accumulation of Amylin. Molecular Neurodegeneration, 9, Article No. 30. https://doi.org/10.1186/1750-1326-9-30
|
[21]
|
Castillo, J.J., Aplin, A.C., Hackney, D.J., Hogan, M.F., Esser, N., Templin, A.T., et al. (2022) Islet Amyloid Polypeptide Aggregation Exerts Cytotoxic and Proinflammatory Effects on the Islet Vasculature in Mice. Diabetologia, 65, 1687-1700. https://doi.org/10.1007/s00125-022-05756-9
|
[22]
|
Schultz, N., Byman, E. and Wennström, M. (2018) Levels of Retinal IAPP Are Altered in Alzheimer’s Disease Patients and Correlate with Vascular Changes and Hippocampal IAPP Levels. Neurobiology of Aging, 69, 94-101. https://doi.org/10.1016/j.neurobiolaging.2018.05.003
|
[23]
|
Verma, N., Liu, M., Ly, H., Loria, A., Campbell, K.S., Bush, H., et al. (2020) Diabetic Microcirculatory Disturbances and Pathologic Erythropoiesis Are Provoked by Deposition of Amyloid-Forming Amylin in Red Blood Cells and Capillaries. Kidney International, 97, 143-155. https://doi.org/10.1016/j.kint.2019.07.028
|
[24]
|
Verma, N., Ly, H., Liu, M., Chen, J., Zhu, H., Chow, M., et al. (2016) Intraneuronal Amylin Deposition, Peroxidative Membrane Injury and Increased Il-1β Synthesis in Brains of Alzheimer’s Disease Patients with Type-2 Diabetes and in Diabetic HIP Rats. Journal of Alzheimer’s Disease, 53, 259-272. https://doi.org/10.3233/jad-160047
|
[25]
|
Schultz, N., Byman, E., Fex, M. and Wennström, M. (2016) Amylin Alters Human Brain Pericyte Viability and NG2 Expression. Journal of Cerebral Blood Flow & Metabolism, 37, 1470-1482. https://doi.org/10.1177/0271678x16657093
|
[26]
|
Uemura, M.T., Maki, T., Ihara, M., Lee, V.M.Y. and Trojanowski, J.Q. (2020) Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Frontiers in Aging Neuroscience, 12, Article No. 80. https://doi.org/10.3389/fnagi.2020.00080
|
[27]
|
O’Gallagher, K., Rosentreter, R.E., Elaine Soriano, J., Roomi, A., Saleem, S., Lam, T., et al. (2022) The Effect of a Neuronal Nitric Oxide Synthase Inhibitor on Neurovascular Regulation in Humans. Circulation Research, 131, 952-961. https://doi.org/10.1161/circresaha.122.321631
|
[28]
|
Liu, X., Yang, R., Bai, W., Xu, X., Bi, F., Hao, Y., et al. (2020) Involvement of Amylin B-H2s-Connexin 43 Signaling Pathway in Vascular Dysfunction and Enhanced Ischemia-Reperfusion-Induced Myocardial Injury in Diabetic Rats. Bioscience Reports, 40, BSR20194154. https://doi.org/10.1042/bsr20194154
|
[29]
|
Despa, F. and Goldstein, L.B. (2021) Amylin Dyshomeostasis Hypothesis: Small Vessel-Type Ischemic Stroke in the Setting of Type-2 Diabetes. Stroke, 52, e244-e249. https://doi.org/10.1161/strokeaha.121.034363
|
[30]
|
Caruso, G., Fresta, C.G., Lazzarino, G., Distefano, D.A., Parlascino, P., Lunte, S.M., et al. (2018) Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and Hspb5 from Endothelial RBE4 Cells. International Journal of Molecular Sciences, 19, Article No. 3659. https://doi.org/10.3390/ijms19113659
|