[1]
|
Amundson, R. (2001) The Carbon Budget in Soils. Annual Review of Earth and Planetary Sciences, 29, 535-562. https://doi.org/10.1146/annurev.earth.29.1.535
|
[2]
|
Batjes, N.H. (1996) Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science, 47, 151-163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
|
[3]
|
Hou, G., Delang, C.O., Lu, X. and Gao, L. (2020) Grouping Tree Species to Estimate Afforestation-Driven Soil Organic Carbon Sequestration. Plant and Soil, 455, 507-518. https://doi.org/10.1007/s11104-020-04685-z
|
[4]
|
Eswaran, H., Van Den Berg, E. and Reich, P. (1993) Organic Carbon in Soils of the World. Soil Science Society of America Journal, 57, 192-194. https://doi.org/10.2136/sssaj1993.03615995005700010034x
|
[5]
|
Gruber, S. (2012) Derivation and Analysis of a High-Resolution Estimate of Global Permafrost Zonation. The Cryosphere, 6, 221-233. https://doi.org/10.5194/tc-6-221-2012
|
[6]
|
Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C., et al. (2014) Estimated Stocks of Circumpolar Permafrost Carbon with Quantified Uncertainty Ranges and Identified Data Gaps. Biogeosciences, 11, 6573-6593. https://doi.org/10.5194/bg-11-6573-2014
|
[7]
|
Ping, C.L., Jastrow, J.D., Jorgenson, M.T., Michaelson, G.J. and Shur, Y.L. (2015) Permafrost Soils and Carbon Cycling. Soil, 1, 147-171. https://doi.org/10.5194/soil-1-147-2015
|
[8]
|
彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6): 1526-1538.
|
[9]
|
Screen, J.A. and Simmonds, I. (2010) The Central Role of Diminishing Sea Ice in Recent Arctic Temperature Amplification. Nature, 464, 1334-1337. https://doi.org/10.1038/nature09051
|
[10]
|
Chai, H., Rao, S., Wang, R., Liu, J., Huang, Q. and Mou, X. (2015) The Effect of the Geomorphologic Type as Surrogate to the Time Factor on Digital Soil Mapping. Open Journal of Soil Science, 5, 123-134. https://doi.org/10.4236/ojss.2015.56012
|
[11]
|
Sarker, I.H. (2021) Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2, Article No. 160. https://doi.org/10.1007/s42979-021-00592-x
|
[12]
|
Kalambukattu, J.G., Kumar, S. and Arya Raj, R. (2018) Digital Soil Mapping in a Himalayan Watershed Using Remote Sensing and Terrain Parameters Employing Artificial Neural Network Model. Environmental Earth Sciences, 77, Article No. 203. https://doi.org/10.1007/s12665-018-7367-9
|
[13]
|
Nguyen, G., Dlugolinsky, S., Bobák, M., Tran, V., López García, Á., Heredia, I., et al. (2019) Machine Learning and Deep Learning Frameworks and Libraries for Large-Scale Data Mining: A Survey. Artificial Intelligence Review, 52, 77-124. https://doi.org/10.1007/s10462-018-09679-z
|
[14]
|
Tola, E., Al-Gaadi, K.A. and Madugundu, R. (2019) Employment of GIS Techniques to Assess the Long-Term Impact of Tillage on the Soil Organic Carbon of Agricultural Fields under Hyper-Arid Conditions. PLOS ONE, 14, e0212521.
|
[15]
|
Akbari, M., Goudarzi, I., Tahmoures, M., Elveny, M. and Bakhshayeshi, I. (2021) Predicting Soil Organic Carbon by Integrating Landsat 8 OLI, GIS and Data Mining Techniques in Semi-Arid Region. Earth Science Informatics, 14, 2113-2122. https://doi.org/10.1007/s12145-021-00673-8
|
[16]
|
Sreenivas, K., Dadhwal, V.K., Kumar, S., Harsha, G.S., Mitran, T., Sujatha, G., et al. (2016) Digital Mapping of Soil Organic and Inorganic Carbon Status in India. Geoderma, 269, 160-173. https://doi.org/10.1016/j.geoderma.2016.02.002
|
[17]
|
袁玉琦, 陈瀚阅, 张黎明, 等. 基于多变量与RF算法的耕地土壤有机碳空间预测研究——以福建亚热带复杂地貌区为例[J]. 土壤学报, 2021, 58(4): 887-899.
|
[18]
|
Grimm, R., Behrens, T., Märker, M. and Elsenbeer, H. (2008) Soil Organic Carbon Concentrations and Stocks on Barro Colorado Island—Digital Soil Mapping Using Random Forests Analysis. Geoderma, 146, 102-113. https://doi.org/10.1016/j.geoderma.2008.05.008
|
[19]
|
Zhang, H., Wu, P., Yin, A., Yang, X., Zhang, M. and Gao, C. (2017) Prediction of Soil Organic Carbon in an Intensively Managed Reclamation Zone of Eastern China: A Comparison of Multiple Linear Regressions and the Random Forest Model. Science of the Total Environment, 592, 704-713. https://doi.org/10.1016/j.scitotenv.2017.02.146
|
[20]
|
Ran, Y., Li, X., Cheng, G., Zhang, T., Wu, Q., Jin, H., et al. (2012) Distribution of Permafrost in China: An Overview of Existing Permafrost Maps. Permafrost and Periglacial Processes, 23, 322-333. https://doi.org/10.1002/ppp.1756
|
[21]
|
Zhang, D., Meng, F., Wang, Y., Zhang, L., Xue, H., Liang, Z., et al. (2023) Seasonal and Spatial Variations in the Optical Characteristics of Dissolved Organic Matter in the Huma River Basin, China. Water, 15, Article No. 1579. https://doi.org/10.3390/w15081579
|
[22]
|
于东升, 史学正, 孙维侠, 等. 基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J]. 应用生态学报, 2005, 16(12): 2279-2283.
|
[23]
|
彭守璋. 中国1km分辨率逐月平均气温数据集(1901-2022) [Z]. 2020.
|
[24]
|
Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32. https://doi.org/10.1023/a:1010933404324
|
[25]
|
Liaw, A. and Wiener, M. (2002) Classification and Regression by Random Forest. R News, 2, 18-22.
|
[26]
|
Vu, D.H., Muttaqi, K.M. and Agalgaonkar, A.P. (2015) A Variance Inflation Factor and Backward Elimination Based Robust Regression Model for Forecasting Monthly Electricity Demand Using Climatic Variables. Applied Energy, 140, 385-394. https://doi.org/10.1016/j.apenergy.2014.12.011
|
[27]
|
Salmerón Gómez, R., Rodríguez Sánchez, A., García, C.G. and García Pérez, J. (2020) The VIF and MSE in Raise Regression. Mathematics, 8, Article No. 605. https://doi.org/10.3390/math8040605
|
[28]
|
Bao, Y., Meng, X., Liu, H., Meng, X., Xing, M., Cao, D., et al. (2024) Assessing the Improvement Potentials of Climate Model Partitioning and Time-Variant Feature Extraction for Soil Organic Carbon Prediction. Catena, 241, Article ID: 108014. https://doi.org/10.1016/j.catena.2024.108014
|
[29]
|
李天杰, 赵烨, 张科利, 郑应顺, 王云. 土壤地理学[M]. 第3版. 北京: 高等教育出版社, 1978.
|
[30]
|
李凤滋. 大兴安岭林区表层土壤有机碳密度动态研究[D]: [博士学位论文]. 呼和浩特: 内蒙古农业大学, 2022.
|
[31]
|
柴华, 何念鹏. 中国土壤容重特征及其对区域碳贮量估算的意义[J]. 生态学报, 2016, 36(13): 3903-3910.
|
[32]
|
Fu, W.J., Jiang, P.K., Zhou, G.M. and Zhao, K.L. (2014) Using Moran’s I and GIS to Study the Spatial Pattern of Forest Litter Carbon Density in a Subtropical Region of Southeastern China. Biogeosciences, 11, 2401-2409. https://doi.org/10.5194/bg-11-2401-2014
|
[33]
|
Qu, W., Han, G., Wang, J., Li, J., Zhao, M., He, W., et al. (2020) Short-Term Effects of Soil Moisture on Soil Organic Carbon Decomposition in a Coastal Wetland of the Yellow River Delta. Hydrobiologia, 848, 3259-3271. https://doi.org/10.1007/s10750-020-04422-8
|
[34]
|
Witkowska-Walczak, B. (2003) Hydrophysical Characteristics and Evaporation of Haplic Luvisol and Mollic Gleysol Aggregates. International Agrophysics, 17, 137-141.
|