[1]
|
Kopp, J.L., Grompe, M. and Sander, M. (2016) Stem Cells versus Plasticity in Liver and Pancreas Regeneration. Nature Cell Biology, 18, 238-245. https://doi.org/10.1038/ncb3309
|
[2]
|
Bach, F., Albertini, R., Joo, P., Anderson, J. and Bortin, M. (1968) Bone-Marrow Transplantation in a Patient with the Wiskott-Aldrich Syndrome. The Lancet, 292, 1364-1366. https://doi.org/10.1016/s0140-6736(68)92672-x
|
[3]
|
林戈, 卢光琇. 干细胞概述[J]. 生命科学, 2006, 18(4): 313-317.
|
[4]
|
Mehrabani, D., Mehrabani, G., Zare, S. and Manafi, A. (2013) Adipose-Derived Stem Cells (ADSC) and Aesthetic Surgery: A Mini Review. World Journal of Plastic Surgery, 2, 65-70.
|
[5]
|
Casiraghi, F., Perico, N., Cortinovis, M. and Remuzzi, G. (2016) Mesenchymal Stromal Cells in Renal Transplantation: Opportunities and Challenges. Nature Reviews Nephrology, 12, 241-253. https://doi.org/10.1038/nrneph.2016.7
|
[6]
|
Sutherland, G.R. and Bain, A.D. (1972) Culture of Cells from the Urine of Newborn Children. Nature, 239, 231. https://doi.org/10.1038/239231a0
|
[7]
|
Zhang, Y., McNeill, E., Tian, H., Soker, S., Andersson, K., Yoo, J.J., et al. (2008) Urine Derived Cells Are a Potential Source for Urological Tissue Reconstruction. Journal of Urology, 180, 2226-2233. https://doi.org/10.1016/j.juro.2008.07.023
|
[8]
|
Keating, A. (2012) Mesenchymal Stromal Cells: New Directions. Cell Stem Cell, 10, 709-716. https://doi.org/10.1016/j.stem.2012.05.015
|
[9]
|
Serakinci, N., Fahrioglu, U. and Christensen, R. (2014) Mesenchymal Stem Cells, Cancer Challenges and New Directions. European Journal of Cancer, 50, 1522-1530. https://doi.org/10.1016/j.ejca.2014.02.011
|
[10]
|
Mathieu, M., Martin-Jaular, L., Lavieu, G. and Théry, C. (2019) Specificities of Secretion and Uptake of Exosomes and Other Extracellular Vesicles for Cell-to-Cell Communication. Nature Cell Biology, 21, 9-17. https://doi.org/10.1038/s41556-018-0250-9
|
[11]
|
Wang, Y., Liu, J., Ma, J., Sun, T., Zhou, Q., Wang, W., et al. (2019) Exosomal CircRNAs: Biogenesis, Effect and Application in Human Diseases. Molecular Cancer, 18, Article No. 116. https://doi.org/10.1186/s12943-019-1041-z
|
[12]
|
Cabral, J., Ryan, A.E., Griffin, M.D. and Ritter, T. (2018) Extracellular Vesicles as Modulators of Wound Healing. Advanced Drug Delivery Reviews, 129, 394-406. https://doi.org/10.1016/j.addr.2018.01.018
|
[13]
|
Zhao, J., Li, L., Han, Z.Y., Wang, Z.X. and Qin, L.X. (2019) Long Noncoding RNAs, Emerging and Versatile Regulators of Tumor-Induced Angiogenesis. American Journal of Cancer Research, 9, 1367-1381.
|
[14]
|
Shi, Y., Wang, Y., Li, Q., Liu, K., Hou, J., Shao, C., et al. (2018) Immunoregulatory Mechanisms of Mesenchymal Stem and Stromal Cells in Inflammatory Diseases. Nature Reviews Nephrology, 14, 493-507. https://doi.org/10.1038/s41581-018-0023-5
|
[15]
|
Jung, J., Fu, X. and Yang, P.C. (2017) Exosomes Generated from iPSC-Derivatives: New Direction for Stem Cell Therapy in Human Heart Diseases. Circulation Research, 120, 407-417. https://doi.org/10.1161/circresaha.116.309307
|
[16]
|
Hong, P., Yang, H., Wu, Y., Li, K. and Tang, Z. (2019) The Functions and Clinical Application Potential of Exosomes Derived from Adipose Mesenchymal Stem Cells: A Comprehensive Review. Stem Cell Research & Therapy, 10, Article No. 242. https://doi.org/10.1186/s13287-019-1358-y
|
[17]
|
Bharadwaj, S., Liu, G., Shi, Y., Wu, R., Yang, B., He, T., et al. (2013) Multipotential Differentiation of Human Urine-Derived Stem Cells: Potential for Therapeutic Applications in Urology. Stem Cells, 31, 1840-1856. https://doi.org/10.1002/stem.1424
|
[18]
|
Eng, D.G., Sunseri, M.W., Kaverina, N.V., Roeder, S.S., Pippin, J.W. and Shankland, S.J. (2015) Glomerular Parietal Epithelial Cells Contribute to Adult Podocyte Regeneration in Experimental Focal Segmental Glomerulosclerosis. Kidney International, 88, 999-1012. https://doi.org/10.1038/ki.2015.152
|
[19]
|
Wu, S., Liu, Y., Bharadwaj, S., Atala, A. and Zhang, Y. (2011) Human Urine-Derived Stem Cells Seeded in a Modified 3D Porous Small Intestinal Submucosa Scaffold for Urethral Tissue Engineering. Biomaterials, 32, 1317-1326. https://doi.org/10.1016/j.biomaterials.2010.10.006
|
[20]
|
Lang, R., Liu, G., Shi, Y., Bharadwaj, S., Leng, X., Zhou, X., et al. (2013) Self-Renewal and Differentiation Capacity of Urine-Derived Stem Cells after Urine Preservation for 24 Hours. PLOS ONE, 8, e53980. https://doi.org/10.1371/journal.pone.0053980
|
[21]
|
Jia, B., Chen, S., Zhao, Z., Liu, P., Cai, J., Qin, D., et al. (2014) Modeling of Hemophilia a Using Patient-Specific Induced Pluripotent Stem Cells Derived from Urine Cells. Life Sciences, 108, 22-29. https://doi.org/10.1016/j.lfs.2014.05.004
|
[22]
|
Adamowicz, J., Kloskowski, T., Tworkiewicz, J., Pokrywczyńska, M. and Drewa, T. (2012) Urine Is a Highly Cytotoxic Agent: Does It Influence Stem Cell Therapies in Urology? Transplantation Proceedings, 44, 1439-1441. https://doi.org/10.1016/j.transproceed.2012.01.128
|
[23]
|
Gao, P., Han, P., Jiang, D., Yang, S., Cui, Q. and Li, Z. (2017) Effects of the Donor Age on Proliferation, Senescence and Osteogenic Capacity of Human Urine-Derived Stem Cells. Cytotechnology, 69, 751-763. https://doi.org/10.1007/s10616-017-0084-5
|
[24]
|
Yi, H., Xie, B., Liu, B., Wang, X., Xu, L., Liu, J., et al. (2018) Derivation and Identification of Motor Neurons from Human Urine-Derived Induced Pluripotent Stem Cells. Stem Cells International, 2018, Article 3628578. https://doi.org/10.1155/2018/3628578
|
[25]
|
Zhu, Q., Li, Q., Niu, X., Zhang, G., Ling, X., Zhang, J., et al. (2018) Extracellular Vesicles Secreted by Human Urine-Derived Stem Cells Promote Ischemia Repair in a Mouse Model of Hind-Limb Ischemia. Cellular Physiology and Biochemistry, 47, 1181-1192. https://doi.org/10.1159/000490214
|
[26]
|
Bussolati, B. and Camussi, G. (2015) Therapeutic Use of Human Renal Progenitor Cells for Kidney Regeneration. Nature Reviews Nephrology, 11, 695-706. https://doi.org/10.1038/nrneph.2015.126
|
[27]
|
Zhang, C., George, S.K., Wu, R., Thakker, P.U., Abolbashari, M., Kim, T., et al. (2020) Reno-Protection of Urine-Derived Stem Cells in a Chronic Kidney Disease Rat Model Induced by Renal Ischemia and Nephrotoxicity. International Journal of Biological Sciences, 16, 435-446. https://doi.org/10.7150/ijbs.37550
|
[28]
|
Sun, B., Luo, X., Yang, C., Liu, P., Yang, Y., Dong, X., et al. (2019) Therapeutic Effects of Human Urine-Derived Stem Cells in a Rat Model of Cisplatin-Induced Acute Kidney Injury in vivo and in vitro. Stem Cells International, 2019, Article 8035076. https://doi.org/10.1155/2019/8035076
|
[29]
|
Tian, S., Jiang, Z., Liu, Y., Niu, X., Hu, B., Guo, S., et al. (2017) Human Urine-Derived Stem Cells Contribute to the Repair of Ischemic Acute Kidney Injury in Rats. Molecular Medicine Reports, 16, 5541-5548. https://doi.org/10.3892/mmr.2017.7240
|
[30]
|
Li, X., Liao, J., Su, X., Li, W., Bi, Z., Wang, J., et al. (2020) Human Urine-Derived Stem Cells Protect against Renal Ischemia/Reperfusion Injury in a Rat Model via Exosomal miR-146a-5p Which Targets IRAK1. Theranostics, 10, 9561-9578. https://doi.org/10.7150/thno.42153
|
[31]
|
Gonzales, P.A., Pisitkun, T., Hoffert, J.D., Tchapyjnikov, D., Star, R.A., Kleta, R., et al. (2009) Large-Scale Proteomics and Phosphoproteomics of Urinary Exosomes. Journal of the American Society of Nephrology, 20, 363-379. https://doi.org/10.1681/asn.2008040406
|
[32]
|
Kuro-o, M., Matsumura, Y., Aizawa, H., Kawaguchi, H., Suga, T., Utsugi, T., et al. (1997) Mutation of the Mouse klotho Gene Leads to a Syndrome Resembling Ageing. Nature, 390, 45-51. https://doi.org/10.1038/36285
|
[33]
|
Grange, C., Papadimitriou, E., Dimuccio, V., Pastorino, C., Molina, J., O’Kelly, R., et al. (2020) Urinary Extracellular Vesicles Carrying Klotho Improve the Recovery of Renal Function in an Acute Tubular Injury Model. Molecular Therapy, 28, 490-502. https://doi.org/10.1016/j.ymthe.2019.11.013
|
[34]
|
赵雅培, 刘翠景, 杨翠英, 等. 人尿源干细胞移植治疗慢性肾病大鼠[J]. 中国组织工程研究, 2016, 20(32): 4838-4844.
|
[35]
|
Jiang, Z., Liu, Y., Niu, X., Yin, J., Hu, B., Guo, S., et al. (2016) Exosomes Secreted by Human Urine-Derived Stem Cells Could Prevent Kidney Complications from Type I Diabetes in Rats. Stem Cell Research & Therapy, 7, Article No. 24. https://doi.org/10.1186/s13287-016-0287-2
|
[36]
|
陶立. 低氧预处理尿源性干细胞在糖尿病肾病肾组织修复中的作用[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2018.
|
[37]
|
Lee, J.N., Chun, S.Y., Lee, H., Jang, Y., Choi, S.H., Kim, D.H., et al. (2015) Human Urine-Derived Stem Cells Seeded Surface Modified Composite Scaffold Grafts for Bladder Reconstruction in a Rat Model. Journal of Korean Medical Science, 30, 1754-1763. https://doi.org/10.3346/jkms.2015.30.12.1754
|
[38]
|
Liu, G., Pareta, R.A., Wu, R., Shi, Y., Zhou, X., Liu, H., et al. (2013) Skeletal Myogenic Differentiation of Urine-Derived Stem Cells and Angiogenesis Using Microbeads Loaded with Growth Factors. Biomaterials, 34, 1311-1326. https://doi.org/10.1016/j.biomaterials.2012.10.038
|
[39]
|
Bodin, A., Bharadwaj, S., Wu, S., Gatenholm, P., Atala, A. and Zhang, Y. (2010) Tissue-Engineered Conduit Using Urine-Derived Stem Cells Seeded Bacterial Cellulose Polymer in Urinary Reconstruction and Diversion. Biomaterials, 31, 8889-8901. https://doi.org/10.1016/j.biomaterials.2010.07.108
|
[40]
|
张腾. 尿源干细胞在促进神经源性膀胱恢复中的研究[D]: [硕士学位论文]. 重庆: 第三军医大学, 2016.
|
[41]
|
Li, J., Luo, H., Dong, X., Liu, Q., Wu, C., Zhang, T., et al. (2017) Therapeutic Effect of Urine-Derived Stem Cells for Protamine/Lipopolysaccharide-Induced Interstitial Cystitis in a Rat Model. Stem Cell Research & Therapy, 8, Article No. 107. https://doi.org/10.1186/s13287-017-0547-9
|
[42]
|
Ouyang, B., Sun, X., Han, D., Chen, S., Yao, B., Gao, Y., et al. (2014) Human Urine-Derived Stem Cells Alone or Genetically-Modified with FGF2 Improve Type 2 Diabetic Erectile Dysfunction in a Rat Model. PLOS ONE, 9, e92825. https://doi.org/10.1371/journal.pone.0092825
|
[43]
|
Chen, L., Li, L., Xing, F., Peng, J., Peng, K., Wang, Y., et al. (2018) Human Urine-Derived Stem Cells: Potential for Cell-Based Therapy of Cartilage Defects. Stem Cells International, 2018, Article 4686259. https://doi.org/10.1155/2018/4686259
|
[44]
|
Qin, H., Zhu, C., An, Z., Jiang, Y., Zhao, Y., Wang, J., et al. (2014) Silver Nanoparticles Promote Osteogenic Differentiation of Human Urine-Derived Stem Cells at Noncytotoxic Concentrations. International Journal of Nanomedicine, 9, 2469-2478. https://doi.org/10.2147/ijn.s59753
|
[45]
|
Guan, J., Zhang, J., Guo, S., Zhu, H., Zhu, Z., Li, H., et al. (2015) Human Urine-Derived Stem Cells Can Be Induced into Osteogenic Lineage by Silicate Bioceramics via Activation of the Wnt/β-Catenin Signaling Pathway. Biomaterials, 55, 1-11. https://doi.org/10.1016/j.biomaterials.2015.03.029
|
[46]
|
Guan, J., Niu, X., Gong, F., Hu, B., Guo, S., Lou, Y., et al. (2014) Biological Characteristics of Human-Urine-Derived Stem Cells: Potential for Cell-Based Therapy in Neurology. Tissue Engineering Part A, 20, 1794-1806. https://doi.org/10.1089/ten.tea.2013.0584
|
[47]
|
Fu, Y., Guan, J., Guo, S., Guo, F., Niu, X., Liu, Q., et al. (2014) Human Urine-Derived Stem Cells in Combination with Polycaprolactone/Gelatin Nanofibrous Membranes Enhance Wound Healing by Promoting Angiogenesis. Journal of Translational Medicine, 12, Article No. 274. https://doi.org/10.1186/s12967-014-0274-2
|
[48]
|
Zhang, Y., Niu, X., Dong, X., Wang, Y. and Li, H. (2017) Bioglass Enhanced Wound Healing Ability of Urine‐Derived Stem Cells through Promoting Paracrine Effects between Stem Cells and Recipient Cells. Journal of Tissue Engineering and Regenerative Medicine, 12, e1609-e1622. https://doi.org/10.1002/term.2587
|
[49]
|
Cao, Y., Xu, J., Wen, J., Ma, X., Liu, F., Li, Y., et al. (2018) Generation of a Urine-Derived Ips Cell Line from a Patient with a Ventricular Septal Defect and Heart Failure and the Robust Differentiation of These Cells to Cardiomyocytes via Small Molecules. Cellular Physiology and Biochemistry, 50, 538-551. https://doi.org/10.1159/000494167
|