[1]
|
Hunter, D.J. and Bierma-Zeinstra, S. (2019) Osteoarthritis. The Lancet, 393, 1745-1759. https://doi.org/10.1016/s0140-6736(19)30417-9
|
[2]
|
Glyn-Jones, S., Palmer, A.J.R., Agricola, R., Price, A.J., Vincent, T.L., Weinans, H., et al. (2015) Osteoarthritis. The Lancet, 386, 376-387. https://doi.org/10.1016/s0140-6736(14)60802-3
|
[3]
|
Lu, K., Ma, F., Yi, D., Yu, H., Tong, L. and Chen, D. (2022) Molecular Signaling in Temporomandibular Joint Osteoarthritis. Journal of Orthopaedic Translation, 32, 21-27. https://doi.org/10.1016/j.jot.2021.07.001
|
[4]
|
Nüsslein-Volhard, C. and Wieschaus, E. (1980) Mutations Affecting Segment Number and Polarity in Drosophila. Nature, 287, 795-801. https://pubmed.ncbi.nlm.nih.gov/6776413/
|
[5]
|
Sasai, N., Toriyama, M. and Kondo, T. (2019) Hedgehog Signal and Genetic Disorders. Frontiers in Genetics, 10, Article 1103. https://doi.org/10.3389/fgene.2019.01103
|
[6]
|
Ingham, P.W. and McMahon, A.P. (2001) Hedgehog Signaling in Animal Development: Paradigms and Principles. Genes & Development, 15, 3059-3087. https://doi.org/10.1101/gad.938601
|
[7]
|
Serra, R., Johnson, M., Filvaroff, E.H., LaBorde, J., Sheehan, D.M., Derynck, R., et al. (1997) Expression of a Truncated, Kinase-Defective TGF-β Type II Receptor in Mouse Skeletal Tissue Promotes Terminal Chondrocyte Differentiation and Osteoarthritis. The Journal of Cell Biology, 139, 541-552. https://doi.org/10.1083/jcb.139.2.541
|
[8]
|
Kobayashi, T., Chung, U., Schipani, E., Starbuck, M., Karsenty, G., Katagiri, T., et al. (2002) PTHrP and Indian Hedgehog Control Differentiation of Growth Plate Chondrocytes at Multiple Steps. Development, 129, 2977-2986. https://doi.org/10.1242/dev.129.12.2977
|
[9]
|
Sieker, J.T., Kunz, M., Weißenberger, M., Gilbert, F., Frey, S., Rudert, M., et al. (2015) Direct Bone Morphogenetic Protein 2 and Indian Hedgehog Gene Transfer for Articular Cartilage Repair Using Bone Marrow Coagulates. Osteoarthritis and Cartilage, 23, 433-442. https://doi.org/10.1016/j.joca.2014.11.008
|
[10]
|
Lin, A.C., Seeto, B.L., Bartoszko, J.M., Khoury, M.A., Whetstone, H., Ho, L., et al. (2009) Modulating Hedgehog Signaling Can Attenuate the Severity of Osteoarthritis. Nature Medicine, 15, 1421-1425. https://doi.org/10.1038/nm.2055
|
[11]
|
Ruiz-Heiland, G., Horn, A., Zerr, P., Hofstetter, W., Baum, W., Stock, M., et al. (2012) Blockade of the Hedgehog Pathway Inhibits Osteophyte Formation in Arthritis. Annals of the Rheumatic Diseases, 71, 400-407. https://doi.org/10.1136/ard.2010.148262
|
[12]
|
Zhou, J., Chen, Q., Lanske, B., Fleming, B.C., Terek, R., Wei, X., et al. (2014) Disrupting the Indian Hedgehog Signaling Pathway in Vivo Attenuates Surgically Induced Osteoarthritis Progression in Col2a1-CreERT2; Ihhfl/fl Mice. Arthritis Research & Therapy, 16, Article No. R11. https://doi.org/10.1186/ar4437
|
[13]
|
Ge, X. and Wang, X. (2010) Role of Wnt Canonical Pathway in Hematological Malignancies. Journal of Hematology & Oncology, 3, Article No. 33. https://doi.org/10.1186/1756-8722-3-33
|
[14]
|
Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C.M., von Laue, C.C., Snyder, P., et al. (2000) Wnt Signalling Molecules Act in Axis Formation in the Diploblastic Metazoan Hydra. Nature, 407, 186-189. https://doi.org/10.1038/35025063
|
[15]
|
Akiyama, T. (2000) Wnt/β-Catenin Signaling. Cytokine & Growth Factor Reviews, 11, 273-282. https://doi.org/10.1016/s1359-6101(00)00011-3
|
[16]
|
Roy, J.P., Halford, M.M. and Stacker, S.A. (2018) The Biochemistry, Signalling and Disease Relevance of RYK and Other Wnt-Binding Receptor Tyrosine Kinases. Growth Factors, 36, 15-40. https://doi.org/10.1080/08977194.2018.1472089
|
[17]
|
Dell’Accio, F., De Bari, C., El Tawil, N.M., Barone, F., Mitsiadis, T.A., O’Dowd, J., et al. (2006) Activation of WNT and BMP Signaling in Adult Human Articular Cartilage Following Mechanical Injury. Arthritis Research & Therapy, 8, Article No. R139. https://doi.org/10.1186/ar2029
|
[18]
|
Lane, N.E., Nevitt, M.C., Lui, L., de Leon, P. and Corr, M. (2007) Wnt Signaling Antagonists Are Potential Prognostic Biomarkers for the Progression of Radiographic Hip Osteoarthritis in Elderly Caucasian Women. Arthritis & Rheumatism, 56, 3319-3325. https://doi.org/10.1002/art.22867
|
[19]
|
Zhu, M., Tang, D.Z., et al. (2009) Activation of Beta-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult Beta-Catenin Conditional Activation Mice. Journal of Bone and Mineral Research, 24, 12-21. https://pubmed.ncbi.nlm.nih.gov/18767925/
|
[20]
|
Huang, G., Chubinskaya, S., Liao, W. and Loeser, R.F. (2017) Wnt5a Induces Catabolic Signaling and Matrix Metalloproteinase Production in Human Articular Chondrocytes. Osteoarthritis and Cartilage, 25, 1505-1515. https://doi.org/10.1016/j.joca.2017.05.018
|
[21]
|
Shi, Y. and Massagué, J. (2003) Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 113, 685-700. https://doi.org/10.1016/s0092-8674(03)00432-x
|
[22]
|
Heldin, C., Miyazono, K. and ten Dijke, P. (1997) TGF-β Signalling from Cell Membrane to Nucleus through SMAD Proteins. Nature, 390, 465-471. https://doi.org/10.1038/37284
|
[23]
|
Goumans, M.-J. (2002) Balancing the Activation State of the Endothelium via Two Distinct TGF-Beta Type I Receptors. The EMBO Journal, 21, 1743-1753. https://doi.org/10.1093/emboj/21.7.1743
|
[24]
|
Finnson, K.W., Parker, W.L., ten Dijke, P., Thorikay, M. and Philip, A. (2008) ALK1 Opposes Alk5/Smad3 Signaling and Expression of Extracellular Matrix Components in Human Chondrocytes. Journal of Bone and Mineral Research, 23, 896-906. https://doi.org/10.1359/jbmr.080209
|
[25]
|
Blaney Davidson, E.N., Remst, D.F.G., Vitters, E.L., van Beuningen, H.M., Blom, A.B., Goumans, M., et al. (2009) Increase in ALK1/ALK5 Ratio as a Cause for Elevated MMP-13 Expression in Osteoarthritis in Humans and Mice. The Journal of Immunology, 182, 7937-7945. https://doi.org/10.4049/jimmunol.0803991
|
[26]
|
Keller, B., Yang, T., et al. (2011) Interaction of TGFβ and BMP Signaling Pathways during Chondrogenesis. PLOS ONE, 6, e16421. https://pubmed.ncbi.nlm.nih.gov/21297990/
|
[27]
|
de Kroon, L.M.G., Narcisi, R., et al. (2015) Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLOS ONE, 10, e0146124. https://pubmed.ncbi.nlm.nih.gov/26720610/
|
[28]
|
Blaney Davidson, E.N., Vitters, E.L., Bennink, M.B., van Lent, P.L.E.M., van Caam, A.P.M., Blom, A.B., et al. (2014) Inducible Chondrocyte-Specific Overexpression of BMP2 in Young Mice Results in Severe Aggravation of Osteophyte Formation in Experimental OA without Altering Cartilage Damage. Annals of the Rheumatic Diseases, 74, 1257-1264. https://doi.org/10.1136/annrheumdis-2013-204528
|
[29]
|
Blaney Davidson, E.N., Vitters, E.L., van der Kraan, P.M. and van den Berg, W.B. (2006) Expression of Transforming Growth Factor-(TGF) and the TGF Signalling Molecule SMAD-2P in Spontaneous and Instability-Induced Osteoarthritis: Role in Cartilage Degradation, Chondrogenesis and Osteophyte Formation. Annals of the Rheumatic Diseases, 65, 1414-1421. https://doi.org/10.1136/ard.2005.045971
|
[30]
|
Hodgson, D., Rowan, A.D., Falciani, F. and Proctor, C.J. (2019) Systems Biology Reveals How Altered TGFβ Signalling with Age Reduces Protection against Pro-Inflammatory Stimuli. PLOS Computational Biology, 15, e1006685. https://doi.org/10.1371/journal.pcbi.1006685
|
[31]
|
Long, F., Zhang, X.M., Karp, S., Yang, Y. and McMahon, A.P. (2001) Genetic Manipulation of Hedgehog Signaling in the Endochondral Skeleton Reveals a Direct Role in the Regulation of Chondrocyte Proliferation. Development, 128, 5099-5108. https://doi.org/10.1242/dev.128.24.5099
|
[32]
|
Jimi, E. and Ghosh, S. (2005) Role of Nuclear Factor-κb in the Immune System and Bone. Immunological Reviews, 208, 80-87. https://doi.org/10.1111/j.0105-2896.2005.00329.x
|
[33]
|
Oeckinghaus, A. and Ghosh, S. (2009) The NF-B Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1, a000034. https://doi.org/10.1101/cshperspect.a000034
|
[34]
|
Yasuda, T. (2011) Activation of Akt Leading to NF-Κb Up-Regulation in Chondrocytes Stimulated with Fibronectin Fragment. Biomedical Research, 32, 209-215. https://doi.org/10.2220/biomedres.32.209
|
[35]
|
Arra, M., Swarnkar, G., Alippe, Y., Mbalaviele, G. and Abu-Amer, Y. (2022) Iκb-ζ Signaling Promotes Chondrocyte Inflammatory Phenotype, Senescence, and Erosive Joint Pathology. Bone Research, 10, Article No. 12. https://doi.org/10.1038/s41413-021-00183-9
|
[36]
|
Ulivi, V., Giannoni, P., Gentili, C., Cancedda, R. and Descalzi, F. (2008) P38/Nf-kb-Dependent Expression of COX-2 during Differentiation and Inflammatory Response of Chondrocytes. Journal of Cellular Biochemistry, 104, 1393-1406. https://doi.org/10.1002/jcb.21717
|
[37]
|
Yoon, D.S., Lee, K., Choi, Y., Ko, E.A., Lee, N., Cho, S., et al. (2022) TLR4 Downregulation by the RNA-Binding Protein PUM1 Alleviates Cellular Aging and Osteoarthritis. Cell Death & Differentiation, 29, 1364-1378. https://doi.org/10.1038/s41418-021-00925-6
|
[38]
|
Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. and Fahmi, H. (2010) Role of Proinflammatory Cytokines in the Pathophysiology of Osteoarthritis. Nature Reviews Rheumatology, 7, 33-42. https://doi.org/10.1038/nrrheum.2010.196
|
[39]
|
Goldring, M., Otero, M., Plumb, D., Dragomir, C., Favero, M., EI Hachem, K., et al. (2011) Roles of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge Upon MMP-13 Regulation in Osteoarthritis. European Cells and Materials, 21, 202-220. https://doi.org/10.22203/ecm.v021a16
|