[1]
|
Zhang, P., Lu, J., Jing, Y., Tang, S., Zhu, D. and Bi, Y. (2016) Global Epidemiology of Diabetic Foot Ulceration: A Systematic Review and Meta-Analysis. Annals of Medicine, 49, 106-116. https://doi.org/10.1080/07853890.2016.1231932
|
[2]
|
Armstrong, D.G., Boulton, A.J.M. and Bus, S.A. (2017) Diabetic Foot Ulcers and Their Recurrence. New England Journal of Medicine, 376, 2367-2375. https://doi.org/10.1056/nejmra1615439
|
[3]
|
Alonso, J.E., Lee, J., Burgess, A.R. and Browner, B.D. (1996) The Management of Complex Orthopedic Injuries. Surgical Clinics of North America, 76, 879-903. https://doi.org/10.1016/s0039-6109(05)70486-2
|
[4]
|
Velnar, T., Bailey, T. and Smrkolj, V. (2009) The Wound Healing Process: An Overview of the Cellular and Molecular Mechanisms. Journal of International Medical Research, 37, 1528-1542. https://doi.org/10.1177/147323000903700531
|
[5]
|
Yammine, K. and Assi, C. (2019) A Meta-Analysis of the Outcomes of Split-Thickness Skin Graft on Diabetic Leg and Foot Ulcers. The International Journal of Lower Extremity Wounds, 18, 23-30. https://doi.org/10.1177/1534734619832123
|
[6]
|
Yang, Q.Y., Xue, Y.M., Cao, Y., et al. (2012) Clinical Characteristics and Risk Factors of Diabetic Foot Ulcer. Chinese Journal of Diabetes, 20, 189-191.
|
[7]
|
Puttirutvong, P. (2004) Meshed Skin Graft versus Split Thickness Skin Graft in Diabetic Ulcer Coverage. The Journal of the Medical Association of Thailand, 87, 66-72.
|
[8]
|
Sanniec, K., Nguyen, T., van Asten, S., Fontaine, J.L. and Lavery, L.A. (2017) Split-thickness Skin Grafts to the Foot and Ankle of Diabetic Patients. Journal of the American Podiatric Medical Association, 107, 365-368. https://doi.org/10.7547/15-200
|
[9]
|
Shyamsundar, S., Mahmud, A.A. and Khalasi, V. (2021) The Gracilis Muscle Flap: A “Work Horse” Free Flap in Diabetic Foot Reconstruction. World Journal of Plastic Surgery, 10, 33-39. https://doi.org/10.52547/wjps.10.2.33
|
[10]
|
Robson, M.C. (1997) The Role of Growth Factors in the Healing of Chronic Wounds. Wound Repair and Regeneration, 5, 12-17. https://doi.org/10.1046/j.1524-475x.1997.50106.x
|
[11]
|
胡凤丹. 自体全血外敷治疗糖尿病足慢性创面的临床研究[D]: [硕士学位论文]. 长沙: 湖南师范大学2022.
|
[12]
|
胡凤丹, 江丛元, 黄靓, 等. 自体全血外敷治疗糖尿病足慢性创面的临床研究[J]. 中华糖尿病杂志, 2022, 14(7): 669-674.
|
[13]
|
蔡秋妮, 卢伟锋, 黄小进, 等. 自体全血外敷治疗糖尿病足创面的效果研究[J]. 护理管理杂志, 2015, 15(4): 271-272.
|
[14]
|
De Pascale, M.R., Sommese, L., Casamassimi, A. and Napoli, C. (2015) Platelet Derivatives in Regenerative Medicine: An Update. Transfusion Medicine Reviews, 29, 52-61. https://doi.org/10.1016/j.tmrv.2014.11.001
|
[15]
|
Marx, R.E. (2001) Platelet-rich Plasma (PRP): What Is PRP and What Is Not PRP? Implant Dentistry, 10, 225-228. https://doi.org/10.1097/00008505-200110000-00002
|
[16]
|
Schär, M.O., Diaz-Romero, J., Kohl, S., Zumstein, M.A. and Nesic, D. (2015) Platelet-Rich Concentrates Differentially Release Growth Factors and Induce Cell Migration in Vitro. Clinical Orthopaedics & Related Research, 473, 1635-1643. https://doi.org/10.1007/s11999-015-4192-2
|
[17]
|
Harrison, S., Vavken, P., Kevy, S., Jacobson, M., Zurakowski, D. and Murray, M.M. (2011) Platelet Activation by Collagen Provides Sustained Release of Anabolic Cytokines. The American Journal of Sports Medicine, 39, 729-734. https://doi.org/10.1177/0363546511401576
|
[18]
|
Piccin, A., Di Pierro, A.M., Canzian, L., et al. (2017) Platelet Gel: A New Therapeutic Tool with Great Potential. Blood transfusion, 15, 333-340.
|
[19]
|
Li, Y., Gao, Y., Gao, Y., Chen, D., Wang, C., Liu, G., et al. (2018) Autologous Platelet‐Rich Gel Treatment for Diabetic Chronic Cutaneous Ulcers: A Meta‐Analysis of Randomized Controlled Trials. Journal of Diabetes, 11, 359-369. https://doi.org/10.1111/1753-0407.12850
|
[20]
|
Moog, P., Kirchhoff, K., Bekeran, S., Bauer, A., von Isenburg, S., Dornseifer, U., et al. (2020) Comparative Evaluation of the Angiogenic Potential of Hypoxia Preconditioned Blood-Derived Secretomes and Platelet-Rich Plasma: An in Vitro Analysis. Biomedicines, 8, Article 16. https://doi.org/10.3390/biomedicines8010016
|
[21]
|
Ruthenborg, R.J., Ban, J., Wazir, A., Takeda, N. and Kim, J. (2014) Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1. Molecules and Cells, 37, 637-643. https://doi.org/10.14348/molcells.2014.0150
|
[22]
|
Hadjipanayi, E., Moog, P., Bekeran, S., Kirchhoff, K., Berezhnoi, A., Aguirre, J., et al. (2019) In Vitro Characterization of Hypoxia Preconditioned Serum (HPS)—Fibrin Hydrogels: Basis for an Injectable Biomimetic Tissue Regeneration Therapy. Journal of Functional Biomaterials, 10, Article 22. https://doi.org/10.3390/jfb10020022
|
[23]
|
Tateishi-Yuyama, E., Matsubara, H., Murohara, T., Ikeda, U., Shintani, S., Masaki, H., et al. (2002) Therapeutic Angiogenesis for Patients with Limb Ischaemia by Autologous Transplantation of Bone-Marrow Cells: A Pilot Study and a Randomised Controlled Trial. The Lancet, 360, 427-435. https://doi.org/10.1016/s0140-6736(02)09670-8
|
[24]
|
Lopes, L., Setia, O., Aurshina, A., Liu, S., Hu, H., Isaji, T., et al. (2018) Stem Cell Therapy for Diabetic Foot Ulcers: A Review of Preclinical and Clinical Research. Stem Cell Research & Therapy, 9, Article No. 188. https://doi.org/10.1186/s13287-018-0938-6
|
[25]
|
El Hage, R., Knippschild, U., Arnold, T. and Hinterseher, I. (2022) Stem Cell-Based Therapy: A Promising Treatment for Diabetic Foot Ulcer. Biomedicines, 10, Article 1507. https://doi.org/10.3390/biomedicines10071507
|
[26]
|
Lu, D., Chen, B., Liang, Z., Deng, W., Jiang, Y., Li, S., et al. (2011) Comparison of Bone Marrow Mesenchymal Stem Cells with Bone Marrow-Derived Mononuclear Cells for Treatment of Diabetic Critical Limb Ischemia and Foot Ulcer: A Double-Blind, Randomized, Controlled Trial. Diabetes Research and Clinical Practice, 92, 26-36. https://doi.org/10.1016/j.diabres.2010.12.010
|
[27]
|
Ozturk, A., Kucukardali, Y., Tangi, F., Erikci, A., Uzun, G., Bashekim, C., et al. (2012) Therapeutical Potential of Autologous Peripheral Blood Mononuclear Cell Transplantation in Patients with Type 2 Diabetic Critical Limb Ischemia. Journal of Diabetes and its Complications, 26, 29-33. https://doi.org/10.1016/j.jdiacomp.2011.11.007
|
[28]
|
Álvaro-Afonso, F.J., Sanz-Corbalán, I., Lázaro-Martínez, J.L., Kakagia, D. and Papanas, N. (2020) Adipose-Derived Mesenchymal Stem Cells in the Treatment of Diabetic Foot Ulcers: A Review of Preclinical and Clinical Studies. Angiology, 71, 853-863. https://doi.org/10.1177/0003319720939467
|
[29]
|
Gadelkarim, M., Abushouk, A.I., Ghanem, E., Hamaad, A.M., Saad, A.M. and Abdel-Daim, M.M. (2018) Adipose-derived Stem Cells: Effectiveness and Advances in Delivery in Diabetic Wound Healing. Biomedicine & Pharmacotherapy, 107, 625-633. https://doi.org/10.1016/j.biopha.2018.08.013
|
[30]
|
Cianfarani, F., Toietta, G., Di Rocco, G., Cesareo, E., Zambruno, G. and Odorisio, T. (2013) Diabetes Impairs Adipose Tissue-Derived Stem Cell Function and Efficiency in Promoting Wound Healing. Wound Repair and Regeneration, 21, 545-553. https://doi.org/10.1111/wrr.12051
|
[31]
|
Rennert, R.C., Sorkin, M., Januszyk, M., Duscher, D., Kosaraju, R., Chung, M.T., et al. (2014) Diabetes Impairs the Angiogenic Potential of Adipose-Derived Stem Cells by Selectively Depleting Cellular Subpopulations. Stem Cell Research & Therapy, 5, Article No. 79. https://doi.org/10.1186/scrt468
|