[1]
|
Brundel, B.J.J.M., Ai, X., Hills, M.T., Kuipers, M.F., Lip, G.Y.H. and de Groot, N.M.S. (2022) Atrial Fibrillation. Nature Reviews Disease Primers, 8, Article No. 21. https://doi.org/10.1038/s41572-022-00347-9
|
[2]
|
Xintarakou, A., Tzeis, S., Psarras, S., Asvestas, D. and Vardas, P. (2020) Atrial Fibrosis as a Dominant Factor for the Development of Atrial Fibrillation: Facts and Gaps. EP Europace, 22, 342-351. https://doi.org/10.1093/europace/euaa009
|
[3]
|
Al-Kaisey, A.M., Parameswaran, R., Bryant, C., Anderson, R.D., Hawson, J., Chieng, D., et al. (2023) Atrial Fibrillation Catheter Ablation vs Medical Therapy and Psychological Distress. JAMA, 330, 925-933. https://doi.org/10.1001/jama.2023.14685
|
[4]
|
Liu, Z., Xia, Y., Guo, C., Li, X., Fang, P., Yin, X., et al. (2021) Low-Voltage Zones as the Atrial Fibrillation Substrates: Relationship with Initiation, Perpetuation, and Termination. Frontiers in Cardiovascular Medicine, 8, Article 705510. https://doi.org/10.3389/fcvm.2021.705510
|
[5]
|
Al-Kaisey, A.M., Parameswaran, R., Joseph, S.A., Kistler, P.M., Morton, J.B. and Kalman, J.M. (2021) Extensive Right Atrial Free Wall Low-Voltage Zone as the Substrate for Atrial Fibrillation: Successful Ablation by Scar Homogenization. EP Europace, 23, 59-64. https://pubmed.ncbi.nlm.nih.gov/33141888/ https://doi.org/10.1093/europace/euaa233
|
[6]
|
Junarta, J., Siddiqui, M.U., Riley, J.M., Dikdan, S.J., Patel, A. and Frisch, D.R. (2022) Low-Voltage Area Substrate Modification for Atrial Fibrillation Ablation: A Systematic Review and Meta-Analysis of Clinical Trials. EP Europace, 24, 1585-1598. https://doi.org/10.1093/europace/euac089
|
[7]
|
Craft, J., Li, Y., Bhatti, S. and Cao, J.J. (2021) How to Do Left Atrial Late Gadolinium Enhancement: A Review. La Radiologia Medica, 126, 1159-1169. https://doi.org/10.1007/s11547-021-01383-3
|
[8]
|
Russo, J.W. and Castellot, J.J. (2010) CCN5: Biology and Pathophysiology. Journal of Cell Communication and Signaling, 4, 119-130. https://doi.org/10.1007/s12079-010-0098-7
|
[9]
|
Yoon, P.O., Lee, M., Cha, H., Jeong, M.H., Kim, J., Jang, S.P., et al. (2010) The Opposing Effects of CCN2 and CCN5 on the Development of Cardiac Hypertrophy and Fibrosis. Journal of Molecular and Cellular Cardiology, 49, 294-303. https://doi.org/10.1016/j.yjmcc.2010.04.010
|
[10]
|
Lee, M., Raad, N., Song, M.H., Yoo, J., Lee, M., Jang, S.P., et al. (2020) The Matricellular Protein CCN5 Prevents Adverse Atrial Structural and Electrical Remodelling. Journal of Cellular and Molecular Medicine, 24, 11768-11778. https://doi.org/10.1111/jcmm.15789
|
[11]
|
Wu, Y., Qin, X., Gao, P., Liu, Y., Fang, Q., Deng, H., et al. (2022) Relationship between the Distribution of Left Atrial Low-Voltage Zones and Post-Ablation Atrial Arrhythmia Recurrence in Patients with Atrial Fibrillation. Hellenic Journal of Cardiology, 66, 19-25. https://doi.org/10.1016/j.hjc.2022.05.001
|
[12]
|
Ravelli, F., Masè, M., Cristoforetti, A., Avogaro, L., D’Amato, E., Tessarolo, F., et al. (2022) Quantitative Assessment of Transmural Fibrosis Profile in the Human Atrium: Evidence for a Three-Dimensional Arrhythmic Substrate by Slice-to-Slice Histology. EP Europace, 25, 739-747. https://doi.org/10.1093/europace/euac187
|
[13]
|
Sohns, C. and Marrouche, N.F. (2019) Atrial Fibrillation and Cardiac Fibrosis. European Heart Journal, 41, 1123-1131. https://doi.org/10.1093/eurheartj/ehz786
|
[14]
|
Dilaveris, P., Antoniou, C., Manolakou, P., Tsiamis, E., Gatzoulis, K. and Tousoulis, D. (2019) Biomarkers Associated with Atrial Fibrosis and Remodeling. Current Medicinal Chemistry, 26, 780-802. https://doi.org/10.2174/0929867324666170918122502
|
[15]
|
Cunha, P.S., Laranjo, S., Heijman, J. and Oliveira, M.M. (2022) The Atrium in Atrial Fibrillation—A Clinical Review on How to Manage Atrial Fibrotic Substrates. Frontiers in Cardiovascular Medicine, 9, Article 879984. https://doi.org/10.3389/fcvm.2022.879984
|
[16]
|
Yamaguchi, T. (2024) Atrial Structural Remodeling and Atrial Fibrillation Substrate: A Histopathological Perspective. Journal of Cardiology, in Press. https://doi.org/10.1016/j.jjcc.2024.05.007
|
[17]
|
Odeh, A., Dungan, G.D., Hoppensteadt, D., Siddiqui, F., Kantarcioglu, B., Darki, A., et al. (2023) Interrelationship between Inflammatory Biomarkers and Collagen Remodeling Proteins in Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 29. https://doi.org/10.1177/10760296231165055
|
[18]
|
Ureche, C., Nedelcu, A., Sascău, R.A., Stătescu, C., Kanbay, M. and Covic, A. (2020) Role of Collagen Turnover Biomarkers in the Noninvasive Assessment of Myocardial Fibrosis: An Update. Biomarkers in Medicine, 14, 1265-1275. https://doi.org/10.2217/bmm-2020-0298
|
[19]
|
Odeh, A., Dungan, G.D., Darki, A., Hoppensteadt, D., Siddiqui, F., Kantarcioglu, B., et al. (2022) Collagen Remodeling and Fatty Acid Regulation Biomarkers in Understanding the Molecular Pathogenesis of Atrial Fibrillation. Clinical and Applied Thrombosis/Hemostasis, 28. https://doi.org/10.1177/10760296221145181
|
[20]
|
Cheng, T., Chen, Y., Li, S., Lin, F., Lu, Y., Lee, T., et al. (2024) Interleukin-33/ST2 Axis Involvement in Atrial Remodeling and Arrhythmogenesis. Translational Research, 268, 1-12. https://doi.org/10.1016/j.trsl.2024.01.006
|
[21]
|
García-Seara, J., González Melchor, L., Rodríguez García, J., Gude, F., Martínez Sande, J.L., Rodríguez Mañero, M., et al. (2023) Role of Soluble ST2 Biomarker in Predicting Recurrence of Atrial Fibrillation after Electrical Cardioversion or Pulmonary Vein Isolation. International Journal of Molecular Sciences, 24, Article 14045. https://doi.org/10.3390/ijms241814045
|
[22]
|
Nezami, Z., Holm, H., Ohlsson, M., Molvin, J., Korduner, J., Bachus, E., et al. (2022) The Impact of Myocardial Fibrosis Biomarkers in a Heart Failure Population with Atrial Fibrillation—The HARVEST-Malmö Study. Frontiers in Cardiovascular Medicine, 9, Article 982871. https://doi.org/10.3389/fcvm.2022.982871
|
[23]
|
Zhang, G. and Wu, Y. (2019) Circulating Galectin-3 and Atrial Fibrillation Recurrence after Catheter Ablation: A Meta-Analysis. Cardiovascular Therapeutics, 2019, Article 4148129. https://doi.org/10.1155/2019/4148129
|
[24]
|
De Bortoli, A., Ole-Gunnar, A. and Torbjørn, H. (2022) Relationship between Ablation Index and Myocardial Biomarkers after Radiofrequency Catheter Ablation for Atrial Fibrillation. Indian Pacing and Electrophysiology Journal, 22, 61-67. https://pubmed.ncbi.nlm.nih.gov/34861368/ https://doi.org/10.1016/j.ipej.2021.11.008
|
[25]
|
Berg, D.D., Ruff, C.T., Jarolim, P., Giugliano, R.P., Nordio, F., Lanz, H.J., et al. (2019) Performance of the ABC Scores for Assessing the Risk of Stroke or Systemic Embolism and Bleeding in Patients with Atrial Fibrillation in ENGAGE AF-TIMI 48. Circulation, 139, 760-771. https://doi.org/10.1161/circulationaha.118.038312
|
[26]
|
Winters, J., Kawczynski, M.J., Gilbers, M.D., Isaacs, A., Zeemering, S., Maesen, B., et al. (2024) Increased Circulating BMP10 Levels Are Associated with Late Postoperative Atrial Fibrillation after Cardiac Surgery and Left Atrial Endomysial Fibrosis. EP Europace, 26, euae102.621. https://doi.org/10.1093/europace/euae102.621
|
[27]
|
Kim, S.K., Pak, H.-., Park, J.H., Ko, K.J., Lee, J.S., Choi, J.I., et al. (2009) Clinical and Serological Predictors for the Recurrence of Atrial Fibrillation after Electrical Cardioversion. EP Europace, 11, 1632-1638. https://doi.org/10.1093/europace/eup321
|
[28]
|
Ki, M., Shin, D., Park, J., Hong, K., Hong, I., Park, J., et al. (2010) Frequency of Vacuolating Cytotoxin a (VacA)-Positive Helicobacter pylori Seropositivity and TGF-β1 Decrease in Atrial Fibrillation. International Journal of Cardiology, 145, 345-346. https://doi.org/10.1016/j.ijcard.2009.12.009
|
[29]
|
Rosenberg, M.A., Maziarz, M., Tan, A.Y., Glazer, N.L., Zieman, S.J., Kizer, J.R., et al. (2014) Circulating Fibrosis Biomarkers and Risk of Atrial Fibrillation: The Cardiovascular Health Study (CHS). American Heart Journal, 167, 723-728.E2. https://doi.org/10.1016/j.ahj.2014.01.010
|
[30]
|
Song, M.H., Yoo, J., Oh, J.G., Kook, H., Park, W.J. and Jeong, D. (2022) Matricellular Protein CCN5 Gene Transfer Ameliorates Cardiac and Skeletal Dysfunction in mdx/utrn (±) Haploinsufficient Mice by Reducing Fibrosis and Upregulating Utrophin Expression. Frontiers in Cardiovascular Medicine, 9, Article 763544. https://doi.org/10.3389/fcvm.2022.763544
|
[31]
|
Longobardo, L., Todaro, M.C., Zito, C., Piccione, M.C., Di Bella, G., Oreto, L., et al. (2013) Role of Imaging in Assessment of Atrial Fibrosis in Patients with Atrial Fibrillation: State-of-the-Art Review. European Heart Journal-Cardiovascular Imaging, 15, 1-5. https://doi.org/10.1093/ehjci/jet116
|