[1]
|
Gupta, P., Toksha, B. and Rahaman, M. (2023) A Critical Review on Hydrogen Based Fuel Cell Technology and Applications. The Chemical Record, 24, e202300295. https://doi.org/10.1002/tcr.202300295
|
[2]
|
Li, H., Zhang, H., Liu, W., Huang, J., Lu, K., Shi, J., et al. (2023) Experimental Demonstration of Photocatalytic Hydrogen Production in Series with a Hydrogen Fuel Cell. Journal of Chemical Education, 100, 1404-1409. https://doi.org/10.1021/acs.jchemed.2c01158
|
[3]
|
Andrade, T.S. and Thiringer, T. (2024) Low Platinum Fuel Cell as Enabler for the Hydrogen Fuel Cell Vehicle. Journal of Power Sources, 598, Article ID: 234140. https://doi.org/10.1016/j.jpowsour.2024.234140
|
[4]
|
Zhang, X., Li, H., Yang, J., Lei, Y., Wang, C., Wang, J., et al. (2021) Recent Advances in PT-Based Electrocatalysts for PEMFCs. RSC Advances, 11, 13316-13328. https://doi.org/10.1039/d0ra05468b
|
[5]
|
Liu, J. and Zio, E. (2018) Prognostics of a Multistack PEMFC System with Multiagent Modeling. Energy Science & Engineering, 7, 76-87. https://doi.org/10.1002/ese3.254
|
[6]
|
Asri, N.F., Husaini, T., Sulong, A.B., Majlan, E.H. and Daud, W.R.W. (2017) Coating of Stainless Steel and Titanium Bipolar Plates for Anticorrosion in PEMFC: A Review. International Journal of Hydrogen Energy, 42, 9135-9148. https://doi.org/10.1016/j.ijhydene.2016.06.241
|
[7]
|
Mardle, P., Fernihough, O. and Du, S. (2018) Evaluation of the Scaffolding Effect of PT Nanowires Supported on Reduced Graphene Oxide in PEMFC Electrodes. Coatings, 8, Article No. 48. https://doi.org/10.3390/coatings8020048
|
[8]
|
Witpathomwong, S., Okhawilai, M., Jubsilp, C., Karagiannidis, P. and Rimdusit, S. (2020) Highly Filled Graphite/Graphene/Carbon Nanotube in Polybenzoxazine Composites for Bipolar Plate in PEMFC. International Journal of Hydrogen Energy, 45, 30898-30910. https://doi.org/10.1016/j.ijhydene.2020.08.006
|
[9]
|
Choi, J., Eun Kang, H., Kim, D. and Soo Yoon, Y. (2024) A Comprehensive Review of Stainless-Steel Bipolar Plate Coatings and Their Role in Mitigating Corrosion in Aggressive Proton-Exchange Membrane Fuel Cells Environments. Chemical Engineering Journal, 493, Article ID: 152662. https://doi.org/10.1016/j.cej.2024.152662
|
[10]
|
Liu, X., Zhang, Y., Shi, C., Dou, B. and Liu, M. (2024) Effect of DBSA‐Doped PANI on the Corrosion Protection Performance of Go/Epoxy Coatings. Materials and Corrosion. https://doi.org/10.1002/maco.202414308
|
[11]
|
Meng, X., Hou, L., Jin, H., Li, W., Wang, S., Wang, Z., et al. (2023) Study on Corrosion Protection Properties of PANI/ZnO/Zn/Graphene Coating on Aluminum Alloy. Diamond and Related Materials, 136, Article ID: 110067. https://doi.org/10.1016/j.diamond.2023.110067
|
[12]
|
Diraki, A. and Omanovic, S. (2022) Smart PANI/Epoxy Anti-Corrosive Coating for Protection of Carbon Steel in Sea Water. Progress in Organic Coatings, 168, Article ID: 106835. https://doi.org/10.1016/j.porgcoat.2022.106835
|
[13]
|
Dong, Y., Yin, Y., Du, X., Liu, C. and Zhou, Q. (2022) Effect of MXene@PANI on the Self-Healing Property of Shape Memory-Assisted Coating. Synthetic Metals, 291, Article ID: 117162. https://doi.org/10.1016/j.synthmet.2022.117162
|
[14]
|
Diraki, A. and Omanovic, S. (2022) Anticorrosive Properties of the Double-Layer PANI-(Graphene Oxide)/Epoxy Coating in Protecting Carbon Steel in Saltwater. Journal of Coatings Technology and Research, 20, 995-1006. https://doi.org/10.1007/s11998-022-00719-6
|
[15]
|
da Silva Ferreira, N., Bandeira, R.M., Nunes, M.S., de Sousa Marques, V., Vega, M.L., Hidalgo, A.A., et al. (2024) Anticorrosive Effect of Green Sulfonated PANI-Zn with Epoxy for the Corrosion Protection of Aluminum Alloy 6061-T651. Progress in Organic Coatings, 191, Article ID: 108470. https://doi.org/10.1016/j.porgcoat.2024.108470
|
[16]
|
Zor, S. and Ilmieva, N. (2018) Corrosion Behavior of PANI/Epoxy/Nano SnO2 Polymeric Nanocomposite Coated Stainless Steel in 3.5 Wt% NaCl. Polymer Composites, 39, E2415-E2425. https://doi.org/10.1002/pc.24729
|
[17]
|
Zhang, X., Li, B., Chen, T., Ke, X. and Xiao, R. (2023) Study on CePO4 Modified PANI/RGO Composites to Enhance the Anti-Corrosion Property of Epoxy Resin. Progress in Organic Coatings, 178, Article ID: 107472. https://doi.org/10.1016/j.porgcoat.2023.107472
|
[18]
|
Kong, W., Yi, S., Sun, W., Xu, L., Jia, L., Yan, D., et al. (2022) Polyaniline-Decorated Carbon Fibers for Enhanced Mechanical and Electromagnetic Interference Shielding Performances of Epoxy Composites. Materials & Design, 217, Article ID: 110658. https://doi.org/10.1016/j.matdes.2022.110658
|
[19]
|
Liu, R., Liu, Y., Yong, Q., Xie, Z., Wu, L. and Zhong, C. (2023) Highly Corrosion-Resistant ZIF-8-Integrated Micro-Arc Oxidation Coating on Mg Alloy. Surface and Coatings Technology, 463, Article ID: 129505. https://doi.org/10.1016/j.surfcoat.2023.129505
|
[20]
|
Yin, X., Mu, P., Wang, Q. and Li, J. (2020) Superhydrophobic ZIF-8-Based Dual-Layer Coating for Enhanced Corrosion Protection of Mg Alloy. ACS Applied Materials & Interfaces, 12, 35453-35463. https://doi.org/10.1021/acsami.0c09497
|
[21]
|
DeBerry, D.W. (1985) Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. Journal of The Electrochemical Society, 132, 1022-1026. https://doi.org/10.1149/1.2114008
|
[22]
|
Karpakam, V., Kamaraj, K., Sathiyanarayanan, S., Venkatachari, G. and Ramu, S. (2011) Electrosynthesis of Polyaniline-Molybdate Coating on Steel and Its Corrosion Protection Performance. Electrochimica Acta, 56, 2165-2173. https://doi.org/10.1016/j.electacta.2010.11.099
|
[23]
|
Lu, W., Elsenbaumer, R.L. and Wessling, B. (1995) Corrosion Protection of Mild Steel by Coatings Containing Polyaniline. Synthetic Metals, 71, 2163-2166. https://doi.org/10.1016/0379-6779(94)03204-j
|
[24]
|
Kamaraj, K., Siva, T., Sathiyanarayanan, S., Muthukrishnan, S. and Venkatachari, G. (2011) Synthesis of Oxalate Doped Polyaniline and Its Corrosion Protection Performance. Journal of Solid State Electrochemistry, 16, 465-471. https://doi.org/10.1007/s10008-011-1354-3
|
[25]
|
Beh, J.J., Lim, J.K., Ng, E.P. and Ooi, B.S. (2018) Synthesis and Size Control of Zeolitic Imidazolate Framework-8 (ZIF-8): From the Perspective of Reaction Kinetics and Thermodynamics of Nucleation. Materials Chemistry and Physics, 216, 393-401. https://doi.org/10.1016/j.matchemphys.2018.06.022
|
[26]
|
Wang, S. and Zhang, S. (2017) Study on the Structure Activity Relationship of ZIF-8 Synthesis and Thermal Stability. Journal of Inorganic and Organometallic Polymers and Materials, 27, 1317-1322. https://doi.org/10.1007/s10904-017-0585-x
|
[27]
|
Wang, Z., Huang, J., Guo, Z., Dong, X., Liu, Y., Wang, Y., et al. (2019) A Metal-Organic Framework Host for Highly Reversible Dendrite-Free Zinc Metal Anodes. Joule, 3, 1289-1300. https://doi.org/10.1016/j.joule.2019.02.012
|
[28]
|
Saliba, D., Ammar, M., Rammal, M., Al-Ghoul, M. and Hmadeh, M. (2018) Crystal Growth of ZIF-8, ZIF-67, and Their Mixed-Metal Derivatives. Journal of the American Chemical Society, 140, 1812-1823. https://doi.org/10.1021/jacs.7b11589
|
[29]
|
Li, D., Lin, C., Batchelor-McAuley, C., Chen, L. and Compton, R.G. (2018) Tafel Analysis in Practice. Journal of Electroanalytical Chemistry, 826, 117-124. https://doi.org/10.1016/j.jelechem.2018.08.018
|
[30]
|
Agbo, P. and Danilovic, N. (2019) An Algorithm for the Extraction of Tafel Slopes. The Journal of Physical Chemistry C, 123, 30252-30264. https://doi.org/10.1021/acs.jpcc.9b06820
|
[31]
|
Fletcher, S. (2008) Tafel Slopes from First Principles. Journal of Solid State Electrochemistry, 13, 537-549. https://doi.org/10.1007/s10008-008-0670-8
|
[32]
|
Wang, X., Zhang, M., Hu, Q., Su, S., Fan, H., Wang, H., et al. (2022) Optimizing the Interfacial Potential Distribution to Mitigate High Transient Potential Induced Dissolution on C/Ti Coated Metal Bipolar Plates Used in PEMFCs. Corrosion Science, 208, Article ID: 110686. https://doi.org/10.1016/j.corsci.2022.110686
|