NEK6与肿瘤关系的研究进展
Research Progress on the Relationship between NEK6 and Tumor
DOI: 10.12677/acm.2024.1492447, PDF, HTML, XML,   
作者: 马阳阳:内蒙古医科大学第一临床医学院,内蒙古 呼和浩特;岳根全*:内蒙古医科大学附属医院泌尿外科,内蒙古 呼和浩特
关键词: NEK6NEKS恶性肿瘤癌症NEK6 NEKS Malignant Tumour Cancer
摘要: 人类NIMA相关激酶(NIMA-related kinases, NEK)是一组在人类细胞中表达的与NIMA同源的蛋白激酶,它们通常在细胞周期的调控中扮演着重要的角色。目前在人类基因组中已经鉴定出NEK1到NEK11等多个成员,其中人类NIMA相关激酶6 (Human NIMA-related kinases 6, NEK6)正是其中的重要成员之一。NEK6在动物细胞中普遍表达,其主要位于细胞核内,是一种多功能细胞调控因子,它不但可以影响细胞周期的进程和细胞的稳定性,同时还可以作为信号转导因子参与调控多种信号转导通路。随着分子生物学技术的不断发展以及医疗的进步,NEK6与各种肿瘤发生发展的关系也逐步引起了公众的广泛关注。截至目前的研究表明:多种恶性肿瘤的生物学行为显著受到NEK6异常表达的影响,本文将归纳并总结NEK6参与调控乳腺癌、胃癌、肝癌及肾细胞癌等恶性肿瘤的机制并进行综述。
Abstract: Human NIMA-related kinases (NEK) are a group of protein kinases homologous to NIMA expressed in human cells, which generally play an important role in the regulation of the cell cycle. Several members of NEK1 to NEK11 have been identified in the human genome, among which human NIMA-related kinases 6 (NEK6) is one of the important members. NEK6 is widely expressed in animal cells, mainly located in the nucleus, and is a multifunctional cell regulator, which can not only affect the progress of the cell cycle and the stability of cells, but also participate in the regulation of a variety of signal transduction pathways as a signal transduction factor. With the continuous development of molecular biology technology and medical advancement, the relationship between NEK6 and the development of various tumorigenesis has gradually attracted extensive public attention. This article will summarize the mechanism of NEK6 in the regulation of breast cancer, gastric cancer, liver cancer and renal cell carcinoma.
文章引用:马阳阳, 岳根全. NEK6与肿瘤关系的研究进展[J]. 临床医学进展, 2024, 14(9): 193-199. https://doi.org/10.12677/acm.2024.1492447

1. 引言

癌症,一种能够严重威胁人类身体健康的疾病。目前,无论是发达国家还是发展中国家,癌症都呈现出相当的发病率和死亡率,已成为公共卫生事业中不可忽视的重要题目[1]。而近年来,部分癌症的年轻化趋势也愈发明显[2],因此癌症逐渐成为了威胁各年龄层人群生命安全的隐形杀手。由于癌症的繁杂性和多样性,其发生和发展的机制以及相应的治疗方法一直是医学领域的主要研究焦点[3],目前癌症的发生发展与多种因素相关,如遗传因素、生活方式、环境因素、感染因素以及心理因素,其中包括吸烟、超重和肥胖以及感染等因素是影响癌症的关键危险因素[4],吸烟是导致肺癌的首要原因,大约80%以上的肺癌患者有吸烟史,超重和肥胖也会明显增加患乳腺癌的风险,而高危型HPV持续感染是宫颈癌的主要危险因素。在目前应对癌症的治疗手段中,涵盖了手术、放疗、化疗、免疫介导疗法以及药物和生物分子来进行针对性治疗等多种方法[5]。在过去的几年中,癌症预防措施的加强也有效降低了癌症的发病率,医疗卫生专业对癌症的预防也愈发重视[6]。总之,癌症目前仍是医学研究的核心焦点,癌症的影响因素众多且相互关联,探究这些因素不仅有利于揭示癌症的机制,还有可能为癌症的预防和治疗开拓新的道路,为促进癌症的防控提供理论依据。

NEK6,是一种在人体中编码的丝氨酸/苏氨酸蛋白激酶[7],目前发现其存在于细胞质和细胞核中[8],在NEK家族中,NEK6及NEK7在结构上来说是最小的,同时二者的催化结构域在87%的程度上也是高度相似的[9]。现今我们已了解,NEK6的活性在细胞周期的M期是特异性上调的,且与NEK6磷酸化有关,其对于有丝分裂进程是必需的,若阻断其功能则会导致有丝分裂停滞和染色体分离异常,还会进一步影响细胞凋亡[10]。还有研究表明NEK6与DNA的损伤修复相关,一方面DNA损伤会抑制NEK6在有丝分裂期间的激活,另一方面,NEK6的过表达会克服DNA损伤诱导的G2/M期停滞[11],NEK6通过参与这些过程来调节DNA的损伤修复的效率和准确性。此外,NEK6在癌症的发生发展中也具有一定的作用,其在部分癌症中高表达显著上调,与肿瘤的发生发展相关,还会抑制癌细胞凋亡以及影响癌症患者的预后情况[12]。本文综述了NEK6参与调控乳腺癌、胃癌、肝癌及肾细胞癌等恶性肿瘤的机制研究,为改善癌症的诊断、治疗和预防探寻方法。

2. NEK6与乳腺癌

乳腺癌是一种起源于乳腺上皮组织的恶性肿瘤,在世界范围内,它属于最为常见同时也是最为致命的癌症种类之一,并且在女性群体中,它是极为常见的恶性肿瘤,占据了女性全身恶性肿瘤的7%~10% [13]。乳腺癌不仅发病率高而且发病原因也较复杂,因此早诊断早治疗对其预后和生存至关重要,但现有早诊技术如钼靶X射线成像技术、超声诊断技术、核磁共振成像技术等存在局限性[14],而且具体的治疗方案还需要受到患者肿瘤的分期、年龄及身体状况等多种因素的影响[15],因此深入探究乳腺癌发生发展的机制具有极其重要的意义,这对于改善患者的生存状况、提升治疗效果以及推动医学领域的进步都至关重要。

研究发现,NEK6在乳腺癌组织中高表达,而在癌旁组织中通常低表达或不表达,这提示Nek6的上调表达可能有助于乳腺癌的发展[16]。NEK6在不同分子分型乳腺癌组织中的表达存在差异,其表达与乳腺癌患者肿块大小和Ki-67增殖指数也有一定关联[17]。此外,Nek6的表达情况还会影响患者的预后情况,Nek6的高表达预示着乳腺癌患者的无复发生存期(RFS)、无病生存期(DFS)和疾病进展后生存期(PPS)较差[18]。因此,Nek6有希望成为三阴型乳腺癌分子亚型的筛选和治疗靶点,为该类乳腺癌新的个体化和分子靶向治疗提供方向。肿瘤样球状体的非锚定生长与肿瘤细胞的干细胞特性相关联,其也是乳腺癌细胞的重要特征之一。NEK6可以与自磷酸化的NEK9结合,此后NEK9可通过直接磷酸化促进NEK6的二聚化和自磷酸化来激活NEK6,而NEK6的激活可以通过影响双极纺锤体组装和染色体列队来调控细胞周期[19]

近期有研究通过球状体形成实验来探究NEK6对乳腺癌细胞球状体形成能力的影响。发现NEK6缺失的球状体通常比对照组小,而且NEK6缺失的细胞形成的球状体数量显著减少,这表明NEK6对乳腺癌细胞球状体的起始和进展中起着关键作用,沉默NEK6的表达会损害乳腺癌细胞的球体形成能力,这些发现有力地支持了NEK6通过调控细胞周期进程和球状体生长在乳腺癌中发挥肿瘤促进作用的观点[20]。NEK6在乳腺癌发生发展中具有至关重要的作用,然而,其具体的作用机制尚不完全明确,仍需进一步深入研究。通过这些研究,可以为乳腺癌的治疗和预防开辟新的途径。

3. NEK6与肝癌

原发性肝癌是全球第六大常见癌症,在全球发病率中排名第五,肝细胞癌(HCC)是最常见的原发性肝癌类型[21],而近几年肝癌也成为了第四大因癌症导致死亡的原因,成为了全球癌症相关死亡率第二高的癌症[22],在中国,慢性乙型肝炎病毒和黄曲霉毒素是原发性肝癌的主要病因,肝癌的高发病率和高死亡率在我国仍严重威胁着人类健康[23],而且其预后情况通常不太乐观,因此深入研究肝癌发生发展机制已成为当务之急,不仅能够改善治疗效果和提升患者生存率,其次能推动整个肿瘤学领域的进步[24]

目前有研究表明,NEK6高表达于肝细胞癌组织,而且NEK6 mRNA表达量与肝癌的大小、血清AFP水平差异、脉管侵犯情况以及病理分级显著相关[25],在成功构建稳定表达NEK6的肝癌细胞株后,发现NEK6过表达可明显促进肝癌细胞Huh7和HepG2的成瘤能力,通过这些研究可知NEK6在细胞周期调节中具有重要作用,NEK6的表达可作为肝细胞肝癌一个独立的预后因素[26]。此外,有研究发现,NEK6在肝癌细胞系(HCC cell lines)中过表达,以激酶活性依赖的形式抑制TGFβ对于下游靶基因的转录调节,进而在肝癌细胞中抑制TGFβ诱导的细胞生长停滞,而此种抑制作用取决于其自身的激酶活性,NEK6会令Smad4在丝氨酸/苏氨酸位点产生磷酸化,致使Smad4滞留在细胞质中,通过阻断Smad4的核易位来抑制TGFβ信号通路,得以在肝癌中发挥作用[27]。p53是一种重要的肿瘤抑制基因,在肝癌的发生发展中起着关键的调节作用[28],NEK6的过表达会对p53的活性产生负向调节,NEK6的非翻译区能与miR-23a结合,从而使其表达被抑制,进而导致p53的活性受到调节,最终使NEK6在HCC中发挥作用[29]。还有研究发现,在肝癌细胞中,CD147的磷酸化会参与下游信号转导,从而加速HCC细胞的迁移和侵袭,CD147是NEK6的底物,NEK6可与CD147相互作用并使其磷酸化,沉默NEK6则会导致细胞中CD147磷酸化水平降低从而对HCC细胞的迁移和侵袭产生影响[30]。经过免疫荧光分析可以发现NEK6和Pin1主要共定位在共转染的Hep3B细胞的细胞核中,呈扩散模式,通过免疫沉淀实验证实了NEK6与Pin1存在相互作用,在此基础上,进一步的深入研究发现,NEK6与Pin1在HCC中的表达具有显著相关性。综合这些结果,可以合理地推断出Pin1与NEK6的相互作用对HCC的癌变过程产生了积极的促进效应[31]。通过对NEK6与肝癌关系的研究,不但可以进一步揭示肝癌的发生发展机制,还为肝癌的诊断和治疗提供新的靶点和思路。

4. NEK6与胃癌

胃癌是一种严重威胁全球人类生命健康的恶性肿瘤,是世界上常见癌症中的第五大类型,每年新发病例多达108万以上。在全球中,其发病率排名第五,死亡率排名第四[32],每年约有77万人因此死亡[33]。目前胃癌手术联合术后化疗可在一定程度上改善早期胃癌患者的预后,然而中晚期胃癌的预后仍不太理想[34]。深入探究胃癌的发生发展机制,不仅是攻克这一顽疾的关键所在,更是为无数患者带来生的希望、提升生存质量的必由之路。

有研究借助荧光定量PCR实验对不同组织和细胞株中NEK6的表达进行检测。结果显示,NEK6在胃癌组织中的表达水平显著高于癌旁组织,在人胃癌细胞株中的表达水平也明显高于人胃黏膜上皮细胞株,由此得出NEK6在胃癌组织中呈现高表达的结论。通过细胞转染实验发现NEK6的表达与胃癌患者的远处转移及淋巴结转移存在关联。当细胞中NEK6的表达水平降低时,细胞迁移及侵袭能力会明显降低,NEK6可通过抑制p53诱导肿瘤细胞凋亡,所以下调NEK6的表达水平能够对胃癌细胞的侵袭和迁移能力起到抑制作用[35]。此外NEK6的表达水平与胃癌的病理阶段也显著相关,NEK6与MMP7、IGFBP7一起被归类为与病理阶段显著相关的基因,通过免疫组化和Western blotting结果发现NEK6蛋白在大多数胃癌组织中强烈染色,且在晚期癌症中的水平高于早期阶段样本,基于此,呀被救人员发现NEK6在病理阶段较晚时,其表达水平更高,进而参与到肿瘤的进展过程之中[36]。NEK6异常表达和功能与胃癌的的预后情况密切相关,通过KMPlotter分析发现,NEK6在胃癌中呈高表达,在胃癌中可能起到促进肿瘤进展的作用,高表达NEK6预示着较差的预后,并且可能参与胃癌的治疗抵抗[37]。NEK6参与胃癌细胞周期调控,当其过表达或低表达时,会引发细胞周期失调。在胃癌中,NEK6的蛋白水平和激酶活性增加率极高。抑制NEK6能够特异性地诱导肿瘤细胞死亡,而且NEK6抑制剂相比于细胞毒性抗肿瘤药物,具有更低的副作用[38]。正因如此,NEK6被证明可介导人类癌细胞转化,从而被认为是潜在的癌症治疗标志物。NEK 6可能在胃癌的发生、发展及转移中具有重要作用,具有作为胃癌早期诊断标志物的潜质,明晰这一机制,对于开发精准有效的诊断方法、创新治疗策略以及改善患者预后,都具有不可估量的重要意义,期待为胃癌的治疗提供新的途径。

5. NEK6和肾癌

肾癌是全球十大癌症之一,在过去20年,其发病率呈现上升态势。其中肾透明细胞癌(ccRCC)作为最常见的肾癌类型,起源于肾小管上皮细胞,在RCC的诊断中占比高达75% [39]。肾透明细胞癌的早期症状较为隐匿,许多患者在确诊时已处于中晚期,给治疗带来了极大的挑战,此外肾透明细胞癌恶性程度高,对放化疗不敏感,目前手术切除是早期局限性ccRCC的有效治疗方法,但部分患者会复发转移[40]。近年来,尽管在肾癌的诊断和治疗方面取得了显著进展,但肾癌患者的总体生存率仍有待提高,正因如此,深入探究肾癌的发生发展机制成为当务之急。

目前,有研究针对TCGA-KIRC数据集展开分析,结果显示,NEK6在肾癌肿瘤样本中的表达水平明显高于正常肾组织,在RNA和蛋白质水平上,NEK6在肿瘤中的表达同样呈现上调趋势[41]。NEK6被视作端粒相关基因风险模型的一部分,其与肾癌的预后、免疫状态、TMB以及治疗选择存在关联。经TISIDB数据库分析,发现NEK6的表达与不同免疫亚型显著相关,其中C5亚型在NEK6中低表达,且NEK6与免疫检查点显著正相关。通过TIMER数据库验证,也得出NEK6与多种免疫细胞标记基因显著正相关的结论[42]。有研究利用生物信息学工具发现NEK6是miR-141-3p的靶基因,并且FAM13A-AS1能够通过海绵化miR-141-3p来上调NEK6的表达,这表明FAM13A-AS1以NEK6依赖的方式增强肾癌的增殖、迁移和侵袭[43]。另外,miR-219-5p在肾癌中扮演着抑癌基因的角色,能够抑制肾癌细胞增殖、迁移和侵袭,其作用机制与靶向调控NEK6表达密切相关,即miR-219-5p通过直接靶向调控NEK6的表达,进而对肾癌细胞的增殖、迁移和侵袭能力产生影响[44]。综上所述,NEK6在肾透明细胞癌中高表达,与临床病理特征、免疫细胞浸润、免疫亚型、免疫检查点和免疫细胞标记物等密切相关,可能是ccRCC的潜在治疗靶点和预后指标。

6. 小结与展望

本文介绍了NEK6在乳腺癌、肝癌、胃癌及肾癌中的发生发展中的调控作用,以及如何影响癌症的进展。对NEK6在这些恶性肿瘤中的研究已取得一定成果,但仍存在诸多未知。未来的研究可以从以下几个方面展开:一是充分明确NEK6在肿瘤发生发展中的具体分子机制,明晰其上下游的调控网络,为精准治疗筑牢更坚实的理论根基;二是研制针对NEK6的特异性抑制剂或治疗策略,提升肿瘤治疗的效果和特异性;三是深入探索NEK6充当诊断标志物的可行性,以实现更早、更准确的肿瘤诊断;四是推动多中心、大规模的临床试验开展,对基于NEK6的治疗方案在各类人群中的疗效与安全性加以验证。相信随着研究的不断深入,NEK6将为癌症的诊断、治疗和预防带来新的突破,为广大癌症患者带来更多的希望。

NOTES

*通讯作者。

参考文献

[1] Huang, M., Gao, X., Qiu, J.F., Gou, M., et al. (2013) Preparation and Characterization of Monomethoxy Poly(ethylene Glycol)-Poly(ε-Caprolactone) Micelles for the Solubilization and in Vivo Delivery of Luteolin. International Journal of Nanomedicine, 8, 3061-3069.
https://doi.org/10.2147/ijn.s45062
[2] Xu, A., Wang, Q. and Lin, T. (2020) Low-Frequency Magnetic Fields (LF-MFs) Inhibit Proliferation by Triggering Apoptosis and Altering Cell Cycle Distribution in Breast Cancer Cells. International Journal of Molecular Sciences, 21, Article 2952.
https://doi.org/10.3390/ijms21082952
[3] Chen, G., Xu, Y., Shen, S. and Zhang, J. (2018) Phenotype and Target-Based Chemical Biology Investigations in Cancers. National Science Review, 6, 1111-1127.
https://doi.org/10.1093/nsr/nwy124
[4] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[5] Kaur, R., Bhardwaj, A. and Gupta, S. (2023) Cancer Treatment Therapies: Traditional to Modern Approaches to Combat Cancers. Molecular Biology Reports, 50, 9663-9676.
https://doi.org/10.1007/s11033-023-08809-3
[6] Helisz, P., Dziubanek, G., Krupa-Kotara, K., Gwioździk, W., Grajek, M. and Głogowska-Ligus, J. (2022) Colorectal Cancer and the Role of the Gut Microbiota—Do Medical Students Know More than Other Young People?—Cross-Sectional Study. Nutrients, 14, Article 4185.
https://doi.org/10.3390/nu14194185
[7] Fu, B., Xue, W., Zhang, H., Zhang, R., Feldman, K., Zhao, Q., et al. (2020) Microrna-325-3p Facilitates Immune Escape of Mycobacterium Tuberculosis through Targeting LNX1 via NEK6 Accumulation to Promote Anti-Apoptotic STAT3 Signaling. mBio, 11, e00557-20.
https://doi.org/10.1128/mbio.00557-20
[8] Hashimoto, Y., Akita, H., Hibino, M., Kohri, K. and Nakanishi, M. (2002) Identification and Characterization of Nek6 Protein Kinase, a Potential Human Homolog of NIMA Histone H3 Kinase. Biochemical and Biophysical Research Communications, 293, 753-758.
https://doi.org/10.1016/s0006-291x(02)00297-8
[9] O’Regan, L. and Fry, A.M. (2009) The Nek6 and Nek7 Protein Kinases Are Required for Robust Mitotic Spindle Formation and Cytokinesis. Molecular and Cellular Biology, 29, 3975-3990.
https://doi.org/10.1128/mcb.01867-08
[10] Yin, M., Shao, L., Voehringer, D., Smeal, T. and Jallal, B. (2003) The Serine/Threonine Kinase NEK6 Is Required for Cell Cycle Progression through Mitosis. Journal of Biological Chemistry, 278, 52454-52460.
https://doi.org/10.1074/jbc.m308080200
[11] Lee, M., Kim, H., Kim, M., Jee, H.J., Kim, A.J., Bae, Y., et al. (2008) NEK6 Is Involved in G2/M Phase Cell Cycle Arrest through DNA Damage-Induced Phosphorylation. Cell Cycle, 7, 2705-2709.
https://doi.org/10.4161/cc.7.17.6551
[12] Panchal, N.K., Mohanty, S. and Prince, S.E. (2022) Nima-Related Kinase-6 (NEK6) as an Executable Target in Cancer. Clinical and Translational Oncology, 25, 66-77.
https://doi.org/10.1007/s12094-022-02926-4
[13] Qin, Y., Li, C., Shi, X. and Wang, W. (2022) MLP-Based Regression Prediction Model for Compound Bioactivity. Frontiers in Bioengineering and Biotechnology, 10, Article 946329.
https://doi.org/10.3389/fbioe.2022.946329
[14] 周夏婕, 雷水芳, 黎立喜, 等. 中国女性外周血EMR3基因甲基化水平与乳腺癌的相关性[J]. 南方医科大学学报, 2021, 41(10): 1456-1463.
[15] Katsura, C., Ogunmwonyi, I., Kankam, H.K. and Saha, S. (2022) Breast Cancer: Presentation, Investigation and Management. British Journal of Hospital Medicine, 83, 1-7.
https://doi.org/10.12968/hmed.2021.0459
[16] Yang, Z., Liao, B., Yang, S., Su, T., Zhang, J. and Wang, W. (2022) Predictive Role of NEK6 in Prognosis and Immune Infiltration in Head and Neck Squamous Cell Carcinoma. Frontiers in Endocrinology, 13, Article 943686.
https://doi.org/10.3389/fendo.2022.943686
[17] 付琳琳, 李静, 顾元忻, 等. Nek6在不同乳腺癌分子分型中的表达及其与临床病理特征的关系及意义[J]. 浙江实用医学, 2021, 26(5): 409-411.
[18] Gao, W., Niu, L., Chen, W., Zhang, Y. and Huang, W. (2022) Integrative Analysis of the Expression Levels and Prognostic Values for NEK Family Members in Breast Cancer. Frontiers in Genetics, 13, Article 798170.
https://doi.org/10.3389/fgene.2022.798170
[19] Adib, R., Montgomery, J.M., Atherton, J., O’Regan, L., Richards, M.W., Straatman, K.R., et al. (2019) Mitotic Phosphorylation by NEK6 and NEK7 Reduces the Microtubule Affinity of EML4 to Promote Chromosome Congression. Science Signaling, 12, eaaw2939.
https://doi.org/10.1126/scisignal.aaw2939
[20] He, Z., Ni, X., Xia, L. and Shao, Z. (2018) Overexpression of Nima-Related Kinase 6 (NEK6) Contributes to Malignant Growth and Dismal Prognosis in Human Breast Cancer. PathologyResearch and Practice, 214, 1648-1654.
https://doi.org/10.1016/j.prp.2018.07.030
[21] Li, X., Ramadori, P., Pfister, D., Seehawer, M., Zender, L. and Heikenwalder, M. (2021) The Immunological and Metabolic Landscape in Primary and Metastatic Liver Cancer. Nature Reviews Cancer, 21, 541-557.
https://doi.org/10.1038/s41568-021-00383-9
[22] Naidoo, S., Daniels, A., Habib, S. and Singh, M. (2022) Poly-l-Lysine-Lactobionic Acid-Capped Selenium Nanoparticles for Liver-Targeted Gene Delivery. International Journal of Molecular Sciences, 23, Article 1492.
https://doi.org/10.3390/ijms23031492
[23] Wang, Y., Zhang, Y., Mi, J., Jiang, C., Wang, Q., Li, X., et al. (2022) ANKFN1 Plays Both Protumorigenic and Metastatic Roles in Hepatocellular Carcinoma. Oncogene, 41, 3680-3693.
https://doi.org/10.1038/s41388-022-02380-0
[24] Shao, S., Hu, Q., Wang, M., Zhao, X., Wu, W., Huang, J., et al. (2019) Impact of National Human Development Index on Liver Cancer Outcomes: Transition from 2008 to 2018. World Journal of Gastroenterology, 25, 4749-4763.
https://doi.org/10.3748/wjg.v25.i32.4749
[25] 沈健. NIMA相关激酶6在肝细胞肝癌中的表达及其临床意义[J]. 中国医药指南, 2013, 11(35): 413-414.
[26] 张标, 张海, 李相成. NIMA相关蛋白激酶6在肝癌组织的表达及意义[J]. 江苏医药, 2014, 40(24): 2967-2969, 2956.
[27] Zuo, J., Ma, H., Cai, H., Wu, Y., Jiang, W. and Yu, L. (2015) An Inhibitory Role of NEK6 in TGFβ/Smad Signaling Pathway. BMB Reports, 48, 473-478.
https://doi.org/10.5483/bmbrep.2015.48.8.225
[28] Xie, B., Hao, Q., Zhou, X. and Chen, D. (2022) Inactivation of Tumor Suppressor TAp63 by Hepatitis B Virus X Protein in Hepatocellular Carcinoma. Chinese Medical Journal, 135, 1728-1733.
https://doi.org/10.1097/cm9.0000000000002283
[29] Wang, N., Zhu, M., Wang, X., Tan, H., Tsao, S. and Feng, Y. (2014) Berberine-induced Tumor Suppressor P53 Up-Regulation Gets Involved in the Regulatory Network of MIR-23a in Hepatocellular Carcinoma. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1839, 849-857.
https://doi.org/10.1016/j.bbagrm.2014.05.027
[30] Jin, J., Wang, S., Cui, J., Li, L., Li, J., Liu, F., et al. (2019) Hypo-Phosphorylated CD147 Promotes Migration and Invasion of Hepatocellular Carcinoma Cells and Predicts a Poor Prognosis. Cellular Oncology, 42, 537-554.
https://doi.org/10.1007/s13402-019-00444-0
[31] Chen, J., Li, L., Zhang, Y., Yang, H., Wei, Y., Zhang, L., et al. (2006) Interaction of Pin1 with NEK6 and Characterization of Their Expression Correlation in Chinese Hepatocellular Carcinoma Patients. Biochemical and Biophysical Research Communications, 341, 1059-1065.
https://doi.org/10.1016/j.bbrc.2005.12.228
[32] Wang, Z., Chen, Y., Li, X., Zhang, Y., Zhao, X., Zhou, H., et al. (2022) Tegaserod Maleate Suppresses the Growth of Gastric Cancer in Vivo and in Vitro by Targeting MEK1/2. Cancers, 14, Article 3592.
https://doi.org/10.3390/cancers14153592
[33] López, M.J., Carbajal, J., Alfaro, A.L., Saravia, L.G., Zanabria, D., Araujo, J.M., et al. (2023) Characteristics of Gastric Cancer around the World. Critical Reviews in Oncology/Hematology, 181, Article ID: 103841.
https://doi.org/10.1016/j.critrevonc.2022.103841
[34] Zhou, Y., Sun, X., Zhou, L. and Zhang, X. (2020) Ph-sensitive and Long-Circulation Nanoparticles for Near-Infrared Fluorescence Imaging-Monitored and Chemo-Photothermal Synergistic Treatment against Gastric Cancer. Frontiers in Pharmacology, 11, Article 610883.
https://doi.org/10.3389/fphar.2020.610883
[35] 徐继, 牟一平, 叶再元. NEK-6在胃癌中的表达及其与浸润转移的关系[C]//2015中国外科周暨第25届国际外科、胃肠科及肿瘤科医师协会会议论文集. 2015: 328-328.
[36] Takeno, A., Takemasa, I., Doki, Y., Yamasaki, M., Miyata, H., Takiguchi, S., et al. (2008) Integrative Approach for Differentially Overexpressed Genes in Gastric Cancer by Combining Large-Scale Gene Expression Profiling and Network Analysis. British Journal of Cancer, 99, 1307-1315.
https://doi.org/10.1038/sj.bjc.6604682
[37] Nguyen, K., Boehling, J., Tran, M.N., Cheng, T., Rivera, A., Collins-Burow, B.M., et al. (2023) NEK Family Review and Correlations with Patient Survival Outcomes in Various Cancer Types. Cancers, 15, Article 2067.
https://doi.org/10.3390/cancers15072067
[38] Orenay-Boyacioglu, S., Kasap, E., Gerceker, E., Yuceyar, H., Demirci, U., Bilgic, F., et al. (2018) Expression Profiles of Histone Modification Genes in Gastric Cancer Progression. Molecular Biology Reports, 45, 2275-2282.
https://doi.org/10.1007/s11033-018-4389-z
[39] Johnson, M., Nowlan, S., Sahin, G., Barnett, D.A., Joy, A.P., Touaibia, M., et al. (2022) Decrease of Intracellular Glutamine by STF-62247 Results in the Accumulation of Lipid Droplets in Von Hippel-Lindau Deficient Cells. Frontiers in Oncology, 12, Article 841054.
https://doi.org/10.3389/fonc.2022.841054
[40] Wang, Q., Tang, H., Luo, X., Chen, J., Zhang, X., Li, X., et al. (2022) Immune-Associated Gene Signatures Serve as a Promising Biomarker of Immunotherapeutic Prognosis for Renal Clear Cell Carcinoma. Frontiers in Immunology, 13, Article 890150.
https://doi.org/10.3389/fimmu.2022.890150
[41] Li, S., Jia, Z., Yang, J. and Ning, X. (2022) Telomere-Related Gene Risk Model for Prognosis and Drug Treatment Efficiency Prediction in Kidney Cancer. Frontiers in Immunology, 13, Article 975057.
https://doi.org/10.3389/fimmu.2022.975057
[42] Zhu, Y., Lin, J., Li, Y. and Luo, Z. (2024) Prognostic Value and Immune Infiltration of the NEK Family in Clear Cell Renal Cell Carcinoma. Medicine, 103, e38961.
https://doi.org/10.1097/md.0000000000038961
[43] Wang, X.J., Li, S., Fang, J., Yan, Z.J. and Luo, G.C. (2022) LncRNA FAM13A-AS1 Promotes Renal Carcinoma Tumorigenesis through Sponging miR-141-3p to Upregulate NEK6 Expression. Frontiers in Molecular Biosciences, 9, Article 738711.
https://doi.org/10.3389/fmolb.2022.738711
[44] 王晓燕, 冯景见, 何英霞, 等. miR-219-5p对人肾癌细胞增殖和迁移、侵袭的影响及其作用机制[J]. 南昌大学学报(医学版), 2022, 62(1): 24-31, 47.