胰岛淀粉样多肽在神经血管单元中的作用机制研究进展
Advances in Research on the Mechanisms of Islet Amyloid Polypeptide in the Neurovascular Unit
DOI: 10.12677/acm.2024.1492432, PDF, HTML, XML,    科研立项经费支持
作者: 徐 畅, 万依玲, 王 鑫, 赵 薇*:大理大学第一附属医院眼科,云南 大理
关键词: 胰岛淀粉样多肽神经血管单元脑血管病综述Islet Amyloid Polypeptide Neurovascular Unit Cerebrovascular Disease Review
摘要: 胰岛淀粉样多肽(Islet amyloid polypeptide, IAPP)是由胰岛β细胞产生,并与胰岛素协同分泌的一种激素。正常结构的单体IAPP对于神经血管单元(Neurovascular unit, NVU)产生正面影响。而胰岛素抵抗、肥胖和衰老等原因产生的错误折叠的IAPP,对NVU产生了各种不利的影响。在神经系统中错误折叠的IAPP聚集后通过激活多种信号通路、诱导氧化应激、激活炎症反应、影响细胞调控因子等多种机制,直接损害神经元和胶质细胞的形态和存活率使其结构塌陷功能丧失等。在脑血管系统中,错误折叠的IAPP沉积在血管壁和脑实质形成栓子,进而造成脑血管狭窄,灌注不足甚至出血;激活缺氧信号通路导致微血管功能障碍,病理性红细胞生成增多,血管平滑肌张力增加;损伤人脑血管周细胞正常功能等。错误折叠的IAPP通过以上病理过程加重脑栓塞、脑缺氧缺血发生并影响脑血管病后NVU的重建。综上所述,IAPP通过多种途径和分子机制影响了NVU中不同细胞类型,导致神经损伤,血管功能障碍,最终引发和加重脑血管疾病。深入研究IAPP在NVU中的作用机制对于理解脑血管病的发病机制、开发新的治疗策略及疾病预后的预测具有重要意义。
Abstract: Islet amyloid polypeptide (IAPP) is a hormone produced by pancreatic β-cells and co-secreted with insulin. Monomeric IAPP with a normal structure has a positive impact on the neurovascular unit (NVU). However, misfolded IAPP, resulting from factors such as insulin resistance, obesity, and aging, has various detrimental effects on the NVU. In the nervous system, misfolded IAPP aggregates and activates multiple signaling pathways, induces oxidative stress, triggers inflammatory responses, and affects cellular regulatory factors. These mechanisms directly damage the morphology and survival rates of neurons and glial cells, causing structural collapse and functional loss. In the cerebrovascular system, misfolded IAPP deposits in the vascular walls and brain parenchyma, forming emboli that lead to vascular narrowing, insufficient perfusion, and even hemorrhage. It also activates hypoxia signaling pathways, resulting in microvascular dysfunction, increased pathological erythropoiesis, and enhanced vascular smooth muscle tension. Additionally, it impairs the normal function of human brain pericytes. Through these pathological processes, misfolded IAPP exacerbates cerebral embolism and cerebral hypoxia-ischemia, affecting the reconstruction of the NVU after cerebrovascular disease. In summary, IAPP influences different cell types within the NVU through various pathways and molecular mechanisms, leading to neuronal damage and vascular dysfunction, ultimately triggering and worsening cerebrovascular diseases. In-depth research into the role of IAPP in the NVU is crucial for understanding the pathogenesis of cerebrovascular diseases, developing new therapeutic strategies, and predicting disease prognosis.
文章引用:徐畅, 万依玲, 王鑫, 赵薇. 胰岛淀粉样多肽在神经血管单元中的作用机制研究进展[J]. 临床医学进展, 2024, 14(9): 83-89. https://doi.org/10.12677/acm.2024.1492432

1. 引言

NVU是由神经元、各种胶质细胞(包括小胶质细胞、星形胶质细胞和少突胶质细胞)及血管成分(如周细胞、内皮细胞和平滑肌细胞)共同构成的复合体,以上每个组成部分彼此紧密相连,建立结构和功能单元,调节中枢神经系统血流和能量代谢,并形成血脑屏障(Blood-brain barrier, BBB)和血视网膜屏障[1]

IAPP是一种由胰岛细胞分泌的多肽激素,在正常生理情况下,IAPP作为单体可通过增强饱腹感、减少胃排空和抑制胰高血糖素释放,从而维持血糖平稳[2]。然而当肥胖或胰岛素抵抗时患者会分泌过量IAPP,使正常的单体IAPP在β细胞中错误折叠成不同的形态结构,从而造成胰岛细胞结构和功能的损伤。最初认为,错误折叠IAPP的损伤仅限于胰岛[3]。然而,近年来的研究表明,IAPP在NVU中也发挥着重要的调节作用。即使在非糖尿病状态下,错误折叠的IAPP 也可影响神经元功能,使神经血管损伤[4]。它可以通过激活多个信号通路、诱导氧化应激,损伤神经细胞膜、增加细胞内钙离子浓度和炎症反应,影响神经元活动、损伤神经及血管细胞、改变血管直径,红细胞形态,血液流变学等对神经活动和脑血流量之间的紧密耦合产生不同程度的干扰,从而影响NVU的稳态和功能。

该文将重点回顾近五年来关于NVU和IAPP的作用及其相互关系。探讨IAPP对神经元和血管的影响、与其他调节因子的相互作用以及其在疾病发展中的潜在作用,为相关疾病的治疗策略提供新的思路和方法。

2. IAPP在NVU中的作用途径和分子机制

2.1. 神经元

高糖饮食、肥胖、胰岛素抵抗及衰老等原因导致错误折叠的IAPP增多,错误折叠的IAPP从外周通过BBB进入中枢神经系统,加剧大脑中的神经变性[5]

错误折叠的IAPP聚集体在神经元表面直接损害神经元的存活和形态、影响突触数量和神经突长度及数量、神经元细胞大小等原因使神经元细胞结构塌陷[6]

错误折叠的IAPP聚集体通过显着上调裂解的胱天蛋白酶3蛋白水平、过度激活MTOR复合体1通路、诱导氧化应激,使海马神经元细胞的存活率受到严重损伤[6] [7]

β-淀粉样蛋白是阿尔兹海默病的特征性病理改变之一,IAPP与β-淀粉样蛋白之间会易交叉折叠从而IAPP-β-淀粉样蛋白聚集体[8],该聚集体也会诱导神经元细胞死亡[9]。与单独的IAPP或β-淀粉样蛋白相比,IAPP-β-淀粉样蛋白聚集体的神经毒性作用高出三倍,尤其对海马神经元产生更多的神经毒性作用[10],该聚集体同样可以通过结合神经元细胞膜,诱导氧化应激和线粒体功能障碍导致突触功能障碍[11]最终产生神经毒性和神经元损伤[12]。这可能是阿尔兹海默病患者的脑卒中发生率均高于非阿尔兹海默病患者[13]的原因之一。

NVU中,神经元通过产生信号直接或间接作用于局部血管,启动血管反应,调节脑血流,以接收营养物质和消除代谢废物[14]。当患者发生缺血性脑损伤,脑血管中断后,神经元因缺氧和营养不足迅速受损,神经元坏死随后局部组织坏死。在出血性脑损伤中,血管破裂导致出血随后压迫周围神经组织,造成神经元机械性损伤和二次性炎症反应。脑血管病破坏血脑屏障,使错误折叠的IAPP更大更多的聚集体进一步进入中枢神经系统。

2.2. 胶质细胞

星形胶质细胞(astrocyte, AST)功能被认为是支持和分隔神经细胞;参与了BBB的形成;产生和分泌某些神经递质以及表达某些神经递质受体。它的突触和局部微血管关系十分密切,可通过释放多种血管活性介质作用于毛细血管上的周细胞和小动脉的平滑肌细胞协同血管作用,以满足神经元的代谢需求,消除代谢产物,传递神经递质,维持内环境稳态以及信号转导,从而调控NVU反应[15]。然而,错误折叠的IAPP聚集体可以AST质膜的完整性[6],当AST胞质膜的完整性被破坏后,细胞膜表面可见数个孔洞,随着细胞结构的塌陷,细胞核的轮廓变得清晰可见[6],AST损伤后BBB被破坏,有害物质更容易进入脑组织,增加动脉斑块形成,加重血管炎症,血栓形成和血管阻塞等缺血性脑卒中,视网膜动静脉阻塞等疾病的风险加剧,急性缺血性脑卒中发生后BBB破坏会导致通透性增加后发生脑水肿。AST损伤后释放血管活性介质(如一氧化氮,内皮素等)功能失调,NVU中神经元与血流之间协调作用被削弱,进一步加重缺血性损伤以及神经元死亡。AST损伤后导致的代谢废物清除障碍会进一步增加脑组织氧化应激水平,以上病理过程不但加剧脑卒中等疾病的严重程度及而恶劣后遗症发生率,还使血管性痴呆风险增加。

IAPP不仅影响神经元和星形胶质细胞,还影响参与神经病变的其他细胞类型,例如巨噬细胞、小胶质细胞、卫星胶质细胞、施万细胞和内皮细胞[16],其中,小胶质细胞作为免疫细胞,监测并清除功能衰退的细胞。而单体及寡聚体IAPP都会导致小胶质细胞胞内钙离子的增加,使NLRP3炎症小体和半胱氨酸蛋白酶-1的激活,随后释放白介素1β和肿瘤坏死因子ɑ等炎症因子,使小胶质细胞功能失调[17]。在小鼠阿尔兹海默病模型中,全身应用AC253 (一种IAPP拮抗剂),可降低脑部炎症激活和反应性小胶质细胞,减少脑内炎症[17]

2.3. 血管

在糖尿病前期,IAPP稳态失调后沉积在红细胞和微脉管系统内,改变红细胞-毛细血管相互作用,导致缺氧信号通路激活、促红细胞生成素增加、精氨酸酶表达/活性增加致一氧化氮缺乏,最终导致微血管功能障碍和病理性红细胞生成增多。除此之外,海马总IAPP水平较高的区域中毛细血管直径显着较小,壁细胞数量显着减少[18],以上因素都将进一步影响血液流变学,并增加红细胞与内皮的黏附,形成血流障碍后加重缺血性脑卒中和出血性脑卒中发生风险。

IAPP介导的脑微血管损伤加速衰老,加重神经炎症,使脑实质丧失和神经功能受损,并有研究证实IAPP沉积与血管性痴呆患者的血管壁破坏和周围神经丛的异常有关[19] [20]

2.4. 周细胞

结构正常的单体IAPP 对周细胞群呈有益作用,正常结构的IAPP会使毛细血管直径增加和周细胞数量增加[21],抑制有害的新生血管生成[21] [22]。IAPP大淀粉样纤维可以在微血管及大脑管腔中形成致密的IAPP斑块,使脑微血管狭窄、灌注不足及脑出血[19],也可沉积在红细胞上促进微血栓的形成[23],增加脑缺血缺氧风险最终使脑实质丢失、脑容量减少和神经功能缺损。血管内IAPP沉积导致白介素1β介导的炎症激活,诱导相关细胞焦亡,还通过诱导血管内皮生长因子产生,促进不稳定的新生血管生成及脑微血管损伤[24]。最终引起缺血性脑卒中、短暂性缺血性发作,血管性痴呆等脑血管病,新生血管生成极不稳定,加剧脑出血及眼底出血疾病风险。IAPP寡聚体也会对脑部血管稳定和血管重塑性出产生负面影响。寡聚体IAPP可能与晚期糖基化终末产物受体结合,激活不同细胞类型(包括视网膜周细胞、微血管内皮细胞和小胶质细胞)中的RhoA/ROCK通路诱导人脑血管周细胞收缩,形状改变,从而改变大脑微血管功能[23]。IAPP寡聚体还能中断周细胞中保护性自噬小体的形成(周细胞始终暴露在有毒废物中)及其与溶酶体的融合(瓦解周细胞的防御作用),保护作用的NG2胶质细胞缺失,诱导人脑血管周细胞死亡,这比原纤维IAPP有更大的毒性[25]。周细胞在维持微血管完整性、血脑屏障功能、血管生成、调节血流量和去除神经毒性物质中发挥重要作用,在卒中发生后NVU系统重建中有重要作用。周细胞具有收缩性,可以对大脑产生的血管活性信号做出反应,并且能够在体外和体内影响毛细血管直径,从而调控NVU反应,且随着周细胞的覆盖率降低,NVU反应将进一步使脑血流量下降损伤脑血管功能[26],还阻碍缺血后脑部新生血管的重建和神经发生,进一步延缓了修复卒中后受损的NVU系统。或许可以假设普兰林肽(一种不会错误折叠的IAPP类似物,可模拟天然IAPP的生理活性更稳定且不易聚集,与错误折叠的IAPP竞争结合IAPP受体从而减少错误折叠IAPP带来的负面影响)有可能帮助减少有害的IAPP寡聚体及其形成的淀粉样纤维,减少异常的IAPP对于脑部微血管系统的影响。

2.5. 内皮细胞

IAPP沉积物还被证明可以通过激活内皮细胞中缺氧诱导因子及其下游使一氧化氮信号传导失调使血管平滑肌张力增加,损害脑血流并导致缺血[23]还能使内皮细胞的炎症及死亡[21]。一氧化氮信号失调或减少还会降低大脑动脉的平均血流速度,降低神经血管反应[27]

血管壁中的IAPP沉积物使内皮细胞处于促炎状态,进而诱导血管区域中巨噬细胞活化和巨噬细胞浸润、内皮细胞覆盖范围的丧失以及紧密连接蛋白的下调,导致微血管损伤,红细胞通量减少,最终导致脑微出血[23]。血管内皮细胞黏附蛋白的药物可改善血管中聚集IAPP的作用,同时也降低了缺氧诱导因子和精氨酸酶蛋白的表达水平[23]。普兰林肽用于糖尿病大鼠后,显着改善血管内皮功能,减轻糖尿病大鼠的缺血再灌注损伤[28]。虽然这仅在糖尿病大鼠的基础上有此作用,但IAPP仍可能作为缺血再灌注损伤的重要靶点。

红细胞和内皮细胞既是氧的载体,又是毛细血管壁内氧感应和信号通路的中介,IAPP聚集在红细胞和内皮细胞上,导致毛细血管红细胞流动缓慢,影响神经元氧输送受损,这而可能直接参与了脑缺氧缺血损伤[29]

错误折叠IAPP聚集物刺激人脑内皮细胞在细胞外环境中释放神经保护因子(即热休克蛋白b5和血管内皮生长因子),虽然能够抵消IAPP诱导的神经元样细胞培养物的细胞死亡,却使不完美的血管生成和内皮细胞凋亡增加[30],内皮细胞的消失会导致大面积毛细血管无灌注区及新生血管的生成,血液供应不足导致组织和器官受损,中风发生概率大大增加,新生血管生成也会加重糖尿病视网膜病变(一种视网膜血管病)病情进展。

3. 结论与展望

综上所述,错误折叠的IAPP将直接损伤神经与血管之间的耦连,并损伤NVU功能,进而引发血管认知障碍、中风、糖尿病视网膜病变及视网膜动静脉阻塞等疾病。并且IAPP的拮抗剂可以逆转其对神经及血管的不良影响。虽然已有研究表明通过干预IAPP可以改善改善NVU功能,但大多数都是侧面证明,对其相关机制的研究仍不够深入。因此,今后的研究应当在该方面深入探讨,为IAPP为靶点治疗NVU类疾病提供新的强有力的理论依据。

基金项目

2019年云南省医学学科后备人才(H-2019056);大理大学第一附属医院临床医学学科队伍建设项目(DFYDZD2023009)。

NOTES

*通讯作者。

参考文献

[1] Kugler, E.C., Greenwood, J. and MacDonald, R.B. (2021) The “Neuro-Glial-Vascular” Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Frontiers in Cell and Developmental Biology, 9, Article ID: 732820.
https://doi.org/10.3389/fcell.2021.732820
[2] Höppener, J.W.M., Ahrén, B. and Lips, C.J.M. (2000) Islet Amyloid and Type 2 Diabetes Mellitus. New England Journal of Medicine, 343, 411-419.
https://doi.org/10.1056/nejm200008103430607
[3] Mathiesen, D.S., Lund, A., Vilsbøll, T., Knop, F.K. and Bagger, J.I. (2021) Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Frontiers in Endocrinology, 11, Article ID: 617400.
https://doi.org/10.3389/fendo.2020.617400
[4] Menezes, R., Martins, I., Ferreira, S. and Raimundo, A. (2021) Islet Amyloid Polypeptide & Amyloid Beta Peptide Roles in Alzheimer’s Disease: Two Triggers, One Disease. Neural Regeneration Research, 16, 1127-1130.
https://doi.org/10.4103/1673-5374.300323
[5] Banks, W.A., Sharma, P., Bullock, K.M., Hansen, K.M., Ludwig, N. and Whiteside, T.L. (2020) Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. International Journal of Molecular Sciences, 21, Article No. 4407.
https://doi.org/10.3390/ijms21124407
[6] Zhang, N., Xing, Y., Yu, Y., Liu, C., Jin, B., Huo, L., et al. (2020) Influence of Human Amylin on the Membrane Stability of Rat Primary Hippocampal Neurons. Aging, 12, 8923-8938.
https://doi.org/10.18632/aging.103105
[7] Burillo, J., Fernández-Rhodes, M., Piquero, M., López-Alvarado, P., Menéndez, J.C., Jiménez, B., et al. (2021) Human Amylin Aggregates Release within Exosomes as a Protective Mechanism in Pancreatic β Cells: Pancreatic β-Hippocampal Cell Communication. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1868, Article ID: 118971.
https://doi.org/10.1016/j.bbamcr.2021.118971
[8] Wang, Y. and Westermark, G.T. (2021) The Amyloid Forming Peptides Islet Amyloid Polypeptide and Amyloid β Interact at the Molecular Level. International Journal of Molecular Sciences, 22, Article No. 11153.
https://doi.org/10.3390/ijms222011153
[9] Al Adem, K., Shanti, A., Srivastava, A., Homouz, D., Thomas, S.A., Khair, M., et al. (2022) Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Frontiers in Molecular Biosciences, 9, Article ID: 842582.
https://doi.org/10.3389/fmolb.2022.842582
[10] Bharadwaj, P., Solomon, T., Sahoo, B.R., Ignasiak, K., Gaskin, S., Rowles, J., et al. (2020) Amylin and Beta Amyloid Proteins Interact to Form Amorphous Heterocomplexes with Enhanced Toxicity in Neuronal Cells. Scientific Reports, 10, Article No. 10356.
https://doi.org/10.1038/s41598-020-66602-9
[11] Nakamura, T., Oh, C., Zhang, X. and Lipton, S.A. (2021) Protein S-Nitrosylation and Oxidation Contribute to Protein Misfolding in Neurodegeneration. Free Radical Biology and Medicine, 172, 562-577.
https://doi.org/10.1016/j.freeradbiomed.2021.07.002
[12] Roham, P.H., Save, S.N. and Sharma, S. (2022) Human Islet Amyloid Polypeptide: A Therapeutic Target for the Management of Type 2 Diabetes Mellitus. Journal of Pharmaceutical Analysis, 12, 556-569.
https://doi.org/10.1016/j.jpha.2022.04.001
[13] Pinho, J., Quintas-Neves, M., Dogan, I., Reetz, K., Reich, A. and Costa, A.S. (2021) Incident Stroke in Patients with Alzheimer’s Disease: Systematic Review and Meta-Analysis. Scientific Reports, 11, Article No. 16385.
https://doi.org/10.1038/s41598-021-95821-x
[14] Iadecola, C. (2017) The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron, 96, 17-42.
https://doi.org/10.1016/j.neuron.2017.07.030
[15] Filosa, J.A., Morrison, H.W., Iddings, J.A., Du, W. and Kim, K.J. (2016) Beyond Neurovascular Coupling, Role of Astrocytes in the Regulation of Vascular Tone. Neuroscience, 323, 96-109.
https://doi.org/10.1016/j.neuroscience.2015.03.064
[16] Albariqi, M., Engelsman, S., Eijkelkamp, N. and Höppener, J. (2020) Amyloid Proteins and Peripheral Neuropathy. Cells, 9, Article No. 1553.
https://doi.org/10.3390/cells9061553
[17] Fu, W., Vukojevic, V., Patel, A., Soudy, R., MacTavish, D., Westaway, D., et al. (2017) Role of Microglial Amylin Receptors in Mediating Beta Amyloid (aβ)-Induced Inflammation. Journal of Neuroinflammation, 14, Article No. 199.
https://doi.org/10.1186/s12974-017-0972-9
[18] Nuñez-Diaz, C., Pocevičiūtė, D., Schultz, N., Welinder, C., Swärd, K. and Wennström, M. (2023) Contraction of Human Brain Vascular Pericytes in Response to Islet Amyloid Polypeptide Is Reversed by Pramlintide. Molecular Brain, 16, Article No. 125.
https://doi.org/10.1186/s13041-023-01013-1
[19] Ly, H., Verma, N., Wu, F., Liu, M., Saatman, K.E., Nelson, P.T., et al. (2017) Brain Microvascular Injury and White Matter Disease Provoked by Diabetes‐Associated Hyperamylinemia. Annals of Neurology, 82, 208-222.
https://doi.org/10.1002/ana.24992
[20] Srodulski, S., Sharma, S., Bachstetter, A.B., Brelsfoard, J.M., Pascual, C., Xie, X.S., et al. (2014) Neuroinflammation and Neurologic Deficits in Diabetes Linked to Brain Accumulation of Amylin. Molecular Neurodegeneration, 9, Article No. 30.
https://doi.org/10.1186/1750-1326-9-30
[21] Castillo, J.J., Aplin, A.C., Hackney, D.J., Hogan, M.F., Esser, N., Templin, A.T., et al. (2022) Islet Amyloid Polypeptide Aggregation Exerts Cytotoxic and Proinflammatory Effects on the Islet Vasculature in Mice. Diabetologia, 65, 1687-1700.
https://doi.org/10.1007/s00125-022-05756-9
[22] Schultz, N., Byman, E. and Wennström, M. (2018) Levels of Retinal IAPP Are Altered in Alzheimer’s Disease Patients and Correlate with Vascular Changes and Hippocampal IAPP Levels. Neurobiology of Aging, 69, 94-101.
https://doi.org/10.1016/j.neurobiolaging.2018.05.003
[23] Verma, N., Liu, M., Ly, H., Loria, A., Campbell, K.S., Bush, H., et al. (2020) Diabetic Microcirculatory Disturbances and Pathologic Erythropoiesis Are Provoked by Deposition of Amyloid-Forming Amylin in Red Blood Cells and Capillaries. Kidney International, 97, 143-155.
https://doi.org/10.1016/j.kint.2019.07.028
[24] Verma, N., Ly, H., Liu, M., Chen, J., Zhu, H., Chow, M., et al. (2016) Intraneuronal Amylin Deposition, Peroxidative Membrane Injury and Increased Il-1β Synthesis in Brains of Alzheimer’s Disease Patients with Type-2 Diabetes and in Diabetic HIP Rats. Journal of Alzheimers Disease, 53, 259-272.
https://doi.org/10.3233/jad-160047
[25] Schultz, N., Byman, E., Fex, M. and Wennström, M. (2016) Amylin Alters Human Brain Pericyte Viability and NG2 Expression. Journal of Cerebral Blood Flow & Metabolism, 37, 1470-1482.
https://doi.org/10.1177/0271678x16657093
[26] Uemura, M.T., Maki, T., Ihara, M., Lee, V.M.Y. and Trojanowski, J.Q. (2020) Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Frontiers in Aging Neuroscience, 12, Article No. 80.
https://doi.org/10.3389/fnagi.2020.00080
[27] O’Gallagher, K., Rosentreter, R.E., Elaine Soriano, J., Roomi, A., Saleem, S., Lam, T., et al. (2022) The Effect of a Neuronal Nitric Oxide Synthase Inhibitor on Neurovascular Regulation in Humans. Circulation Research, 131, 952-961.
https://doi.org/10.1161/circresaha.122.321631
[28] Liu, X., Yang, R., Bai, W., Xu, X., Bi, F., Hao, Y., et al. (2020) Involvement of Amylin B-H2s-Connexin 43 Signaling Pathway in Vascular Dysfunction and Enhanced Ischemia-Reperfusion-Induced Myocardial Injury in Diabetic Rats. Bioscience Reports, 40, BSR20194154.
https://doi.org/10.1042/bsr20194154
[29] Despa, F. and Goldstein, L.B. (2021) Amylin Dyshomeostasis Hypothesis: Small Vessel-Type Ischemic Stroke in the Setting of Type-2 Diabetes. Stroke, 52, e244-e249.
https://doi.org/10.1161/strokeaha.121.034363
[30] Caruso, G., Fresta, C.G., Lazzarino, G., Distefano, D.A., Parlascino, P., Lunte, S.M., et al. (2018) Sub-Toxic Human Amylin Fragment Concentrations Promote the Survival and Proliferation of SH-SY5Y Cells via the Release of VEGF and Hspb5 from Endothelial RBE4 Cells. International Journal of Molecular Sciences, 19, Article No. 3659.
https://doi.org/10.3390/ijms19113659