血清CCN5与房颤患者左房低电压面积的相关性研究
The Study of Correlation between Serum CCN5 and Left Atrial Low-Voltage Area in Patients with Atrial Fibrillation
DOI: 10.12677/acm.2024.1492451, PDF, HTML, XML,    科研立项经费支持
作者: 李红叶:青岛大学医学部,山东 青岛;王春筱, 任蒙蒙, 龚 磊, 仲 琳*:烟台毓璜顶医院心血管内科,山东 烟台
关键词: 心房颤动心脏射频消融术CCN5左房低电压区生物标志物Atrial Fibrillation Heart Radiofrequency Ablation CCN5 Left Atrial Low Voltage Area Biomarkers
摘要: 目的:探讨房颤患者血清CCN5水平是否可以预测左房低电压面积(LVZ)的大小。方法:选取2023年6月到2024年1月于烟台毓璜顶医院就诊的窦性心律患者(对照组) 79例以及首次接受心脏射频消融术的房颤患者(房颤组)114例。收集一般资料、生化、心电图、心脏超声等临床资料。按术中行基质电压标测所得的LVZ是否大于6%将患者分为A组(LVZ < 6%)和B组(LVZ ≥ 6%)。采用酶联免疫标记法检测患者血清CCN5的水平。采用t检验比较对照组/房颤组、A/B组CCN5表达水平。采用Pearson或Spearman相关性分析探索CCN5与各临床资料的相关性。通过Logistic回归分析确定影响低压区的危险因素,绘制受试者工作特征(ROC)曲线确定CCN5预测左房低电压的临界值。结果:房颤患者血清CCN5表达水平显著低于对照组(32.43 ± 6.15比25.46 ± 4.97,P < 0.001)。房颤患者CCN5与BNP水平、左房直径和左房低电压面积占比显著负相关(P < 0.05)。与A组相比,B组房颤患者CCN5表达水平更低(30.10 ± 6.75比24.75 ± 3.49,P < 0.001)。根据Logistic回归分析显示,血清CCN5水平降低确认为LVZ的独立危险因素。ROC曲线表明房颤患者血CCN5预测LVZ ≥ 6%的最佳血浓度为27.22 ng/ml,灵敏度为0.707,特异度为0.773,曲线下面积为0.785 [P < 0.001, CI: (0.696, 0.873)]。结论:血清CCN5可以独立预测房颤患者左房低电压面积占比。
Abstract: Objective: To explore whether the serum CCN5 levels associated with atrial fibrosis can predict LVZ in patients with atrial fibrillation. Methods: In this study, 79 patients with sinus rhythm (control group) and 114 patients with atrial fibrillation (atrial fibrillation group) who received radiofrequency cardiac ablation for the first time in Yantai Yuhuangding Hospital between June 2023 and January 2024 were enrolled. General data, biochemistry, electrocardiogram, cardiac ultrasound and other clinical data were collected. Left atrial stroma voltage mapping was performed in patients with atrial fibrillation and LVZ area ratio was calculated. Patients were divided into group A (LVZ < 6%) and group B (LVZ ≥ 6%) according to whether LVZ was greater than 6%. The expression level of CCN5 in peripheral blood was measured by enzyme-linked immunosorbent assay. T test was used to compare the CCN5 expression level between the control group and the atrial fibrillation group. Pearson or Spearman correlation analysis was used to explore the correlation between CCN5 and clinical data. Binary Logistic regression analysis was used to determine the risk factors affecting the LVZ, and receiver operating characteristic (ROC) analysis was down to determine the cut-off value of CCN5 to predict LVZ. Results: The level of CCN5 in patients with atrial fibrillation was lower than in control group (32.43 ± 6.15 vs. 25.46 ± 4.97, P < 0.001). For atrial fibrillation patients with LVZ < 6%, blood CCN5 expression levels were lower in patients with LVZ ≥ 6% (30.10 ± 6.75 vs. 24.75 ± 3.49, P < 0.001). In patients with atrial fibrillation, CCN5 was negatively correlated with BNP level, left atrial diameter and left atrial low-voltage area ratio (P < 0.05). Logistic regression analysis suggested that blood CCN5 level was an independent risk factor for LVZ. ROC curve showed that in patients with atrial fibrillation, the optimal blood concentration of CCN5 to predict LVZ ≥ 6% was 27.22 ng/ml, sensitivity was 0.707, specificity was 0.773, and area under the curve was 0.785 [P < 0.001, CI: (0.696, 0.873)]. Conclusion: Serum CCN5 can independently predict the proportion of left atrial low-voltage area in patients with atrial fibrillation.
文章引用:李红叶, 王春筱, 任蒙蒙, 龚磊, 仲琳. 血清CCN5与房颤患者左房低电压面积的相关性研究[J]. 临床医学进展, 2024, 14(9): 219-228. https://doi.org/10.12677/acm.2024.1492451

1. 引言

心房颤动(atrial fibrillation, AF)是临床上常见的快速型心律失常[1],其发展通常伴随着心房纤维化和心房结构的重塑,前者被认为是房颤持续存在的基础[2]。心脏射频消融术(Radiofrequency catheter ablation, RFCA)是目前症状性房颤的一线治疗手段[3],术中通过基质标测得到的左房低电压区(low-voltage zone, LVZ)被认为是左房纤维化的替代物[4]-[6]。目前非侵入性地预测左房LVZ程度主要聚焦于影像学检查和生物标志物检测。最被认可的心脏延迟增强磁共振成像(MRI)在一定程度上可以估测LVZ [7],但操作复杂,经济成本高。所以识别新的、有效的生物标志物成为重要目标。CCN5是CCN家族六个蛋白之一,因缺乏富含半胱氨酸的羧基末端重复序列而特殊[8]。已报道CCN5有抗纤维化作用,其表达水平与心脏纤维化程度负相关。CCN5可以通过TGF-beta-SMAD信号通路促进细胞外基质沉积和成纤维细胞转化,抑制小鼠的心脏肥大和纤维化[9],能够改善末期心力衰竭小鼠的心脏纤维化[10]。然而其与心房低电压区的相关性尚无研究。本研究聚焦于房颤这一以心房纤维化为病理基础的疾病,分别测量了窦律患者和房颤患者血清中CCN5的表达水平,并着重分析了CCN5与房颤患者LVZ程度的关系。这将为LVZ相关生物标志物的探索提供重要证据。

2. 对象与方法

2.1. 研究对象

本研究为回顾性病例对照研究,连续纳入了2023年6月至2024年1月就诊于烟台毓璜顶医院的年龄 ≥ 18岁的患者193例。其中确诊为房颤并首次接受心脏射频消融术(RFCA)的患者(房颤组)114例,同一时段住院的窦性心律且无房颤病史的患者(对照组)79例。房颤组入选标准:(1) 入院时或住院期间有心电图或24小时动态心电图提示房颤发作;(2) 因房颤于本次住院期间首次行心脏射频消融术。对照组入选标准:(1) 心电图或动态心电图提示窦性心律;(2) 既往无房颤、房扑等各种心律失常病史。排除标准:(1) 合并心脏瓣膜病、先天性心脏病或甲亢的患者;(2) 合并心衰、3个月内心肌梗死或卒中的患者;(3) 合并血液病、肿瘤、脓毒性休克、风湿病的患者;(4) 存在严重肝肾功能不全(肌酐清除率小于60 ml/min/1.73m2或丙氨酸转氨酶大于正常值上限3倍)的患者。

本研究已获得烟台毓璜顶医院伦理委员会(烟毓医伦理审[2024-255]号)的批准。所有患者均已签署知情同意书。

2.2. 方法

2.2.1. 诊断标准

根据《2020 ESC心房颤动诊断和管理指南》,房颤被诊断为标准的12导联心电图或单导联心电图,记录到≥30秒无可识别的重复P波以及不规则RR间期,QRS波形态通常正常。

2.2.2. 临床资料收集

收集患者一般资料、病史、实验室指标、心脏超声指标。一般资料包括年龄、性别、体质指数(body mass index, BMI)。病史包括现病史、既往史(高血压史、糖尿病史)、吸烟史、饮酒史、血管紧张素转化酶抑制剂(angiotensin-converting enzyme inhibitors, ACEI)和血管紧张素II受体拮抗剂(angiotensin Ⅱ receptor blocker, ARB)服用史。实验室指标包括门冬氨酸氨基转移酶(aspartate transaminase, AST)、血肌酐(serum creatinine, Scr)、空腹血糖(glucose, GLU)、总胆固醇(total cholesterol, TC)、低密度脂蛋白(low-density lipoprotein, LDL)、B型脑钠肽(brain natriuretic peptide, BNP)。采用超声心动图测量患者左心室后壁厚度(left ventricular posterior wall thickness, LVPW)、室间隔厚度(interventricular septal thickness, IVS)、左室射血分数(left ventricular ejection fraction, LVEF)、左心房直径(left atrial diameter, LAD)和E/E’比值。

2.2.3. 血CCN5测定

在射频消融术前,选择肘正中静脉采集患者清晨空腹静脉血3~5 ml于促凝管中,离心机离心20分钟、转速为3000转/分,取上清液保存于−80℃,直到批量分析。采用酶联免疫标记法(ELISA法)测定患者血清CCN5水平。

2.2.4. 电压标测和心脏射频消融术

患者于利多卡因局麻下行股静脉穿刺放置冠状窦电极,再经股静脉放置腔内超声明确有无左心耳及左心房血栓,置入Swarts鞘,穿刺房间隔,送入PENTARY电极和STSF冷盐水灌注大头导管,行左房基质电压标测。在CARTO指导下以43℃、40~45 W放电进行肺静脉或上腔静脉隔离。术后计算左房低电压面积占比(LVZ)。

2.2.5. 统计学分析

采用SPSS25.0进行数据分析。正态分布的连续变量表示为平均值 ± 标准差( x ¯ ±SD ),非正态分布的变量表示为中位数(Q1, Q3)。对于正态分布数据,采用独立样本t检验,对于非均匀分布数据,采用Mann-Whitney U检验,分析组间平均值的比较。使用卡方检验比较分类变量。相关性分析正态分布采用Pearson相关分析,非正态分布采用Spearman相关性分析。采用二元Logistic回归分析确定影响低压区的危险因素。单变量分析中P < 0.1的变量被纳入多因素分析进一步确定对结局的影响。Yanfang Wu等人的研究[11]表明LVZ ≥ 6%提示左房更严重的纤维化程度。因此本研究按LVZ是否大于6%将患者分为A组(LVZ < 6%)和B组(LVZ ≥ 6%),以便于分析CCN5与LVZ的关系。通过绘制受试者工作特征(ROC)曲线阐释变量对结局的预测价值,判断CCN5对房颤患者LVZ ≥ 6%的诊断效率。所有比值比(OR)均以95%置信区间(CI)给出,P值<0.05被认为具有统计学显著性。

3. 结果

3.1. 对照组和房颤组患者的临床资料特征

表1可见,本研究共纳入193例样本,其中对照组79例,房颤组114例。与对照组相比,房颤组患者的体质指数更低,BNP水平更高,左房直径更大,差异有统计学意义(P < 0.05)。而两组患者在年龄、性别、BMI、吸烟史、饮酒史、高血压史、糖尿病史、空腹血糖、血肌酐、总胆固醇、低密度脂蛋白、谷草转氨酶和入院时ACEI/ARB的应用、超声心动图指标(LVPW, IVS, EDV, SV, EF, E/E’)方面,差异无统计学意义(P > 0.05)。

Table 1. Comparison of baseline data between control group and atrial fibrillation group

1. 对照组和房颤组基线资料比较

组别

对照组(n = 79)

房颤组(n = 114)

t/Z/χ2

P值

年龄(岁)

59.49 ± 10.74

62.37 ± 9.60

−1.948

0.053

男性(%)

39 (49.4)

69 (60.5)

2.358b

0.125

BMI (Kg/m2)

26.90 ± 3.66

25.33 ± 3.96

−2.744

0.007**

高血压(%)

34 (43)

63 (55.3)

2.790b

0.095

糖尿病(%)

7 (8.9)

19 (16.7)

2.439b

0.118

吸烟(%)

10 (12.7)

23 (20.2)

1.860b

0.173

饮酒(%)

7 (8.9)

21 (18.4)

3.439b

0.064

GLU (mmol/L)

5.60 (5.17, 5.93)

5.66 (5.18, 6.49)

−0.869a

0.385

Scr (ummol/L)

65.27 ± 14.35

65.53 ± 14.99

−0.120

0.905

TC (mmol/L)

4.42 ± 1.33

4.54 ± 1.11

−0.699

0.486

LDL (mmol/L)

2.69 ± 0.91

2.65 ± 0.94

0.245

0.807

AST (U/L)

21.00 (17.00, 26.00)

2.00 (18.00, 25.25)

−1.083a

0.279

BNP (pg/ml)

14.29 (10.00, 34.75)

100.29 (41.25, 173.80)

−8.369a

<0.001***

ACEI/ARB (%)

17 (21.5)

28 (24.6)

0.242b

0.623

LVPW (mm)

9.08 ± 1.02

9.19 ± 1.07

−0.698

0.486

IVS (mm)

10.78 ± 1.44

10.79 ± 2.40

−0.029

0.977

续表

EDV (ml)

120.05 ± 30.26

114.70 ± 31.76

1.172

0.243

SV (ml)

72.67 ± 21.02

73.01 ± 20.60

−0.113

0.910

LAD (mm)

33.93 ± 4.21

40.62 ± 5.98

−8.577

<0.001***

EF (%)

64.89 ± 3.56

63.77 ± 4.51

1.834

0.068

E/E’

8.32 ± 3.06

65.27 ± 14.35

−0.463

0.644

注:P < 0.05表示差异有统计学意义,**表示P < 0.01,***表示P < 0.001,BMI = 体质指数,GLU = 空腹血糖,Scr = 血肌酐,TC = 总胆固醇,LDL = 低密度脂蛋白,AST = 门冬氨酸氨基转移酶,BNP = B型脑钠肽,ACEI = 血管紧张素转换酶阻滞剂,ARB = 血管紧张素II受体拮抗剂,LVPW = 左室后壁厚度,IVS = 室间隔厚度,EDV = 舒张末期容积,SV = 每搏输出量,LAD = 左房直径,EF = 射血分数,a表示Z值,b表示χ2值。

3.2. 对照组和房颤组患者血CCN5表达水平

图1可见,与对照组相比,房颤组的血CCN5表达水平更低,34.82 ± 5.76比29.07 ± 6.59 ng/ml,差异具有统计学意义(t = 6.267, P < 0.001)。

Figure 1. Serum CCN5 levels in control group and atrial fibrillation group

1. 对照组和房颤组血清CCN5水平

3.3. 房颤患者血CCN5与其它临床指标的相关性

表2可见,房颤患者血CCN5与BNP水平(r = −0.306, P = 0.001)、左房直径(r = −0.487, P < 0.001)和左房低电压面积占比(r = −0.374, P < 0.001)显著负相关,而与年龄、性别、BMI、空腹血糖、总胆固醇、低密度脂蛋白、谷草转氨酶、血肌酐无显著相关。

Table 2. Correlation analysis between serum CCN5 level and various clinical indicators

2. 血清CCN5水平与各临床指标的相关性分析

临床指标

相关系数r

P值

年龄

−0.087

0.357

性别

−0.054

0.570

BMI

−0.175

0.063

空腹血糖

−0.075

0.426

总胆固醇

−0.001

0.995

低密度脂蛋白

−0.097

0.907

续表

谷草转氨酶

−0.029

0.758

血肌酐

−0.075

0.323

B型脑钠肽

−0.306

0.001**

LAD

−0.487

<0.001***

LVZ

−0.374

<0.001***

注:P < 0.05表示差异有统计学意义,**表示P < 0.01,***表示P < 0.001,BMI = 体质指数;LAD = 左房直径,LVZ = 左房低电压面积占比。

3.4. 不同LVZ房颤患者的临床特征比较

为了更好地分析CCN5与LVZ的关系,将LVZ分为A组(LVZ < 6%)和B组(LVZ ≥ 6%)。由表3可见,根据左房低电压面积占比标准,将纳入的114例房颤患者分为A组(LVZ < 6%)和B组(LVZ ≥ 6%)。与低电压区<6%的房颤患者相比,低电压区≥6%患者的BMI较高26.53 ± 3.33比28.19 ± 3.77,(P = 0.043),BNP水平更高93.03 (31.15, 158.57)比156.22 (88.34, 208.79),(P = 0.015)。年龄、性别、高血压史、糖尿病史、吸烟史、饮酒史、空腹血糖、血肌酐、总胆固醇、低密度脂蛋白、谷草转氨酶、EF在不同LVZ组之间差异无统计学意义(P > 0.05)。

Table 3. Comparison of data between groups with different LVZ levels

3. 不同LVZ水平患者组间资料比较

组别

A组(n = 92)

B组(n = 22)

t/Z/χ2

P值

年龄(岁)

61.62 ± 9.95

65.50 ± 7.31

−1.718

0.088

男性(%)

57 (62.0)

12 (54.5)

0.408b

0.523

BMI (Kg/m2)

26.53 ± 3.33

28.19 ± 3.77

−2.051

0.043*

高血压(%)

47 (51.1)

16 (72.7)

3.363b

0.067

糖尿病(%)

14 (15.2)

5 (22.7)

0.282b

0.596

吸烟(%)

21 (22.8)

2 (9.1)

1.314b

0.252

饮酒(%)

16 (17.4)

5 (22.7)

0.075b

0.784

GLU (mmol/L)

5.68 (5.19, 6.44)

5.55 (4.95, 6.75)

−0.266a

0.790

Scr (ummol/L)

64.00 (57.00, 73.75)

60.50 (56.00, 73.75)

−0.241a

0.810

TC (mmol/L)

4.55 ± 1.10

4.48 ± 1.18

0.283

0.778

LDL (mmol/L)

2.55 (1.98, 3.12)

2.77 (2.11, 3.53)

0.455a

0.455

AST (U/L)

22.00 (18.00, 26.00)

23.05 (18.00, 25.00)

−0.457a

0.648

BNP (pg/ml)

93.03 (31.15, 158.57)

156.22 (88.34, 208.79)

−2.444a

0.015*

EF (%)

63.87 ± 4.58

63.36 ± 4.32

0.470

0.639

注:P < 0.05表示差异有统计学意义,*表示P < 0.05,BMI = 体质指数,GLU = 空腹血糖,Scr = 血肌酐,TC = 总胆固醇,LDL = 低密度脂蛋白,AST = 门冬氨酸氨基转移酶,BNP = B型脑钠肽,EF = 射血分数,a表示Z值,b表示χ2值。

3.5. 不同LVZ组血CCN5表达水平及LVZ危险因素的分析

图2可见,与低电压区<6%的房颤患者(A组)相比,低电压区≥6%的患者(B组)血CCN5水平更低,30.10 ± 6.75比24.75 ± 3.49,(t = 3.602, P < 0.001)。由表4可见,根据表S1的单因素分析结果,以CCN5、BNP、年龄、BMI、高血压史为自变量,LVZ程度(LVZ < 6% = 0, LVZ ≥ 6% = 1)为因变量进行二元Logistic回归分析。结果显示众多危险因素中,只有CCN5对LVZ的影响有意义,CCN5 (OR = 0.866, CI: 0.782~0.958, P = 0.005)水平越低,LVZ ≥ 6%的风险越高。

Figure 2. Serum CCN5 levels in different LVZ groups

2. 不同LVZ组血清CCN5水平

Table 4. Logistic regression analysis of risk factors of left atrial low voltage area

4. 左房低电压面积危险因素的Logistic回归分析

变量

β

SE

Wlad χ2

P值

OR值

95% CI

CCN5

−0.144

0.052

7.789

0.005**

0.866

0.782~0.958

BMI

0.143

0.077

3.459

0.063

1.154

0.992~1.341

高血压史

0.524

0.581

0.815

0.367

1.690

0.541~5.275

BNP

0.003

0.003

1.226

0.268

1.003

0.998~1.009

年龄

0.039

0.031

1.593

0.207

1.039

0.979~1.104

注:P < 0.05表示差异有统计学意义,**表示P < 0.01,BMI = 体质指数,BNP = B型脑钠肽。

3.6. 房颤患者血CCN5水平对LVZ ≥ 6%的预测

图3所示,通过绘制ROC曲线,我们确定CCN5用于预测LVZ ≥ 6%的最佳血浓度为27.22 ng/ml,灵敏度为0.707,特异度为0.773,曲线下面积为0.785 [P < 0.001, CI: (0.696, 0.873)]。

Figure 3. ROC curve of CCN5 in predicting LVZ ≥ 6% in patients with atrial fibrillation

3. CCN5预测房颤患者LVZ ≥ 6%的ROC曲线

4. 讨论

在本研究中,房颤患者的血CCN5水平显著低于无房颤的对照组。房颤患者的血CCN5水平可以独立预测左房低电压面积占比。ROC曲线分析CCN5预测LVZ ≥ 6%的最佳临界值为27.22 ng/ml (灵敏度为0.707,特异度为0.773),曲线下面积为0.659 (P < 0.001)。

心房颤动相关的结构重构主要是心房纤维化[12]。纤维化使得心房组织变得僵硬、不规则,从而易于形成心房内的电生理障碍,促进房颤的产生和维持[13]。在过去的几十年里,研究人员一直积极寻找生物标志物来预测房颤的诊断及治疗,主要聚焦点为纤维化相关因子[14]。目前,研究证实与房颤相关的因子包括但不限于转化生长因子β (TGF-β) [15]、胶原蛋白[16]-[19]、抑制致瘤性2 (ST2) [20]-[22]、Galectin-3 (一种β-半乳糖苷结合凝集素) [23]、肌钙蛋白[24]、利钠肽[25]、骨形成蛋白(BMPs) [26]等。上述因子除了预测房颤患病率、术后复发率外,部分还被证实与并发症风险有关。然而,这些因子的非特异性使其在检测潜在房颤及房颤预后等方面的价值有限。其中TGF-β在对房颤发生率影响的结果中还是存在矛盾的[27]-[29]。CCN5是一种基质细胞蛋白,通过分析人类胚胎发现其主要分布在整个心肌[8],其分布较上述因子更局限。最近的研究表明,在房颤患者中,CCN5表达下降与心房组织的纤维化过程密切相关。CCN5水平降低的房颤小鼠心房组织中纤维化程度更重,心房肌细胞弹性降低,导致电传导不畅和心房肌纤维结构紊乱[10] [30]。这些结论均是在动物实验或细胞实验中得到的,本研究进一步在房颤患者群组水平验证了上述变化,其中覆盖了不同病情严重程度和患者特征的人群,从而使得结果更具有代表性。CCN5在房颤患者和窦律患者中表达水平的差异可能提示其在房颤诊断和分型中的潜在作用,能够为临床诊断提供依据。

左房电压降低或出现低电压面积现在已被用作房颤患者左心房纤维化程度的替代物[5] [6],它也通常是房颤射频消融的靶点。Yangfang Wu [11]等人的研究,在多变量考克斯回归分析中,LA LVZ ≥ 6%的比例[风险比(HR) 2.315,95%置信区间(CI) 1.048~5.114;P = 0.038]和较长的AF持续时间(HR 1.008, 95% CI 1.002~1.014; P = 0.006)是AA复发的独立预测因素。本研究为了更深入地分析CCN5对LVZ的预测价值,以6%为临界值把患者分为2组。高血压、心肌梗死、心力衰竭以及年龄均可以通过心肌纤维化导致心房低电压。本研究控制了心肌梗死、心力衰竭等可能导致心肌纤维化的心脏疾病。但为了更贴近临床现实保留了高血压、年龄、BMI等因素,尽管如此结果显示在房颤患者中CCN5仍是LVZ的独立危险因素,准确来说是保护因素。从机制方面考虑,CCN5的下调可能通过心房组织纤维化、电生理紊乱等过程间接影响LVZ的形成。通过揭示CCN5与LVZ之间的关联,有助于深入探索房颤治疗靶点,为未来的治疗策略提供新的方向。

既往获得LVZ的传统方法为侵入性操作。尽管心脏延迟增强磁共振检查[7] [31]对患者身体损害较小,但因为经济成本、技术要求高以及检查禁忌(比如存在某些植入物),临床应用受到限制。探索经济、便捷的生物标志物一直是学者的研究热点。本研究结果提示在房颤患者中血CCN5与LVZ负相关,同时可以独立预测其严重程度。CCN5有望成为预测房颤患者左房LVZ程度的生物标志物,这也将有助于评估患者的病情严重程度和预后。

5. 不足

本研究是一项样本量较小的观察性研究,在探索CCN5对左房LVZ程度的预测价值时论证能力一般。同时,本研究暂无CCN5与房颤导管射频消融术后复发的相关性分析,所以长时间的术后随访是接下来要研究的方向,也是我们正在做的事。

6. 结论

本研究证明,房颤患者血CCN5水平低于窦律患者。房颤患者血CCN5水平是LVZ ≥ 6%的独立危险因素,与LVZ较小的患者相比,LVZ ≥ 6%的AF患者CCN5水平较低。这项研究的发现对于房颤患者的诊断、管理、治疗和预防具有潜在的临床应用前景。

作者贡献

李红叶收集样本、完成试验操作、整理分析数据、撰写文章;李红叶、王春筱、龚磊对文章进行构思与设计;王春筱负责论文修订,研究指导;任蒙蒙确定统计学方法,处理数据;仲琳负责文章质量控制与校审,并对文章整体负责、监督管理。

基金项目

心内科常见疾病规范化诊疗共识研究,项目批准号:SDWJYJ2023LM01013。

利益冲突声明

本文无利益冲突。

NOTES

*通讯作者。

参考文献

[1] Brundel, B.J.J.M., Ai, X., Hills, M.T., Kuipers, M.F., Lip, G.Y.H. and de Groot, N.M.S. (2022) Atrial Fibrillation. Nature Reviews Disease Primers, 8, Article No. 21.
https://doi.org/10.1038/s41572-022-00347-9
[2] Xintarakou, A., Tzeis, S., Psarras, S., Asvestas, D. and Vardas, P. (2020) Atrial Fibrosis as a Dominant Factor for the Development of Atrial Fibrillation: Facts and Gaps. EP Europace, 22, 342-351.
https://doi.org/10.1093/europace/euaa009
[3] Al-Kaisey, A.M., Parameswaran, R., Bryant, C., Anderson, R.D., Hawson, J., Chieng, D., et al. (2023) Atrial Fibrillation Catheter Ablation vs Medical Therapy and Psychological Distress. JAMA, 330, 925-933.
https://doi.org/10.1001/jama.2023.14685
[4] Liu, Z., Xia, Y., Guo, C., Li, X., Fang, P., Yin, X., et al. (2021) Low-Voltage Zones as the Atrial Fibrillation Substrates: Relationship with Initiation, Perpetuation, and Termination. Frontiers in Cardiovascular Medicine, 8, Article 705510.
https://doi.org/10.3389/fcvm.2021.705510
[5] Al-Kaisey, A.M., Parameswaran, R., Joseph, S.A., Kistler, P.M., Morton, J.B. and Kalman, J.M. (2021) Extensive Right Atrial Free Wall Low-Voltage Zone as the Substrate for Atrial Fibrillation: Successful Ablation by Scar Homogenization. EP Europace, 23, 59-64.
https://pubmed.ncbi.nlm.nih.gov/33141888/
https://doi.org/10.1093/europace/euaa233
[6] Junarta, J., Siddiqui, M.U., Riley, J.M., Dikdan, S.J., Patel, A. and Frisch, D.R. (2022) Low-Voltage Area Substrate Modification for Atrial Fibrillation Ablation: A Systematic Review and Meta-Analysis of Clinical Trials. EP Europace, 24, 1585-1598.
https://doi.org/10.1093/europace/euac089
[7] Craft, J., Li, Y., Bhatti, S. and Cao, J.J. (2021) How to Do Left Atrial Late Gadolinium Enhancement: A Review. La Radiologia Medica, 126, 1159-1169.
https://doi.org/10.1007/s11547-021-01383-3
[8] Russo, J.W. and Castellot, J.J. (2010) CCN5: Biology and Pathophysiology. Journal of Cell Communication and Signaling, 4, 119-130.
https://doi.org/10.1007/s12079-010-0098-7
[9] Yoon, P.O., Lee, M., Cha, H., Jeong, M.H., Kim, J., Jang, S.P., et al. (2010) The Opposing Effects of CCN2 and CCN5 on the Development of Cardiac Hypertrophy and Fibrosis. Journal of Molecular and Cellular Cardiology, 49, 294-303.
https://doi.org/10.1016/j.yjmcc.2010.04.010
[10] Lee, M., Raad, N., Song, M.H., Yoo, J., Lee, M., Jang, S.P., et al. (2020) The Matricellular Protein CCN5 Prevents Adverse Atrial Structural and Electrical Remodelling. Journal of Cellular and Molecular Medicine, 24, 11768-11778.
https://doi.org/10.1111/jcmm.15789
[11] Wu, Y., Qin, X., Gao, P., Liu, Y., Fang, Q., Deng, H., et al. (2022) Relationship between the Distribution of Left Atrial Low-Voltage Zones and Post-Ablation Atrial Arrhythmia Recurrence in Patients with Atrial Fibrillation. Hellenic Journal of Cardiology, 66, 19-25.
https://doi.org/10.1016/j.hjc.2022.05.001
[12] Ravelli, F., Masè, M., Cristoforetti, A., Avogaro, L., D’Amato, E., Tessarolo, F., et al. (2022) Quantitative Assessment of Transmural Fibrosis Profile in the Human Atrium: Evidence for a Three-Dimensional Arrhythmic Substrate by Slice-to-Slice Histology. EP Europace, 25, 739-747.
https://doi.org/10.1093/europace/euac187
[13] Sohns, C. and Marrouche, N.F. (2019) Atrial Fibrillation and Cardiac Fibrosis. European Heart Journal, 41, 1123-1131.
https://doi.org/10.1093/eurheartj/ehz786
[14] Dilaveris, P., Antoniou, C., Manolakou, P., Tsiamis, E., Gatzoulis, K. and Tousoulis, D. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802.
https://doi.org/10.2174/0929867324666170918122502
[15] Cunha, P.S., Laranjo, S., Heijman, J. and Oliveira, M.M. (2022) The Atrium in Atrial Fibrillation—A Clinical Review on How to Manage Atrial Fibrotic Substrates. Frontiers in Cardiovascular Medicine, 9, Article 879984.
https://doi.org/10.3389/fcvm.2022.879984
[16] Yamaguchi, T. (2024) Atrial Structural Remodeling and Atrial Fibrillation Substrate: A Histopathological Perspective. Journal of Cardiology, in Press.
https://doi.org/10.1016/j.jjcc.2024.05.007
[17] Odeh, A., Dungan, G.D., Hoppensteadt, D., Siddiqui, F., Kantarcioglu, B., Darki, A., et al. (2023) Interrelationship between Inflammatory Biomarkers and Collagen Remodeling Proteins in Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 29.
https://doi.org/10.1177/10760296231165055
[18] Ureche, C., Nedelcu, A., Sascău, R.A., Stătescu, C., Kanbay, M. and Covic, A. (2020) Role of Collagen Turnover Biomarkers in the Noninvasive Assessment of Myocardial Fibrosis: An Update. Biomarkers in Medicine, 14, 1265-1275.
https://doi.org/10.2217/bmm-2020-0298
[19] Odeh, A., Dungan, G.D., Darki, A., Hoppensteadt, D., Siddiqui, F., Kantarcioglu, B., et al. (2022) Collagen Remodeling and Fatty Acid Regulation Biomarkers in Understanding the Molecular Pathogenesis of Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 28.
https://doi.org/10.1177/10760296221145181
[20] Cheng, T., Chen, Y., Li, S., Lin, F., Lu, Y., Lee, T., et al. (2024) Interleukin-33/ST2 Axis Involvement in Atrial Remodeling and Arrhythmogenesis. Translational Research, 268, 1-12.
https://doi.org/10.1016/j.trsl.2024.01.006
[21] García-Seara, J., González Melchor, L., Rodríguez García, J., Gude, F., Martínez Sande, J.L., Rodríguez Mañero, M., et al. (2023) Role of Soluble ST2 Biomarker in Predicting Recurrence of Atrial Fibrillation after Electrical Cardioversion or Pulmonary Vein Isolation. International Journal of Molecular Sciences, 24, Article 14045.
https://doi.org/10.3390/ijms241814045
[22] Nezami, Z., Holm, H., Ohlsson, M., Molvin, J., Korduner, J., Bachus, E., et al. (2022) The Impact of Myocardial Fibrosis Biomarkers in a Heart Failure Population with Atrial Fibrillation—The HARVEST-Malmö Study. Frontiers in Cardiovascular Medicine, 9, Article 982871.
https://doi.org/10.3389/fcvm.2022.982871
[23] Zhang, G. and Wu, Y. (2019) Circulating Galectin-3 and Atrial Fibrillation Recurrence after Catheter Ablation: A Meta-Analysis. Cardiovascular Therapeutics, 2019, Article 4148129.
https://doi.org/10.1155/2019/4148129
[24] De Bortoli, A., Ole-Gunnar, A. and Torbjørn, H. (2022) Relationship between Ablation Index and Myocardial Biomarkers after Radiofrequency Catheter Ablation for Atrial Fibrillation. Indian Pacing and Electrophysiology Journal, 22, 61-67.
https://pubmed.ncbi.nlm.nih.gov/34861368/
https://doi.org/10.1016/j.ipej.2021.11.008
[25] Berg, D.D., Ruff, C.T., Jarolim, P., Giugliano, R.P., Nordio, F., Lanz, H.J., et al. (2019) Performance of the ABC Scores for Assessing the Risk of Stroke or Systemic Embolism and Bleeding in Patients with Atrial Fibrillation in ENGAGE AF-TIMI 48. Circulation, 139, 760-771.
https://doi.org/10.1161/circulationaha.118.038312
[26] Winters, J., Kawczynski, M.J., Gilbers, M.D., Isaacs, A., Zeemering, S., Maesen, B., et al. (2024) Increased Circulating BMP10 Levels Are Associated with Late Postoperative Atrial Fibrillation after Cardiac Surgery and Left Atrial Endomysial Fibrosis. EP Europace, 26, euae102.621.
https://doi.org/10.1093/europace/euae102.621
[27] Kim, S.K., Pak, H.-., Park, J.H., Ko, K.J., Lee, J.S., Choi, J.I., et al. (2009) Clinical and Serological Predictors for the Recurrence of Atrial Fibrillation after Electrical Cardioversion. EP Europace, 11, 1632-1638.
https://doi.org/10.1093/europace/eup321
[28] Ki, M., Shin, D., Park, J., Hong, K., Hong, I., Park, J., et al. (2010) Frequency of Vacuolating Cytotoxin a (VacA)-Positive Helicobacter pylori Seropositivity and TGF-β1 Decrease in Atrial Fibrillation. International Journal of Cardiology, 145, 345-346.
https://doi.org/10.1016/j.ijcard.2009.12.009
[29] Rosenberg, M.A., Maziarz, M., Tan, A.Y., Glazer, N.L., Zieman, S.J., Kizer, J.R., et al. (2014) Circulating Fibrosis Biomarkers and Risk of Atrial Fibrillation: The Cardiovascular Health Study (CHS). American Heart Journal, 167, 723-728.E2.
https://doi.org/10.1016/j.ahj.2014.01.010
[30] Song, M.H., Yoo, J., Oh, J.G., Kook, H., Park, W.J. and Jeong, D. (2022) Matricellular Protein CCN5 Gene Transfer Ameliorates Cardiac and Skeletal Dysfunction in mdx/utrn (±) Haploinsufficient Mice by Reducing Fibrosis and Upregulating Utrophin Expression. Frontiers in Cardiovascular Medicine, 9, Article 763544.
https://doi.org/10.3389/fcvm.2022.763544
[31] Longobardo, L., Todaro, M.C., Zito, C., Piccione, M.C., Di Bella, G., Oreto, L., et al. (2013) Role of Imaging in Assessment of Atrial Fibrosis in Patients with Atrial Fibrillation: State-of-the-Art Review. European Heart Journal-Cardiovascular Imaging, 15, 1-5.
https://doi.org/10.1093/ehjci/jet116