[1]
|
Schoeni, R.F., Freedman, V.A. and Langa, K.M. (2018) Introduction to a Supplement on Population Level Trends in Dementia: Causes, Disparities, and Projections. The Journals of Gerontology: Series B, 73, S1-S9. https://doi.org/10.1093/geronb/gby007
|
[2]
|
Bir, S.C., Khan, M.W., Javalkar, V., Toledo, E.G. and Kelley, R.E. (2021) Emerging Concepts in Vascular Dementia: A Review. Journal of Stroke and Cerebrovascular Diseases, 30, Article ID: 105864. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105864
|
[3]
|
Corriveau, R.A., Bosetti, F., Emr, M., Gladman, J.T., Koenig, J.I., Moy, C.S., et al. (2016) The Science of Vascular Contributions to Cognitive Impairment and Dementia (VCID): A Framework for Advancing Research Priorities in the Cerebrovascular Biology of Cognitive Decline. Cellular and Molecular Neurobiology, 36, 281-288. https://doi.org/10.1007/s10571-016-0334-7
|
[4]
|
Rundek, T., Tolea, M., Ariko, T., Fagerli, E.A. and Camargo, C.J. (2022) Vascular Cognitive Impairment (VCI). Neurotherapeutics, 19, 68-88. https://doi.org/10.1007/s13311-021-01170-y
|
[5]
|
Wilcock, D., Jicha, G., Blacker, D., Albert, M.S., D’Orazio, L.M., Elahi, F.M., et al. (2021) MarkVCID Cerebral Small Vessel Consortium: I. Enrollment, Clinical, Fluid Protocols. Alzheimer’s & Dementia, 17, 704-715. https://doi.org/10.1002/alz.12215
|
[6]
|
Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2018) An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465. https://doi.org/10.1002/jcp.27486
|
[7]
|
Yuan, M. and Bi, X. (2020) Therapeutic and Diagnostic Potential of MicroRNAs in Vascular Cognitive Impairment. Journal of Molecular Neuroscience, 70, 1619-1628. https://doi.org/10.1007/s12031-020-01597-6
|
[8]
|
Prabhakar, P., Chandra, S.R. and Christopher, R. (2017) Circulating MicroRNAs as Potential Biomarkers for the Identification of Vascular Dementia Due to Cerebral Small Vessel Disease. Age and Ageing, 46, 861-864. https://doi.org/10.1093/ageing/afx090
|
[9]
|
Ansari, A., Maffioletti, E., Milanesi, E., Marizzoni, M., Frisoni, G.B., Blin, O., et al. (2019) miR-146a and miR-181a Are Involved in the Progression of Mild Cognitive Impairment to Alzheimer’s Disease. Neurobiology of Aging, 82, 102-109. https://doi.org/10.1016/j.neurobiolaging.2019.06.005
|
[10]
|
Toyama, K., Spin, J.M., Tsao, P.S., Maruyama, K., Osawa, H., Mogi, M., et al. (2023) Serum microRNA‐501‐3p Is a Potential Diagnostic Tool for Detecting Mild Cognitive Impairment: Ehime Genome Study. Journal of Neurochemistry, 166, 960-971. https://doi.org/10.1111/jnc.15911
|
[11]
|
Zhao, W., Sun, W., Li, S., Jiao, Y., Wang, Z., Wu, T., et al. (2021) Exosomal MiRNA-223-3p as Potential Biomarkers in Patients with Cerebral Small Vessel Disease Cognitive Impairment. Annals of Translational Medicine, 9, 1781-1781. https://doi.org/10.21037/atm-21-6086
|
[12]
|
Niu, Y., Wan, C., Zhang, J., Zhang, S., Zhao, Z., Zhu, L., et al. (2021) Aerobic Exercise Improves VCI through circRIMS2/miR-186/BDNF-Mediated Neuronal Apoptosis. Molecular Medicine, 27, Article No. 4. https://doi.org/10.1186/s10020-020-00258-z
|
[13]
|
Yan, M., Zhang, S., Zhao, H., Xia, S., Jin, Z., Xu, Y., et al. (2020) MicroRNA-153 Impairs Presynaptic Plasticity by Blocking Vesicle Release Following Chronic Brain Hypoperfusion. Cell Communication and Signaling, 18, Article No. 57. https://doi.org/10.1186/s12964-020-00551-8
|
[14]
|
Zheng, W., Zhang, J., Zhou, B. and Chang, H. (2022) miR-322-5p Alleviates Cell Injury and Impairment of Cognitive Function in Vascular Dementia by Targeting TSPAN5. Yonsei Medical Journal, 63, 282-291. https://doi.org/10.3349/ymj.2022.63.3.282
|
[15]
|
Yu, K.Q., Xu, R., Wu, L.X., et al. (2023) Effects of MicroRNA-320 on Learning and Memory in Mice with Vascular Cognitive Impairment Caused via Cerebral Ischemia. Cellular and Molecular Biology, 69, 112-119. https://doi.org/10.14715/cmb/2023.69.13.18
|
[16]
|
Sha, S., Tan, J., Miao, Y. and Zhang, Q. (2021) The Role of Autophagy in Hypoxia-Induced Neuroinflammation. DNA and Cell Biology, 40, 733-739. https://doi.org/10.1089/dna.2020.6186
|
[17]
|
Poh, L., Sim, W.L., Jo, D., Dinh, Q.N., Drummond, G.R., Sobey, C.G., et al. (2022) The Role of Inflammasomes in Vascular Cognitive Impairment. Molecular Neurodegeneration, 17, Article No. 4. https://doi.org/10.1186/s13024-021-00506-8
|
[18]
|
Tian, Z., Ji, X. and Liu, J. (2022) Neuroinflammation in Vascular Cognitive Impairment and Dementia: Current Evidence, Advances, and Prospects. International Journal of Molecular Sciences, 23, Article No. 6224. https://doi.org/10.3390/ijms23116224
|
[19]
|
Rajeev, V., Chai, Y.L., Poh, L., Selvaraji, S., Fann, D.Y., Jo, D., et al. (2023) Chronic Cerebral Hypoperfusion: A Critical Feature in Unravelling the Etiology of Vascular Cognitive Impairment. Acta Neuropathologica Communications, 11, Article No. 93. https://doi.org/10.1186/s40478-023-01590-1
|
[20]
|
Jagtap, A., Gawande, S. and Sharma, S. (2015) Biomarkers in Vascular Dementia: A Recent Update. Biomarkers and Genomic Medicine, 7, 43-56. https://doi.org/10.1016/j.bgm.2014.11.001
|
[21]
|
Walker, K.A., Gottesman, R.F., Wu, A., Knopman, D.S., Gross, A.L., Mosley, T.H., et al. (2019) Systemic Inflammation during Midlife and Cognitive Change over 20 Years: The ARIC Study. Neurology, 92, e1256-e1267. https://doi.org/10.1212/wnl.0000000000007094
|
[22]
|
Long, S., Chen, Y., Meng, Y., Yang, Z., Wei, M., Li, T., et al. (2023) Peripheral High Levels of CRP Predict Progression from Normal Cognition to Dementia: A Systematic Review and Meta-Analysis. Journal of Clinical Neuroscience, 107, 54-63. https://doi.org/10.1016/j.jocn.2022.11.016
|
[23]
|
Liu, P., Liu, X., Chen, J., Zhang, Y., Chen, J., Yu, L., et al. (2024) Butylphthalide Combined with Donepezil for the Treatment of Vascular Dementia: A Meta-Analysis. Journal of International Medical Research, 52. https://doi.org/10.1177/03000605231223081
|
[24]
|
Custodero, C., Ciavarella, A., Panza, F., Gnocchi, D., Lenato, G.M., Lee, J., et al. (2022) Role of Inflammatory Markers in the Diagnosis of Vascular Contributions to Cognitive Impairment and Dementia: A Systematic Review and Meta-analysis. GeroScience, 44, 1373-1392. https://doi.org/10.1007/s11357-022-00556-w
|
[25]
|
Anita, N.Z., Zebarth, J., Chan, B., Wu, C., Syed, T., Shahrul, D., et al. (2022) Inflammatory Markers in Type 2 Diabetes with vs. without Cognitive Impairment; a Systematic Review and Meta-Analysis. Brain, Behavior, and Immunity, 100, 55-69. https://doi.org/10.1016/j.bbi.2021.11.005
|
[26]
|
Hanson, J.E., Yuan, H., Perszyk, R.E., Banke, T.G., Xing, H., Tsai, M., et al. (2023) Therapeutic Potential of N-Methyl-D-Aspartate Receptor Modulators in Psychiatry. Neuropsychopharmacology, 49, 51-66. https://doi.org/10.1038/s41386-023-01614-3
|
[27]
|
Busse, M., Kunschmann, R., Dobrowolny, H., Hoffmann, J., Bogerts, B., Steiner, J., et al. (2017) Dysfunction of the Blood-Cerebrospinal Fluid-Barrier and N-Methyl-D-Aspartate Glutamate Receptor Antibodies in Dementias. European Archives of Psychiatry and Clinical Neuroscience, 268, 483-492. https://doi.org/10.1007/s00406-017-0768-z
|
[28]
|
Dobrynina, L.A., Alexandrova, E.V., Zabitova, M.R., Kalashnikova, L.A., Krotenkova, M.V. and Akhmetzyanov, B.M. (2021) Anti-NR2 Glutamate Receptor Antibodies as an Early Biomarker of Cerebral Small Vessel Disease. Clinical Biochemistry, 96, 26-32. https://doi.org/10.1016/j.clinbiochem.2021.07.003
|
[29]
|
Langeh, U. (2021) Targeting S100B Protein as a Surrogate Biomarker and Its Role in Various Neurological Disorders. Current Neuropharmacology, 19, 265-277. https://doi.org/10.2174/18756190mta44njes3
|
[30]
|
Wang, F., Zou, Z., Yuan, D., Gong, Y., Zhang, L., Chen, X., et al. (2017) Correlation between Serum S100β Protein Levels and Cognitive Dysfunction in Patients with Cerebral Small Vessel Disease: A Case-Control Study. Bioscience Reports, 37, BSR20160446. https://doi.org/10.1042/bsr20160446
|
[31]
|
Petersen, M.A., Ryu, J.K. and Akassoglou, K. (2018) Fibrinogen in Neurological Diseases: Mechanisms, Imaging and Therapeutics. Nature Reviews Neuroscience, 19, 283-301. https://doi.org/10.1038/nrn.2018.13
|
[32]
|
Pyun, J., Ryoo, N., Park, Y.H. and Kim, S. (2020) Fibrinogen Levels and Cognitive Profile Differences in Patients with Mild Cognitive Impairment. Dementia and Geriatric Cognitive Disorders, 49, 489-496. https://doi.org/10.1159/000510420
|
[33]
|
Gillett, S.R., McClure, L.A., Callas, P.W., Thacker, E.L., Unverzagt, F.W., Wadley, V.G., et al. (2018) Hemostasis Biomarkers and Incident Cognitive Impairment: The REGARDS Study. Journal of Thrombosis and Haemostasis, 16, 1259-1267. https://doi.org/10.1111/jth.14138
|
[34]
|
Loures, C.d.M.G., Duarte, R.C.F., Silva, M.V.F., Cicarini, W.B., de Souza, L.C., Caramelli, P., et al. (2019) Hemostatic Abnormalities in Dementia: A Systematic Review and Meta-Analysis. Seminars in Thrombosis and Hemostasis, 45, 514-522. https://doi.org/10.1055/s-0039-1688444
|
[35]
|
Huang, F., Wang, K. and Shen, J. (2019) Lipoprotein‐Associated Phospholipase A2: The Story Continues. Medicinal Research Reviews, 40, 79-134. https://doi.org/10.1002/med.21597
|
[36]
|
Zhang, Q.L., Lu, P. and Zhang, J.W. (2018) Association of Serum Lipoprotein-Associated Phospholipase A2 with Vascular Dementia after Ischemic Stroke. Chinese Medical Journal, 98, 1171-1175.
|
[37]
|
Zuliani, G., Marsillach, J., Trentini, A., Rosta, V. and Cervellati, C. (2023) Lipoprotein-Associated Phospholipase A2 Activity as Potential Biomarker of Vascular Dementia. Antioxidants, 12, Article No. 597. https://doi.org/10.3390/antiox12030597
|
[38]
|
Zhu, S., Wei, X., Yang, X., Huang, Z., Chang, Z., Xie, F., et al. (2019) Plasma Lipoprotein-Associated Phospholipase A2 and Superoxide Dismutase Are Independent Predicators of Cognitive Impairment in Cerebral Small Vessel Disease Patients: Diagnosis and Assessment. Aging and Disease, 10, 834-846. https://doi.org/10.14336/ad.2019.0304
|
[39]
|
Smith, A.D. and Refsum, H. (2021) Homocysteine—From Disease Biomarker to Disease Prevention. Journal of Internal Medicine, 290, 826-854. https://doi.org/10.1111/joim.13279
|
[40]
|
Smith, A.D. and Refsum, H. (2016) Homocysteine, B Vitamins, and Cognitive Impairment. Annual Review of Nutrition, 36, 211-239. https://doi.org/10.1146/annurev-nutr-071715-050947
|
[41]
|
Wang, T., Sun, Z., Shao, L., Xu, X., Liu, Y., Qin, M., et al. (2017) Diagnostic Values of Serum Levels of Homocysteine and Uric Acid for Predicting Vascular Mild Cognitive Impairment in Patients with Cerebral Small Vessel Disease. Medical Science Monitor, 23, 2217-2225. https://doi.org/10.12659/msm.901652
|
[42]
|
Cao, L. and Sun, Z. (2022) Diagnostic Values of Serum Levels of Homocysteine, Heat Shock Protein 70 and High-Sensitivity C-Reactive Protein for Predicting Vascular Cognitive Impairment. Neuropsychiatric Disease and Treatment, 18, 525-533. https://doi.org/10.2147/ndt.s354022
|
[43]
|
Wang, X., Qiao, T., Liu, M. and Wang, X. (2021) Homocysteine Associated with Low Cognitive Function Independent of Asymptomatic Intracranial and Carotid Arteries Stenoses in Chinese Elderly Patients: An Outpatient-Based Cross-Sectional Study. Journal of Geriatric Psychiatry and Neurology, 35, 302-308. https://doi.org/10.1177/0891988720988914
|
[44]
|
Ji, Y., Li, X., Teng, Z., Li, X., Jin, W. and Lv, P.y. (2020) Homocysteine Is Associated with the Development of Cerebral Small Vessel Disease: Retrospective Analyses from Neuroimaging and Cognitive Outcomes. Journal of Stroke and Cerebrovascular Diseases, 29, Article ID: 105393. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105393
|
[45]
|
Moretti, R., Caruso, P., Dal Ben, M., Conti, C., Gazzin, S. and Tiribelli, C. (2017) Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia. Frontiers in Aging Neuroscience, 9, Article No. 169. https://doi.org/10.3389/fnagi.2017.00169
|
[46]
|
Hosoki, S., Hansra, G.K., Jayasena, T., Poljak, A., Mather, K.A., Catts, V.S., et al. (2023) Molecular Biomarkers for Vascular Cognitive Impairment and Dementia. Nature Reviews Neurology, 19, 737-753. https://doi.org/10.1038/s41582-023-00884-1
|
[47]
|
Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Review. Current Protocols in Pharmacology, 76, 9.23.1-9.23.17. https://doi.org/10.1002/cpph.19
|