骨关节炎中的信号通路
Signalling Pathways in Osteoarthritis
DOI: 10.12677/acm.2024.1492433, PDF, HTML, XML,   
作者: 张凯铭, 聂 茂*:重庆医科大学附属第二医院关节外科中心,重庆
关键词: 关节炎信号通路Osteoarthritis Signalling Pathways
摘要: 骨关节炎(OA)是最常见的疾病之一,其影响超过10%的人口,造成了巨大的社会经济负担。骨关节炎的病理改变累及整个关节,由多种类型的组织和细胞组成,如软骨退化、软骨下骨增厚、骨赘形成、滑膜炎症和肥大、韧带变性。关节的稳态由一个复杂的信号通路网络来调节合成代谢和分解代谢事件,信号通路网络的失调会对多个关节组织的结构和功能产生负面影响,最终导致OA的发生和进展。在这篇综述中,我们将讨论Hedgehog、Wnt/β-catenin、TGFβ和NF-κB这四种信号通路目前在OA领域的研究现状。
Abstract: Osteoarthritis (OA) is one of the most common diseases, affecting more than 10 percent of the population and causing a huge socio-economic burden. The pathological changes of osteoarthritis involve the entire joint and consist of several types of tissues and cells, such as cartilage degeneration, subchondral bone thickening, bone redundancy formation, synovial inflammation and hypertrophy, and ligament degeneration. Joint homeostasis is regulated by a complex network of signalling pathways that regulate anabolic and catabolic events, and dysregulation of the signalling pathway network can negatively affect the structure and function of multiple joint tissues, ultimately leading to the onset and progression of OA. In this review, we will discuss the current state of research in OA on four signalling pathways, Hedgehog, Wnt/β-catenin, TGFβ and NF-κB.
文章引用:张凯铭, 聂茂. 骨关节炎中的信号通路[J]. 临床医学进展, 2024, 14(9): 90-95. https://doi.org/10.12677/acm.2024.1492433

1. 介绍

在滑膜关节疾病中,骨关节炎(OA)是最常见的形式,影响超过10%的人口。OA影响整个关节,并引起复杂的病理改变,如关节间隙狭窄、关节软骨破坏、滑膜炎症和增生、骨赘形成、软骨下骨硬化等[1]。目前我们已认识到OA是一种高度异质性的关节疾病,因此有必要开发个性化的疗法来治疗OA [2]。关节稳态需要一个复杂的信号通路网络来调节合成代谢和分解代谢事件,目前已有大量针对骨性关节炎中信号通路的相关研究[3]。本综述旨在总结近期针对Hedgehog、Wnt/β-catenin、TGF-β和NF-κB通路研究,它们在关节稳态和OA发病机制中具有重要作用。

2. Hedgehog信号通路

Hedgehog信号通路是一种配体依赖性信号通路,参与脊椎动物的胚胎发育、器官形成和肿瘤发生发展等生理及病理过程。Nusslein-Volhard等于1980年在果蝇中首次发现Hedgehog基因,因其突变会导致果蝇呈刺猬状而被命名[4]。在哺乳动物中Hedgehog包括Sonic Hedgehog (Shh)、Indian Hedgehog (Ihh)和Desert Hedgehog (Dhh) 3种亚型。在人体中,这3种蛋白分别在发育过程中发挥着不同的作用,其中Dhh主要与生殖细胞发育有关,在睾丸中表达,是哺乳动物精子发生中的重要调控因素,而Shh及Ihh可通过多种途径参与骨代谢调节,其中Shh主要参与肢体发育过程,而Ihh主要是在软骨内成骨过程中发挥关键作用[5]

对于Hh配体,其主要受体是Patched 1 (PTCH1),这是一种跨膜蛋白,在不与Hh配体结合时,便会抑制Hh通路的活性。PTCH1对Hh通路的抑制是通过抑制G蛋白偶联受体(GPCR)超家族中的一个成员Smoothend (SMO)来介导的。因此,在Hh结合后,SMO解除PTCH1抑制,激活转录因子(脊椎动物中的Gli1、Gli2和Gli3)来进行特定的基因表达[6]

Hh信号通路已被证明在骨和生长因子的发育中发挥多种重要功能,包括其在软骨细胞增殖和肥大分化中的调节作用,以及成骨细胞分化[7]。Ihh主要由肥大前软骨细胞产生,促进甲状旁腺激素相关蛋白(PTHrP)的表达,并使这些软骨细胞增殖[8]。此外,Ihh也是软骨膜细胞成骨细胞分化所必需的,而这对骨环的形成至关重要。有研究通过将Ihh腺病毒表达的骨髓凝固物传递到兔膝关节骨软骨缺损来测试其软骨修复潜力并表现出了良好的修复效果,表明Ihh在软骨修复中的能力[9]

对人类OA样本和手术诱导的OA小鼠模型的进一步研究表明,软骨细胞中Hh信号水平与OA的严重程度密切相关,提示Hh信号上调在OA的发展中存在因果效应[10]。Smo的小分子抑制剂是Hh激活不可缺少的因子,它可以在小鼠关节炎模型中阻断Hh信号,从而显著减少骨赘的形成[11]。同样,软骨细胞中特异性的Ihh缺失减少了手术诱导的小鼠OA的进展,这可以从相对完整的软骨表面和OA标记基因如Col10a1和Mmp13的表达降低看出[12]。综上所述,Hh信号通路的异常激活可能是OA发病机制的基础,而抑制Hh通路可能为OA的治疗提供一种治疗策略。

3. Wnt/β-Catenin信号通路

Wnt/β-catenin信号通路在动物发育的各种过程中发挥作用。Wnt/β-catenin信号通路的激活或失活主要依赖于转录调节因子β-catenin的稳定或降解[13]。在没有Wnt的情况下,β-catenin会被由Axin、APC和GSK-3组成的破坏复合物磷酸化,然后被泛素–蛋白酶体系统降解。在Wnt及其受体Frizzled和LRP5/6结合后,会阻止破坏复合物对β-catenin的泛素化,从而避免β-catenin的降解,β-catenin随后会转移到细胞核发挥其转录功能[14]。值得注意的是,Wnts还与酪氨酸激酶受体的一些亚家族结合,包括酪氨酸激酶(RYK)和RTK样孤儿受体(ROR)亚家族,调节典型的Wnt信号通路和其他通路[15] [16]

目前大量的研究表明Wnt /β-catenin信号通路的激活可调控关节软骨,成骨细胞及滑膜细胞的生长代谢,它与成骨细胞的形成和分化,破骨细胞的形成密切相关,在调控骨增殖方面起着至关重要的作用,这也使得它在骨关节炎领域也受到了广泛的关注。据报道,软骨外植体的机械损伤诱导Wnt靶基因Axin2和c-Jun的表达[17]。有研究发现部分老年白人女性患者中的血清中的Wnt信号抑制剂DKK1和卷曲相关蛋白(FRP)水平升高,与这类患者髋关节骨性关节炎进展的风险降低相关[18]。这些发现都提示Wnt信号通路的上调可能是OA发生发展的一个原因因素。不仅如此,有研究在关节软骨中敲除β-catenin的Exon3序列,生成了可抵抗GSK-3β磷酸化的β-catenin突变蛋白,从而导致Wnt/β-catenin信号通路的持续性激活,导致了全面OA化,包括软骨损伤、骨赘形成和新的软骨下骨形成[19]。此外,OA中软骨基质降解的基因包括Mmp9、Mmp13和Col10a1在β-catenin激活小鼠的关节软骨细胞中显著上调[20]。这些研究都表明Wnt/β-catenin信号通路的激活与OA的发病之间的存在密切的关系。

4. TGF-β信号通路

TGFβ超家族在关节病理生理学中具有多效性,其参与健康的关节稳态和骨关节炎发病机制。该家族包含人类42种生长因子,可分为两个亚家族:TGFβ/Activin/Nodal亚家族和BMP/GDF/MIS亚家族[21]。对于TGFβ信号通路的典型激活,TGFβ超家族的一个配体,例如TGFβ1、BMP-2或其他TGFβ家族成员,形成二聚体,与细胞膜上的两个I型和II型受体结合,形成异聚复合体,II型受体磷酸化I型受体,显著增强了受体调节的Smads的招募和磷酸化。磷酸化后,两个R-Smads和一个Smad4形成异聚复合物并易位到细胞核中,在那里它们和其他转录因子相互作用以控制基因转录。

活性TGFβ是一种25kD的二聚体,通过跨膜丝氨酸/苏氨酸I型和II型受体的异聚体复合物发出信号,最常见的是由两个I型和两个II型受体组成的四聚体。I型受体,也被称为激活素受体样激酶(ALKs),作用于II型受体的下游,并决定受体的特异性[22]。TGFβ的典型信号通路是通过广泛表达的I型受体ALK5 [23],在软骨细胞和其他类型的细胞中,其他的ALKs,如ALK1,也参与了TGFβ信号的传导。ALK5刺激Smad2和Smad3的磷酰化,而ALK1介导Smad1、Smad5和Smad8的激活[24]。磷酸化的R-Smads与Smad4形成三聚体,这些三聚体在细胞核中积累,它们与共激活因子和抑制因子一起控制转录反应[25]

TGFβ已被证明在维持关节软骨的完整性方面发挥了重要作用。据报道,Smad2-Smad3和Smad1-Smad5-Smad8信号级联都参与了软骨生成和调节软骨细胞分化[26] [27]。用TGF-β体外处理关节软骨细胞或软骨外植体会刺激胶原和蛋白多糖的生物合成,这两种主要的软骨基质大分子会促进关节软骨的机械强度。此外,TGF-β1可以显著抑制蛋白酶的产生来阻断IL-1β对关节软骨细胞的分解代谢作用,并下调IL-1受体的表达[28]。值得注意的是,TGF-β3和p-Smad2在正常软骨中表达,而在严重骨关节炎软骨中并没有检测到,这表明TGF-β信号在维持软骨稳态发挥重要作用,保护了软骨免受破坏[29]

除了软骨细胞可以产生大量的TGFβ外,仍有大量的TGFβ配体以潜伏的形式储存在软骨的细胞外基质中。这部分的TGFβ可以快速响应软骨磨损并发挥软骨保护的作用,软骨损伤诱导产生的基质金属蛋白酶(MMP)的产生,作用并激活TGFβ后,通过拮抗分解代谢因子和刺激基质合成,对软骨提供保护作用。不仅如此,TGFβ还可通过抑制IL-1介导的MMP13和X型胶原的表达,从而延缓软骨细胞肥大和凋亡[30]。这表明TGFβ调节多种关节病理生理学[31]

5. NF-κB信号通路

NF-κB信号通路由一组转录因子组成,其可被不同类型的促炎细胞因子激活。NF-κB在哺乳动物细胞的炎症、分化、增殖和存活过程中起着关键作用[32]。NF-κB家族包含5个成员:RelA/p65、RelB、c-Rel、NF-κB1/p50 (p105)和NF-κB2/p52 (p100) [33]。在真核生物中,二聚体(p65:p50和RelB:p52)是最常见的NF-κB复合物,其作为转录激活因子[34]。IκB作为NF-κB蛋白抑制剂,通过绑定到NF-κB家族成员在细胞质中阻止磷酸化和激活NF-κB。多种炎症信号,如TNFα,可以激活IKK,激活的IKK通过调节其磷酸化导致IκB降解。随后NF-κB复合物易位到细胞核,在那里它触发下游靶基因的转录[35]

NF-κB信号通路通过多种模式广泛参与OA的病理过程。促炎介质、纤维连接蛋白片段和机械应力可通过关节软骨细胞细胞膜表面的机械感受器、细胞因子受体、TNFR和TLR。激活NF-κB信号通路,并与BMP、Wnt和其他级联信号进行串扰[36]。NF-κB信号可诱导降解酶的分泌,如MMP8、MMP9、MMP13、ADAMTS4和ADAMTS5,导致关节软骨的降解[37]。此外,NF-κB可通过诱导PGE2 (前列腺素E2)、NOS (一氧化氮合酶)、NO (一氧化氮)和COX2 (环氧合酶-2)来促进关节损伤,从而加重组织炎症、促进分解代谢相关因子的合成和关节软骨细胞的凋亡[38]。NF-κB还可促进其他转录因子的激活,如缺氧诱导因子2α (HIF-2α),ELF3和RUNX2,这些转录因子会加剧ADAMTS5和MMP13的表达。这些研究都表明NF-κB信号通路在OA的发病机制及病理过程中发挥着巨大作用[39]

6. 讨论

OA是一种非常复杂的滑膜关节疾病,本综述总结了目前OA当中研究较多的Hedgehog、Wnt/β-catenin、TGF-β和NF-κB通路以及其在OA领域的认识和研究现状,为之后的针对OA发病机制以及药物靶向治疗的研究起到了一定的指示作用,尽管如此,由于OA发病机制的复杂性,加之我们目前对其致病分子信号通路的具体机制了解十分有限,使得OA的药理靶向治疗也极为困难。今后应全面了解不同因素引发的OA,以及不同阶段关节软骨和滑膜浅表、中、深区不同信号通路的改变和关键因子的表达。进一步的研究,特别是那些关于转化或临床研究的研究,将为靶向关节内生长因子的疗法提供独到的见解。

NOTES

*通讯作者。

参考文献

[1] Hunter, D.J. and Bierma-Zeinstra, S. (2019) Osteoarthritis. The Lancet, 393, 1745-1759.
https://doi.org/10.1016/s0140-6736(19)30417-9
[2] Glyn-Jones, S., Palmer, A.J.R., Agricola, R., Price, A.J., Vincent, T.L., Weinans, H., et al. (2015) Osteoarthritis. The Lancet, 386, 376-387.
https://doi.org/10.1016/s0140-6736(14)60802-3
[3] Lu, K., Ma, F., Yi, D., Yu, H., Tong, L. and Chen, D. (2022) Molecular Signaling in Temporomandibular Joint Osteoarthritis. Journal of Orthopaedic Translation, 32, 21-27.
https://doi.org/10.1016/j.jot.2021.07.001
[4] Nüsslein-Volhard, C. and Wieschaus, E. (1980) Mutations Affecting Segment Number and Polarity in Drosophila. Nature, 287, 795-801.
https://pubmed.ncbi.nlm.nih.gov/6776413/
[5] Sasai, N., Toriyama, M. and Kondo, T. (2019) Hedgehog Signal and Genetic Disorders. Frontiers in Genetics, 10, Article 1103.
https://doi.org/10.3389/fgene.2019.01103
[6] Ingham, P.W. and McMahon, A.P. (2001) Hedgehog Signaling in Animal Development: Paradigms and Principles. Genes & Development, 15, 3059-3087.
https://doi.org/10.1101/gad.938601
[7] Serra, R., Johnson, M., Filvaroff, E.H., LaBorde, J., Sheehan, D.M., Derynck, R., et al. (1997) Expression of a Truncated, Kinase-Defective TGF-β Type II Receptor in Mouse Skeletal Tissue Promotes Terminal Chondrocyte Differentiation and Osteoarthritis. The Journal of Cell Biology, 139, 541-552.
https://doi.org/10.1083/jcb.139.2.541
[8] Kobayashi, T., Chung, U., Schipani, E., Starbuck, M., Karsenty, G., Katagiri, T., et al. (2002) PTHrP and Indian Hedgehog Control Differentiation of Growth Plate Chondrocytes at Multiple Steps. Development, 129, 2977-2986.
https://doi.org/10.1242/dev.129.12.2977
[9] Sieker, J.T., Kunz, M., Weißenberger, M., Gilbert, F., Frey, S., Rudert, M., et al. (2015) Direct Bone Morphogenetic Protein 2 and Indian Hedgehog Gene Transfer for Articular Cartilage Repair Using Bone Marrow Coagulates. Osteoarthritis and Cartilage, 23, 433-442.
https://doi.org/10.1016/j.joca.2014.11.008
[10] Lin, A.C., Seeto, B.L., Bartoszko, J.M., Khoury, M.A., Whetstone, H., Ho, L., et al. (2009) Modulating Hedgehog Signaling Can Attenuate the Severity of Osteoarthritis. Nature Medicine, 15, 1421-1425.
https://doi.org/10.1038/nm.2055
[11] Ruiz-Heiland, G., Horn, A., Zerr, P., Hofstetter, W., Baum, W., Stock, M., et al. (2012) Blockade of the Hedgehog Pathway Inhibits Osteophyte Formation in Arthritis. Annals of the Rheumatic Diseases, 71, 400-407.
https://doi.org/10.1136/ard.2010.148262
[12] Zhou, J., Chen, Q., Lanske, B., Fleming, B.C., Terek, R., Wei, X., et al. (2014) Disrupting the Indian Hedgehog Signaling Pathway in Vivo Attenuates Surgically Induced Osteoarthritis Progression in Col2a1-CreERT2; Ihhfl/fl Mice. Arthritis Research & Therapy, 16, Article No. R11.
https://doi.org/10.1186/ar4437
[13] Ge, X. and Wang, X. (2010) Role of Wnt Canonical Pathway in Hematological Malignancies. Journal of Hematology & Oncology, 3, Article No. 33.
https://doi.org/10.1186/1756-8722-3-33
[14] Hobmayer, B., Rentzsch, F., Kuhn, K., Happel, C.M., von Laue, C.C., Snyder, P., et al. (2000) Wnt Signalling Molecules Act in Axis Formation in the Diploblastic Metazoan Hydra. Nature, 407, 186-189.
https://doi.org/10.1038/35025063
[15] Akiyama, T. (2000) Wnt/β-Catenin Signaling. Cytokine & Growth Factor Reviews, 11, 273-282.
https://doi.org/10.1016/s1359-6101(00)00011-3
[16] Roy, J.P., Halford, M.M. and Stacker, S.A. (2018) The Biochemistry, Signalling and Disease Relevance of RYK and Other Wnt-Binding Receptor Tyrosine Kinases. Growth Factors, 36, 15-40.
https://doi.org/10.1080/08977194.2018.1472089
[17] Dell’Accio, F., De Bari, C., El Tawil, N.M., Barone, F., Mitsiadis, T.A., O’Dowd, J., et al. (2006) Activation of WNT and BMP Signaling in Adult Human Articular Cartilage Following Mechanical Injury. Arthritis Research & Therapy, 8, Article No. R139.
https://doi.org/10.1186/ar2029
[18] Lane, N.E., Nevitt, M.C., Lui, L., de Leon, P. and Corr, M. (2007) Wnt Signaling Antagonists Are Potential Prognostic Biomarkers for the Progression of Radiographic Hip Osteoarthritis in Elderly Caucasian Women. Arthritis & Rheumatism, 56, 3319-3325.
https://doi.org/10.1002/art.22867
[19] Zhu, M., Tang, D.Z., et al. (2009) Activation of Beta-Catenin Signaling in Articular Chondrocytes Leads to Osteoarthritis-Like Phenotype in Adult Beta-Catenin Conditional Activation Mice. Journal of Bone and Mineral Research, 24, 12-21.
https://pubmed.ncbi.nlm.nih.gov/18767925/
[20] Huang, G., Chubinskaya, S., Liao, W. and Loeser, R.F. (2017) Wnt5a Induces Catabolic Signaling and Matrix Metalloproteinase Production in Human Articular Chondrocytes. Osteoarthritis and Cartilage, 25, 1505-1515.
https://doi.org/10.1016/j.joca.2017.05.018
[21] Shi, Y. and Massagué, J. (2003) Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 113, 685-700.
https://doi.org/10.1016/s0092-8674(03)00432-x
[22] Heldin, C., Miyazono, K. and ten Dijke, P. (1997) TGF-β Signalling from Cell Membrane to Nucleus through SMAD Proteins. Nature, 390, 465-471.
https://doi.org/10.1038/37284
[23] Goumans, M.-J. (2002) Balancing the Activation State of the Endothelium via Two Distinct TGF-Beta Type I Receptors. The EMBO Journal, 21, 1743-1753.
https://doi.org/10.1093/emboj/21.7.1743
[24] Finnson, K.W., Parker, W.L., ten Dijke, P., Thorikay, M. and Philip, A. (2008) ALK1 Opposes Alk5/Smad3 Signaling and Expression of Extracellular Matrix Components in Human Chondrocytes. Journal of Bone and Mineral Research, 23, 896-906.
https://doi.org/10.1359/jbmr.080209
[25] Blaney Davidson, E.N., Remst, D.F.G., Vitters, E.L., van Beuningen, H.M., Blom, A.B., Goumans, M., et al. (2009) Increase in ALK1/ALK5 Ratio as a Cause for Elevated MMP-13 Expression in Osteoarthritis in Humans and Mice. The Journal of Immunology, 182, 7937-7945.
https://doi.org/10.4049/jimmunol.0803991
[26] Keller, B., Yang, T., et al. (2011) Interaction of TGFβ and BMP Signaling Pathways during Chondrogenesis. PLOS ONE, 6, e16421.
https://pubmed.ncbi.nlm.nih.gov/21297990/
[27] de Kroon, L.M.G., Narcisi, R., et al. (2015) Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells. PLOS ONE, 10, e0146124.
https://pubmed.ncbi.nlm.nih.gov/26720610/
[28] Blaney Davidson, E.N., Vitters, E.L., Bennink, M.B., van Lent, P.L.E.M., van Caam, A.P.M., Blom, A.B., et al. (2014) Inducible Chondrocyte-Specific Overexpression of BMP2 in Young Mice Results in Severe Aggravation of Osteophyte Formation in Experimental OA without Altering Cartilage Damage. Annals of the Rheumatic Diseases, 74, 1257-1264.
https://doi.org/10.1136/annrheumdis-2013-204528
[29] Blaney Davidson, E.N., Vitters, E.L., van der Kraan, P.M. and van den Berg, W.B. (2006) Expression of Transforming Growth Factor-(TGF) and the TGF Signalling Molecule SMAD-2P in Spontaneous and Instability-Induced Osteoarthritis: Role in Cartilage Degradation, Chondrogenesis and Osteophyte Formation. Annals of the Rheumatic Diseases, 65, 1414-1421.
https://doi.org/10.1136/ard.2005.045971
[30] Hodgson, D., Rowan, A.D., Falciani, F. and Proctor, C.J. (2019) Systems Biology Reveals How Altered TGFβ Signalling with Age Reduces Protection against Pro-Inflammatory Stimuli. PLOS Computational Biology, 15, e1006685.
https://doi.org/10.1371/journal.pcbi.1006685
[31] Long, F., Zhang, X.M., Karp, S., Yang, Y. and McMahon, A.P. (2001) Genetic Manipulation of Hedgehog Signaling in the Endochondral Skeleton Reveals a Direct Role in the Regulation of Chondrocyte Proliferation. Development, 128, 5099-5108.
https://doi.org/10.1242/dev.128.24.5099
[32] Jimi, E. and Ghosh, S. (2005) Role of Nuclear Factor-κb in the Immune System and Bone. Immunological Reviews, 208, 80-87.
https://doi.org/10.1111/j.0105-2896.2005.00329.x
[33] Oeckinghaus, A. and Ghosh, S. (2009) The NF-B Family of Transcription Factors and Its Regulation. Cold Spring Harbor Perspectives in Biology, 1, a000034.
https://doi.org/10.1101/cshperspect.a000034
[34] Yasuda, T. (2011) Activation of Akt Leading to NF-Κb Up-Regulation in Chondrocytes Stimulated with Fibronectin Fragment. Biomedical Research, 32, 209-215.
https://doi.org/10.2220/biomedres.32.209
[35] Arra, M., Swarnkar, G., Alippe, Y., Mbalaviele, G. and Abu-Amer, Y. (2022) Iκb-ζ Signaling Promotes Chondrocyte Inflammatory Phenotype, Senescence, and Erosive Joint Pathology. Bone Research, 10, Article No. 12.
https://doi.org/10.1038/s41413-021-00183-9
[36] Ulivi, V., Giannoni, P., Gentili, C., Cancedda, R. and Descalzi, F. (2008) P38/Nf-kb-Dependent Expression of COX-2 during Differentiation and Inflammatory Response of Chondrocytes. Journal of Cellular Biochemistry, 104, 1393-1406.
https://doi.org/10.1002/jcb.21717
[37] Yoon, D.S., Lee, K., Choi, Y., Ko, E.A., Lee, N., Cho, S., et al. (2022) TLR4 Downregulation by the RNA-Binding Protein PUM1 Alleviates Cellular Aging and Osteoarthritis. Cell Death & Differentiation, 29, 1364-1378.
https://doi.org/10.1038/s41418-021-00925-6
[38] Kapoor, M., Martel-Pelletier, J., Lajeunesse, D., Pelletier, J. and Fahmi, H. (2010) Role of Proinflammatory Cytokines in the Pathophysiology of Osteoarthritis. Nature Reviews Rheumatology, 7, 33-42.
https://doi.org/10.1038/nrrheum.2010.196
[39] Goldring, M., Otero, M., Plumb, D., Dragomir, C., Favero, M., EI Hachem, K., et al. (2011) Roles of Inflammatory and Anabolic Cytokines in Cartilage Metabolism: Signals and Multiple Effectors Converge Upon MMP-13 Regulation in Osteoarthritis. European Cells and Materials, 21, 202-220.
https://doi.org/10.22203/ecm.v021a16