|
[1]
|
Maggi, C.A. (1995) Tachykinins and Calcitonin Gene-Related Peptide (CGRP) as Co-Transmitters Released from Peripheral Endings of Sensory Nerves. Progress in Neurobiology, 45, 1-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rosenfeld, M.G., Mermod, J., Amara, S.G., Swanson, L.W., Sawchenko, P.E., Rivier, J., et al. (1983) Production of a Novel Neuropeptide Encoded by the Calcitonin Gene via Tissue-Specific RNA Processing. Nature, 304, 129-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bell, D. and McDermott, B.J. (1996) Calcitonin Gene-Related Peptide in the Cardiovascular System: Characterization of Receptor Populations and Their (Patho)Physiological Significance. Pharmacological Reviews, 48, 253-288.
|
|
[4]
|
Brain, S.D. and Grant, A.D. (2004) Vascular Actions of Calcitonin Gene-Related Peptide and Adrenomedullin. Physiological Reviews, 84, 903-934. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Deng, P. and Li, Y. (2005) Calcitonin Gene-Related Peptide and Hypertension. Peptides, 26, 1676-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Watson, R.E., Supowit, S.C., Zhao, H., Katki, K.A. and DiPette, D.J. (2002) Role of Sensory Nervous System Vasoactive Peptides in Hypertension. Brazilian Journal of Medical and Biological Research, 35, 1033-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wimalawansa, S.J. (1996) Calcitonin Gene-Related Peptide and Its Receptors: Molecular Genetics, Physiology, Pathophysiology, and Therapeutic Potentials. Endocrine Reviews, 17, 533-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fisher, L.A., Kikkawa, D.O., Rivier, J.E., Amara, S.G., Evans, R.M., Rosenfeld, M.G., et al. (1983) Stimulation of Noradrenergic Sympathetic Outflow by Calcitonin Gene-Related Peptide. Nature, 305, 534-536. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Brain, S.D., Williams, T.J., Tippins, J.R., Morris, H.R. and MacIntyre, I. (1985) Calcitonin Gene-Related Peptide Is a Potent Vasodilator. Nature, 313, 54-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Negro, A., Lionetto, L., Simmaco, M. and Martelletti, P. (2012) CGRP Receptor Antagonists: An Expanding Drug Class for Acute Migraine? Expert Opinion on Investigational Drugs, 21, 807-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Olesen, J., Diener, H., Husstedt, I.W., Goadsby, P.J., Hall, D., Meier, U., et al. (2004) Calcitonin Gene-Related Peptide Receptor Antagonist BIBN 4096 BS for the Acute Treatment of Migraine. New England Journal of Medicine, 350, 1104-1110. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Donnerer, J. and Stein, C. (1992) Evidence for an Increase in the Release of CGRP from Sensory Nerves during Inflammationa. Annals of the New York Academy of Sciences, 657, 505-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Terenghi, G. (1999) Peripheral Nerve Regeneration and Neurotrophic Factors. Journal of Anatomy, 194, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Donnerer, J., Schuligoi, R. and Stein, C. (1992) Increased Content and Transport of Substance P and Calcitonin Gene-Related Peptide in Sensory Nerves Innervating Inflamed Tissue: Evidence for a Regulatory Function of Nerve Growth Factor in Vivo. Neuroscience, 49, 693-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Supowit, S.C., Zhao, H. and DiPette, D.J. (2001) Nerve Growth Factor Enhances Calcitonin Gene-Related Peptide Expression in the Spontaneously Hypertensive Rat. Hypertension, 37, 728-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Salio, C., Averill, S., Priestley, J.V. and Merighi, A. (2007) Costorage of BDNF and Neuropeptides within Individual Dense-Core Vesicles in Central and Peripheral Neurons. Developmental Neurobiology, 67, 326-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hoheisel, U., Mense, S. and Scherotzke, R. (1994) Calcitonin Gene-Related Peptide-Immunoreactivity in Functionally Identified Primary Afferent Neurones in the Rat. Anatomy and Embryology, 189, 41-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lawson, S.N., Crepps, B. and Perl, E.R. (2002) Calcitonin Gene-Related Peptide Immunoreactivity and Afferent Receptive Properties of Dorsal Root Ganglion Neurones in Guinea-Pigs. The Journal of Physiology, 540, 989-1002. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Russell, F.A., King, R., Smillie, S.-J., Kodji, X. and Brain, S.D. (2014) Calcitonin Gene-Related Peptide: Physiology and Pathophysiology. Physiological Reviews, 94, 1099-1142. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Matteoli, M., Haimann, C., Torri-Tarelli, F., Polak, J.M., Ceccarelli, B. and de Camilli, P. (1988) Differential Effect of Alpha-Latrotoxin on Exocytosis from Small Synaptic Vesicles and from Large Dense-Core Vesicles Containing Calcitonin Gene-Related Peptide at the Frog Neuromuscular Junction. Proceedings of the National Academy of Sciences, 85, 7366-7370. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, J., Kreicbergs, A., Bergström, J., Stark, A. and Ahmed, M. (2007) Site-Specific CGRP Innervation Coincides with Bone Formation during Fracture Healing and Modeling: A Study in Rat Angulated Tibia. Journal of Orthopaedic Research, 25, 1204-1212. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lau, Y.-C., Qian, X., Po, K.-T., Li, L.-M. and Guo, X. (2014) Electrical Stimulation at the Dorsal Root Ganglion Preserves Trabecular Bone Mass and Microarchitecture of the Tibia in Hindlimb-Unloaded Rats. Osteoporosis International, 26, 481-488. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lau, Y., Lai, Y., Po, K., Qian, X., Hao, H., Zhao, H., et al. (2014) Dorsal Root Ganglion Electrical Stimulation Promoted Intertransverse Process Spinal Fusion without Decortications and Bone Grafting: A Proof-of-Concept Study. The Spine Journal, 14, 2472-2478. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yuen-Chi Lau, R., Qian, X., Po, K., Li, L. and Guo, X. (2017) Response of Rat Tibia to Prolonged Unloading under the Influence of Electrical Stimulation at the Dorsal Root Ganglion. Neuromodulation: Technology at the Neural Interface, 20, 284-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Naot, D., Musson, D.S. and Cornish, J. (2019) The Activity of Peptides of the Calcitonin Family in Bone. Physiological Reviews, 99, 781-805. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gibbins, I.L., Furness, J.B., Costa, M., MacIntyre, I., Hillyard, C.J. and Girgis, S. (1985) Co-Localization of Calcitonin Gene-Related Peptide-Like Immunoreactivity with Substance P in Cutaneous, Vascular and Visceral Sensory Neurons of Guinea Pigs. Neuroscience Letters, 57, 125-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
New, H.V. and Mudge, A.W. (1986) Calcitonin Gene-Related Peptide Regulates Muscle Acetylcholine Receptor Synthesis. Nature, 323, 809-811. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Smillie, S. and Brain, S.D. (2011) Calcitonin Gene-Related Peptide (CGRP) and Its Role in Hypertension. Neuropeptides, 45, 93-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cai, W., Bodin, P., Loesch, A., Sexton, A. and Burnstock, G. (1993) Endothelium of Human Umbilical Blood Vessels: Ultrastructural Immunolocalization of Neuropeptides. Journal of Vascular Research, 30, 348-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gupta, S., Mehrotra, S., Villalón, C., de Vries, R., Garrelds, I., Saxena, P., et al. (2006) Effects of Female Sex Hormones on Responses to CGRP, Acetylcholine, and 5-HT in Rat Isolated Arteries. Headache: The Journal of Head and Face Pain, 47, 564-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ozaka, T., Doi, Y., Kayashima, K. and Fujimoto, S. (1997) Weibel-Palade Bodies as a Storage Site of Calcitonin Gene-Related Peptide and Endothelin-1 in Blood Vessels of the Rat Carotid Body. The Anatomical Record, 247, 388-394. [Google Scholar] [CrossRef]
|
|
[32]
|
Hu, R., Li, Y. and Li, X. (2016) An Overview of Non-Neural Sources of Calcitonin Gene-Related Peptide. Current Medicinal Chemistry, 23, 763-773. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Fang, L., Chen, M., Xiao, Z., Liu, Y., Yu, G., Chen, X., et al. (2011) Calcitonin Gene-Related Peptide Released from Endothelial Progenitor Cells Inhibits the Proliferation of Rat Vascular Smooth Muscle Cells Induced by Angiotensin II. Molecular and Cellular Biochemistry, 355, 99-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Ma, W., Dumont, Y., Vercauteren, F. and Quirion, R. (2010) Lipopolysaccharide Induces Calcitonin Gene-Related Peptide in the RAW264.7 Macrophage Cell Line. Immunology, 130, 399-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wimalawansa, S.J., Morris, H.R., Etienne, A., Blench, I., Panico, M. and MacIntyre, I. (1990) Isolation, Purification and Characterization of Β-hCGRP from Human Spinal Cord. Biochemical and Biophysical Research Communications, 167, 993-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Amara, S.G., Arriza, J.L., Leff, S.E., Swanson, L.W., Evans, R.M. and Rosenfeld, M.G. (1985) Expression in Brain of a Messenger RNA Encoding a Novel Neuropeptide Homologous to Calcitonin Gene-Related Peptide. Science, 229, 1094-1097. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Morris, H.R., Panico, M., Etienne, T., Tippins, J., Girgis, S.I. and MacIntyre, I. (1984) Isolation and Characterization of Human Calcitonin Gene-Related Peptide. Nature, 308, 746-748. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Steenbergh, P.M., Höppener, J.W.M., Zandberg, J., Visser, A., Lips, C.J.M. and Jansz, H.S. (1986) Structure and Expression of the Human Calcitonin/CGRP Genes. FEBS Letters, 209, 97-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Alevizaki, M., Shiraishi, A., Rassool, F.V., Ferner, G.J.M., Maclntyre, I. and Legon, S. (1986) The Calcitonin-Like Sequence of the β CGRP Gene. FEBS Letters, 206, 47-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Aiyar N., Daines R.A., Disa J., et al. (2001) Pharmacology of SB-273779, a Nonpeptide Calcitonin Gene-Related Peptide 1 Receptor Antagonist. Journal of Pharmacology and Experimental Therapeutics, 296, 768-775.
|
|
[41]
|
Mulderry, P.K., Ghatei, M.A., Bishop, A.E., Allen, Y.S., Polak, J.M. and Bloom, S.R. (1985) Distribution and Chromatographic Characterisation of CGRP-Like Immunoreactivity in the Brain and Gut of the Rat. Regulatory Peptides, 12, 133-143. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Mulderry, P.K., Ghatki, M.A., Spokks, R.A., Jonhs, P.M., Pierson, A.M., Hamid, Q.A., et al. (1988) Differential Expression of α-CGRP and β-CGRP by Primary Sensory Neurons and Enteric Autonomic Neurons of the Rat. Neuroscience, 25, 195-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Somasundaram, C., Diz, D.I., Coleman, T. and Bukoski, R.D. (2006) Adventitial Neuronal Somata. Journal of Vascular Research, 43, 278-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, D., Chen, B., Peng, J., Zhang, Y., Li, X., Yuan, Q., et al. (2009) Role of Anandamide Transporter in Regulating Calcitonin Gene-Related Peptide Production and Blood Pressure in Hypertension. Journal of Hypertension, 27, 1224-1232. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Schütz, B., Mauer, D., Salmon, A., Changeux, J. and Zimmer, A. (2004) Analysis of the Cellular Expression Pattern of β-CGRP in α-CGRP-Deficient Mice. Journal of Comparative Neurology, 476, 32-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Marrella, A., Lee, T.Y., Lee, D.H., Karuthedom, S., Syla, D., Chawla, A., et al. (2018) Engineering Vascularized and Innervated Bone Biomaterials for Improved Skeletal Tissue Regeneration. Materials Today, 21, 362-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kusumbe, A.P., Ramasamy, S.K. and Adams, R.H. (2014) Coupling of Angiogenesis and Osteogenesis by a Specific Vessel Subtype in Bone. Nature, 507, 323-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ramasamy, S.K., Kusumbe, A.P., Wang, L. and Adams, R.H. (2014) Endothelial Notch Activity Promotes Angiogenesis and Osteogenesis in Bone. Nature, 507, 376-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Maeda, Y., Miwa, Y. and Sato, I. (2019) Distribution of the Neuropeptide Calcitonin Gene-Related Peptide-Α of Tooth Germ during Formation of the Mouse Mandible. Annals of Anatomy—Anatomischer Anzeiger, 221, 38-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Lerner, U.H. (2006) Deletions of Genes Encoding Calcitonin/α-CGRP, Amylin and Calcitonin Receptor Have Given New and Unexpected Insights into the Function of Calcitonin Receptors and Calcitonin Receptor-Like Receptors in Bone. Journal of Musculoskeletal and Neuronal Interactions, 6, 87-95.
|
|
[51]
|
Chen, B., Pei, G.X., Jin, D., et al. (2007) Distribution and Property of Nerve Fibers in Human Long Bone Tissue. Chinese Journal of Traumatology, 10, 3-9.
|
|
[52]
|
Nencini, S. and Ivanusic, J.J. (2016) The Physiology of Bone Pain. How Much Do We Really Know? Frontiers in Physiology, 7, Article 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Schinke, T., Liese, S., Priemel, M., Haberland, M., Schilling, A.F., Catala-Lehnen, P., et al. (2004) Decreased Bone Formation and Osteopenia in Mice Lacking Α-Calcitonin Gene-Related Peptide. Journal of Bone and Mineral Research, 19, 2049-2056. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Ballica, R., Valentijn, K., Khachatryan, A., Guerder, S., Kapadia, S., Gundberg, C., et al. (1999) Targeted Expression of Calcitonin Gene-Related Peptide to Osteoblasts Increases Bone Density in Mice. Journal of Bone and Mineral Research, 14, 1067-1074. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Petraglia, V., degli Uberti, E.C., et al. (1996) Changes of Plasma Calcitonin Gene-related Peptide Levels in Postmenopausal Women. American Journal of Obstetrics and Gynecology, 175, 638-642. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Peroni, R.N., Abramoff, T., Neuman, I., Podestá, E.J. and Adler-Graschinsky, E. (2012) Phytoestrogens Enhance the Vascular Actions of the Endocannabinoid Anandamide in Mesenteric Beds of Female Rats. International Journal of Hypertension, 2012, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Gao, F., Lv, T., Zhou, J. and Qin, X. (2018) Effects of Obesity on the Healing of Bone Fracture in Mice. Journal of Orthopaedic Surgery and Research, 13, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
He, H., Chai, J., Zhang, S., Ding, L., Yan, P., Du, W., et al. (2016) CGRP May Regulate Bone Metabolism through Stimulating Osteoblast Differentiation and Inhibiting Osteoclast Formation. Molecular Medicine Reports, 13, 3977-3984. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wang, L., Shi, X., Zhao, R., Halloran, B.P., Clark, D.J., Jacobs, C.R., et al. (2010) Calcitonin-Gene-Related Peptide Stimulates Stromal Cell Osteogenic Differentiation and Inhibits RANKL Induced NF-Κb Activation, Osteoclastogenesis and Bone Resorption. Bone, 46, 1369-1379. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhou, R., Yuan, Z., Liu, J. and Liu, J. (2016) Calcitonin Gene-Related Peptide Promotes the Expression of Osteoblastic Genes and Activates the WNT Signal Transduction Pathway in Bone Marrow Stromal Stem Cells. Molecular Medicine Reports, 13, 4689-4696. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Zhang, Y., Xu, J., Ruan, Y.C., Yu, M.K., O’Laughlin, M., Wise, H., et al. (2016) Implant-Derived Magnesium Induces Local Neuronal Production of CGRP to Improve Bone-Fracture Healing in Rats. Nature Medicine, 22, 1160-1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Moad, H.E. and Pioszak, A.A. (2013) Selective CGRP and Adrenomedullin Peptide Binding by Tethered Ramp-Calcitonin Receptor-Like Receptor Extracellular Domain Fusion Proteins. Protein Science, 22, 1775-1785. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Villa, I., Mrak, E., Rubinacci, A., Ravasi, F. and Guidobono, F. (2006) CGRP Inhibits Osteoprotegerin Production in Human Osteoblast-Like Cells via cAMP/PKA-Dependent Pathway. American Journal of Physiology-Cell Physiology, 291, C529-C537. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Uzan, B., de Vernejoul, M. and Cressent, M. (2004) Ramps and CRLR Expressions in Osteoblastic Cells after Dexamethasone Treatment. Biochemical and Biophysical Research Communications, 321, 802-808. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Wang, L., Zhao, R., Shi, X., Wei, T., Halloran, B.P., Clark, D.J., et al. (2009) Substance P Stimulates Bone Marrow Stromal Cell Osteogenic Activity, Osteoclast Differentiation, and Resorption Activity in Vitro. Bone, 45, 309-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Liang, W., Zhuo, X., Tang, Z., Wei, X. and Li, B. (2015) Calcitonin Gene-Related Peptide Stimulates Proliferation and Osteogenic Differentiation of Osteoporotic Rat-Derived Bone Mesenchymal Stem Cells. Molecular and Cellular Biochemistry, 402, 101-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Chen, W., Ma, L., Sun, W., Xiao, W., Guo, H., Xiu, J. and Jiang, X. (2024) CGRP Promotes Osteogenic Differentiation by Regulating Macrophage M2 Polarization through HDAC6/AKAP12 Signaling Pathway. Regenerative Medicine, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Vignery, A. and McCarthy, T.L. (1996) The Neuropeptide Calcitonin Gene-Related Peptide Stimulates Insulin-Like Growth Factor I Production by Primary Fetal Rat Osteoblasts. Bone, 18, 331-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Tian, G., Zhang, G. and Tan, Y. (2013) Calcitonin Gene-Related Peptide Stimulates BMP-2 Expression and the Differentiation of Human Osteoblast-Like Cells in Vitro. Acta Pharmacologica Sinica, 34, 1467-1474. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Shih, C. and Bernard, G.W. (1997) Calcitonin Gene Related Peptide Enhances Bone Colony Development in Vitro. Clinical Orthopaedics and Related Research, 334, 335-344. [Google Scholar] [CrossRef]
|
|
[71]
|
Sample, S.J., Hao, Z., Wilson, A.P. and Muir, P. (2011) Role of Calcitonin Gene-Related Peptide in Bone Repair After Cyclic Fatigue Loading. PLoS ONE, 6, e20386. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Valentijn, K., Gutow, A.P., Troiano, N., Gundberg, C., Gilligan, J.P. and Vignery, A. (1997) Effects of Calcitonin Gene-Related Peptide on Bone Turnover in Ovariectomized Rats. Bone, 21, 269-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Yoo, Y., Kwag, J., Kim, K. and Kim, C. (2014) Effects of Neuropeptides and Mechanical Loading on Bone Cell Resorption in Vitro. International Journal of Molecular Sciences, 15, 5874-5883. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Khosla, S. (2001) Minireview: The OPG/RANKL/RANK System. Endocrinology, 142, 5050-5055. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Maruyama, K., Takayama, Y., Kondo, T., Ishibashi, K., Sahoo, B.R., Kanemaru, H., et al. (2017) Nociceptors Boost the Resolution of Fungal Osteoinflammation via the TRP Channel-CGRP-Jdp2 Axis. Cell Reports, 19, 2730-2742. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Xie, H., Cui, Z., Wang, L., Xia, Z., Hu, Y., Xian, L., et al. (2014) PDGF-BB Secreted by Preosteoclasts Induces Angiogenesis during Coupling with Osteogenesis. Nature Medicine, 20, 1270-1278. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Aubdool, A.A., Thakore, P., Argunhan, F., Smillie, S., Schnelle, M., Srivastava, S., et al. (2017) A Novel Α-Calcitonin Gene-Related Peptide Analogue Protects against End-Organ Damage in Experimental Hypertension, Cardiac Hypertrophy, and Heart Failure. Circulation, 136, 367-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Zhang, Q., Guo, Y., Chen, H., Jiang, Y., Tang, H., Gong, P., et al. (2018) The Influence of Receptor Activity-Modifying Protein-1 Overexpression on Angiogenesis in Mouse Brain Capillary Endothelial Cells. Journal of Cellular Biochemistry, 120, 10087-10096. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Wu, J., Liu, S., Wang, Z., Ma, S., Meng, H. and Hu, J. (2018) Calcitonin Gene-Related Peptide Promotes Proliferation and Inhibits Apoptosis in Endothelial Progenitor Cells via Inhibiting MAPK Signaling. Proteome Science, 16, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Maeda, Y., Miwa, Y. and Sato, I. (2017) Expression of CGRP, Vasculogenesis and Osteogenesis Associated Mrnas in the Developing Mouse Mandible and Tibia. European Journal of Histochemistry, 61, Article 2750. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Barleon, B., Sozzani, S., Zhou, D., Weich, H., Mantovani, A. and Marme, D. (1996) Migration of Human Monocytes in Response to Vascular Endothelial Growth Factor (VEGF) Is Mediated via the VEGF Receptor Flt-1. Blood, 87, 3336-3343. [Google Scholar] [CrossRef]
|
|
[82]
|
Mapp, P.I., McWilliams, D.F., Turley, M.J., Hargin, E. and Walsh, D.A. (2012) A Role for the Sensory Neuropeptide Calcitonin Gene-Related Peptide in Endothelial Cell Proliferation in Vivo. British Journal of Pharmacology, 166, 1261-1271. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Walsh, D.A., Mapp, P.I. and Kelly, S. (2015) Calcitonin Gene-Related Peptide in the Joint: Contributions to Pain and Inflammation. British Journal of Clinical Pharmacology, 80, 965-978. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Zheng, S., Li, W., Xu, M., Bai, X., Zhou, Z., Han, J., et al. (2010) Calcitonin Gene-Related Peptide Promotes Angiogenesis via Amp-Activated Protein Kinase. American Journal of Physiology-Cell Physiology, 299, C1485-C1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Toda, M., Suzuki, T., Hosono, K., Hayashi, I., Hashiba, S., Onuma, Y., et al. (2008) Neuronal System-Dependent Facilitation of Tumor Angiogenesis and Tumor Growth by Calcitonin Gene-Related Peptide. Proceedings of the National Academy of Sciences, 105, 13550-13555. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Xu, R., Yallowitz, A., Qin, A., Wu, Z., Shin, D.Y., Kim, J., et al. (2018) Targeting Skeletal Endothelium to Ameliorate Bone Loss. Nature Medicine, 24, 823-833. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Liu, W.C., Chen, S., Zheng, L. and Qin, L. (2017) Angiogenesis Assays for the Evaluation of Angiogenic Properties of Orthopaedic Biomaterials—A General Review. Advanced Healthcare Materials, 6, Article 1600434. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Ramasamy, S.K., Kusumbe, A.P., Schiller, M., Zeuschner, D., Bixel, M.G., Milia, C., et al. (2016) Blood Flow Controls Bone Vascular Function and Osteogenesis. Nature Communications, 7, Article No. 13601. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Tomlinson, R.E. and Silva, M.J. (2013) Skeletal Blood Flow in Bone Repair and Maintenance. Bone Research, 1, 311-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Bo, Y., Yan, L., Gang, Z., Tao, L. and Yinghui, T. (2012) Effect of Calcitonin Gene-Related Peptide on Osteoblast Differentiation in an Osteoblast and Endothelial Cell Co-Culture System. Cell Biology International, 36, 909-915. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Ji, G., Xu, R., Niu, Y., Li, N., Ivashkiv, L., Bostrom, M.P.G., et al. (2019) Vascular Endothelial Growth Factor Pathway Promotes Osseointegration and CD31hiEMCNhi Endothelium Expansion in a Mouse Tibial Implant Model. The Bone & Joint Journal, 101, 108-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Ohno, T., Hattori, Y., Komine, R., Ae, T., Mizuguchi, S., Arai, K., et al. (2008) Roles of Calcitonin Gene-Related Peptide in Maintenance of Gastric Mucosal Integrity and in Enhancement of Ulcer Healing and Angiogenesis. Gastroenterology, 134, 215-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Schmid, J., Wallkamm, B., Hämmerle, C.H.F., Gogolewski, S. and Lang, N.P. (1997) The Significance of Angiogenesis in Guided Bone Regeneration. A Case Report of a Rabbit Experiment. Clinical Oral Implants Research, 8, 244-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Leroux, A., Paiva dos Santos, B., Leng, J., Oliveira, H. and Amédée, J. (2020) Sensory Neurons from Dorsal Root Ganglia Regulate Endothelial Cell Function in Extracellular Matrix Remodelling. Cell Communication and Signaling, 18, Article No. 162. [Google Scholar] [CrossRef] [PubMed]
|