|
[1]
|
Schoeni, R.F., Freedman, V.A. and Langa, K.M. (2018) Introduction to a Supplement on Population Level Trends in Dementia: Causes, Disparities, and Projections. The Journals of Gerontology: Series B, 73, S1-S9. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bir, S.C., Khan, M.W., Javalkar, V., Toledo, E.G. and Kelley, R.E. (2021) Emerging Concepts in Vascular Dementia: A Review. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105864. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Corriveau, R.A., Bosetti, F., Emr, M., Gladman, J.T., Koenig, J.I., Moy, C.S., et al. (2016) The Science of Vascular Contributions to Cognitive Impairment and Dementia (VCID): A Framework for Advancing Research Priorities in the Cerebrovascular Biology of Cognitive Decline. Cellular and Molecular Neurobiology, 36, 281-288. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Rundek, T., Tolea, M., Ariko, T., Fagerli, E.A. and Camargo, C.J. (2022) Vascular Cognitive Impairment (VCI). Neurotherapeutics, 19, 68-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wilcock, D., Jicha, G., Blacker, D., Albert, M.S., D’Orazio, L.M., Elahi, F.M., et al. (2021) MarkVCID Cerebral Small Vessel Consortium: I. Enrollment, Clinical, Fluid Protocols. Alzheimer’s & Dementia, 17, 704-715. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2018) An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yuan, M. and Bi, X. (2020) Therapeutic and Diagnostic Potential of MicroRNAs in Vascular Cognitive Impairment. Journal of Molecular Neuroscience, 70, 1619-1628. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Prabhakar, P., Chandra, S.R. and Christopher, R. (2017) Circulating MicroRNAs as Potential Biomarkers for the Identification of Vascular Dementia Due to Cerebral Small Vessel Disease. Age and Ageing, 46, 861-864. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ansari, A., Maffioletti, E., Milanesi, E., Marizzoni, M., Frisoni, G.B., Blin, O., et al. (2019) miR-146a and miR-181a Are Involved in the Progression of Mild Cognitive Impairment to Alzheimer’s Disease. Neurobiology of Aging, 82, 102-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Toyama, K., Spin, J.M., Tsao, P.S., Maruyama, K., Osawa, H., Mogi, M., et al. (2023) Serum microRNA‐501‐3p Is a Potential Diagnostic Tool for Detecting Mild Cognitive Impairment: Ehime Genome Study. Journal of Neurochemistry, 166, 960-971. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, W., Sun, W., Li, S., Jiao, Y., Wang, Z., Wu, T., et al. (2021) Exosomal MiRNA-223-3p as Potential Biomarkers in Patients with Cerebral Small Vessel Disease Cognitive Impairment. Annals of Translational Medicine, 9, 1781-1781. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Niu, Y., Wan, C., Zhang, J., Zhang, S., Zhao, Z., Zhu, L., et al. (2021) Aerobic Exercise Improves VCI through circRIMS2/miR-186/BDNF-Mediated Neuronal Apoptosis. Molecular Medicine, 27, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yan, M., Zhang, S., Zhao, H., Xia, S., Jin, Z., Xu, Y., et al. (2020) MicroRNA-153 Impairs Presynaptic Plasticity by Blocking Vesicle Release Following Chronic Brain Hypoperfusion. Cell Communication and Signaling, 18, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zheng, W., Zhang, J., Zhou, B. and Chang, H. (2022) miR-322-5p Alleviates Cell Injury and Impairment of Cognitive Function in Vascular Dementia by Targeting TSPAN5. Yonsei Medical Journal, 63, 282-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yu, K.Q., Xu, R., Wu, L.X., et al. (2023) Effects of MicroRNA-320 on Learning and Memory in Mice with Vascular Cognitive Impairment Caused via Cerebral Ischemia. Cellular and Molecular Biology, 69, 112-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sha, S., Tan, J., Miao, Y. and Zhang, Q. (2021) The Role of Autophagy in Hypoxia-Induced Neuroinflammation. DNA and Cell Biology, 40, 733-739. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Poh, L., Sim, W.L., Jo, D., Dinh, Q.N., Drummond, G.R., Sobey, C.G., et al. (2022) The Role of Inflammasomes in Vascular Cognitive Impairment. Molecular Neurodegeneration, 17, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tian, Z., Ji, X. and Liu, J. (2022) Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. International Journal of Molecular Sciences, 23, Article No. 6224. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rajeev, V., Chai, Y.L., Poh, L., Selvaraji, S., Fann, D.Y., Jo, D., et al. (2023) Chronic Cerebral Hypoperfusion: A Critical Feature in Unravelling the Etiology of Vascular Cognitive Impairment. Acta Neuropathologica Communications, 11, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Jagtap, A., Gawande, S. and Sharma, S. (2015) Biomarkers in Vascular Dementia: A Recent Update. Biomarkers and Genomic Medicine, 7, 43-56. [Google Scholar] [CrossRef]
|
|
[21]
|
Walker, K.A., Gottesman, R.F., Wu, A., Knopman, D.S., Gross, A.L., Mosley, T.H., et al. (2019) Systemic Inflammation during Midlife and Cognitive Change over 20 Years: The ARIC Study. Neurology, 92, e1256-e1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Long, S., Chen, Y., Meng, Y., Yang, Z., Wei, M., Li, T., et al. (2023) Peripheral High Levels of CRP Predict Progression from Normal Cognition to Dementia: A Systematic Review and Meta-Analysis. Journal of Clinical Neuroscience, 107, 54-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, P., Liu, X., Chen, J., Zhang, Y., Chen, J., Yu, L., et al. (2024) Butylphthalide Combined with Donepezil for the Treatment of Vascular Dementia: A Meta-Analysis. Journal of International Medical Research, 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Custodero, C., Ciavarella, A., Panza, F., Gnocchi, D., Lenato, G.M., Lee, J., et al. (2022) Role of Inflammatory Markers in the Diagnosis of Vascular Contributions to Cognitive Impairment and Dementia: A Systematic Review and Meta-analysis. GeroScience, 44, 1373-1392. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Anita, N.Z., Zebarth, J., Chan, B., Wu, C., Syed, T., Shahrul, D., et al. (2022) Inflammatory Markers in Type 2 Diabetes with vs. without Cognitive Impairment; a Systematic Review and Meta-Analysis. Brain, Behavior, and Immunity, 100, 55-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hanson, J.E., Yuan, H., Perszyk, R.E., Banke, T.G., Xing, H., Tsai, M., et al. (2023) Therapeutic Potential of N-Methyl-D-Aspartate Receptor Modulators in Psychiatry. Neuropsychopharmacology, 49, 51-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Busse, M., Kunschmann, R., Dobrowolny, H., Hoffmann, J., Bogerts, B., Steiner, J., et al. (2017) Dysfunction of the Blood-Cerebrospinal Fluid-Barrier and N-Methyl-D-Aspartate Glutamate Receptor Antibodies in Dementias. European Archives of Psychiatry and Clinical Neuroscience, 268, 483-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Dobrynina, L.A., Alexandrova, E.V., Zabitova, M.R., Kalashnikova, L.A., Krotenkova, M.V. and Akhmetzyanov, B.M. (2021) Anti-NR2 Glutamate Receptor Antibodies as an Early Biomarker of Cerebral Small Vessel Disease. Clinical Biochemistry, 96, 26-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Langeh, U. (2021) Targeting S100B Protein as a Surrogate Biomarker and Its Role in Various Neurological Disorders. Current Neuropharmacology, 19, 265-277. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, F., Zou, Z., Yuan, D., Gong, Y., Zhang, L., Chen, X., et al. (2017) Correlation between Serum S100β Protein Levels and Cognitive Dysfunction in Patients with Cerebral Small Vessel Disease: A Case-Control Study. Bioscience Reports, 37, BSR20160446. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Petersen, M.A., Ryu, J.K. and Akassoglou, K. (2018) Fibrinogen in Neurological Diseases: Mechanisms, Imaging and Therapeutics. Nature Reviews Neuroscience, 19, 283-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pyun, J., Ryoo, N., Park, Y.H. and Kim, S. (2020) Fibrinogen Levels and Cognitive Profile Differences in Patients with Mild Cognitive Impairment. Dementia and Geriatric Cognitive Disorders, 49, 489-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gillett, S.R., McClure, L.A., Callas, P.W., Thacker, E.L., Unverzagt, F.W., Wadley, V.G., et al. (2018) Hemostasis Biomarkers and Incident Cognitive Impairment: The REGARDS Study. Journal of Thrombosis and Haemostasis, 16, 1259-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Loures, C.d.M.G., Duarte, R.C.F., Silva, M.V.F., Cicarini, W.B., de Souza, L.C., Caramelli, P., et al. (2019) Hemostatic Abnormalities in Dementia: A Systematic Review and Meta-Analysis. Seminars in Thrombosis and Hemostasis, 45, 514-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Huang, F., Wang, K. and Shen, J. (2019) Lipoprotein‐Associated Phospholipase A2: The Story Continues. Medicinal Research Reviews, 40, 79-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Zhang, Q.L., Lu, P. and Zhang, J.W. (2018) Association of Serum Lipoprotein-Associated Phospholipase A2 with Vascular Dementia after Ischemic Stroke. Chinese Medical Journal, 98, 1171-1175.
|
|
[37]
|
Zuliani, G., Marsillach, J., Trentini, A., Rosta, V. and Cervellati, C. (2023) Lipoprotein-Associated Phospholipase A2 Activity as Potential Biomarker of Vascular Dementia. Antioxidants, 12, Article No. 597. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhu, S., Wei, X., Yang, X., Huang, Z., Chang, Z., Xie, F., et al. (2019) Plasma Lipoprotein-Associated Phospholipase A2 and Superoxide Dismutase Are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment. Aging and Disease, 10, 834-846. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Smith, A.D. and Refsum, H. (2021) Homocysteine—From Disease Biomarker to Disease Prevention. Journal of Internal Medicine, 290, 826-854. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Smith, A.D. and Refsum, H. (2016) Homocysteine, B Vitamins, and Cognitive Impairment. Annual Review of Nutrition, 36, 211-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, T., Sun, Z., Shao, L., Xu, X., Liu, Y., Qin, M., et al. (2017) Diagnostic Values of Serum Levels of Homocysteine and Uric Acid for Predicting Vascular Mild Cognitive Impairment in Patients with Cerebral Small Vessel Disease. Medical Science Monitor, 23, 2217-2225. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Cao, L. and Sun, Z. (2022) Diagnostic Values of Serum Levels of Homocysteine, Heat Shock Protein 70 and High-Sensitivity C-Reactive Protein for Predicting Vascular Cognitive Impairment. Neuropsychiatric Disease and Treatment, 18, 525-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wang, X., Qiao, T., Liu, M. and Wang, X. (2021) Homocysteine Associated with Low Cognitive Function Independent of Asymptomatic Intracranial and Carotid Arteries Stenoses in Chinese Elderly Patients: An Outpatient-Based Cross-Sectional Study. Journal of Geriatric Psychiatry and Neurology, 35, 302-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ji, Y., Li, X., Teng, Z., Li, X., Jin, W. and Lv, P.y. (2020) Homocysteine Is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 105393. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Moretti, R., Caruso, P., Dal Ben, M., Conti, C., Gazzin, S. and Tiribelli, C. (2017) Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia. Frontiers in Aging Neuroscience, 9, Article No. 169. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hosoki, S., Hansra, G.K., Jayasena, T., Poljak, A., Mather, K.A., Catts, V.S., et al. (2023) Molecular Biomarkers for Vascular Cognitive Impairment and Dementia. Nature Reviews Neurology, 19, 737-753. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Review. Current Protocols in Pharmacology, 76, 9.23.1-9.23.17. [Google Scholar] [CrossRef] [PubMed]
|