[1]
|
吕方, 朱光明, 刘代军. 可完全生物降解材料的应用进展[J]. 塑料科技, 2007(7): 92-97.
|
[2]
|
Ruan, G. and Feng, S. (2003) Preparation and Characterization of Poly(Lactic Acid)-Poly(Ethylene Glycol)-Poly(Lactic Acid) (PLA-PEG-PLA) Microspheres for Controlled Release of Paclitaxel. Biomaterials, 24, 5037-5044. https://doi.org/10.1016/s0142-9612(03)00419-8
|
[3]
|
Amy, L., Hollman, P. and Mendoza-Hill, J. (2017) Microplastics in Fisheries and Aquaculture: Status of Knowledge on Their Occurrence and Implications for Aquatic Organisms and Food Safety.
|
[4]
|
马海燕, 邵小群, 马海军, 等. 大直径生物降解聚合物单丝的研究与进展[J]. 纺织导报, 2014(4): 54-57.
|
[5]
|
余雯雯, 石建高, 陈晓雪, 等. MHMWPE/iPP/EPDM渔用单丝的力学性能与动态力学行为[J]. 水产学报, 2017, 41(3): 473-479.
|
[6]
|
Yu, M., Tang, Y., Min, M., Herrmann, B., Cerbule, K., Liu, C., et al. (2023) Comparison of Physical Properties and Fishing Performance between Biodegradable PLA and Conventional PA Trammel Nets in Grey Mullet (Mugil cephalus) and Red-Lip Mullet (Liza haematocheila) Fishery. Marine Pollution Bulletin, 195, Article 115545. https://doi.org/10.1016/j.marpolbul.2023.115545
|
[7]
|
Yu, W.W., Shi, J.G., Chen, X.X., et al. (2016) Study on the Suitability for Fishing Fibers Based on Dynamic Mechanical Analysis. Marine Fisheries, 38, 533-539.
|
[8]
|
Zhou, A.Z., Zhang, Y., Yu, Y.F., et al. (2013) Experimental Research on Trawl Performance of Braided Polyethylene Netting Twine Replacing Common Polyethylene Twisting. Marine Fisheries, 35, 95-101.
|
[9]
|
张闯, 柳乃奎, 迟延娜, 等. 塑料制品在可持续发展中的前景——可降解塑料的环境友好性[J]. 健康教育与健康促进, 2019, 14(6): 486-489.
|
[10]
|
王琳霞. 生物降解高分子材料[J]. 塑料科技, 2002(1): 37-41.
|
[11]
|
王国利, 徐军, 郭宝华. 可生物降解聚丁二酸丁二醇酯及其共聚物的合成及改性研究进展[J]. 高分子通报, 2011(4): 99-109.
|
[12]
|
Artham, T. and Doble, M. (2007) Biodegradation of Aliphatic and Aromatic Polycarbonates. Macromolecular Bioscience, 8, 14-24. https://doi.org/10.1002/mabi.200700106
|
[13]
|
董翔宇, 单子豪, 袁文静, 等. 海洋环境微塑料污染生态影响及生物降解研究进展[J]. 中国资源综合利用, 2020, 38(11): 122-124.
|
[14]
|
钱伯章, 朱建芳. 生物可降解塑料发展现状与前景[J]. 现代化工, 2008(11): 82-85+87.
|
[15]
|
李泽天, 张欣华, 韩释剑, 等. 聚丁二酸丁二醇酯的改性研究进展[J]. 石油化工高等学校学报, 2016, 29(6): 1-5+17.
|
[16]
|
谢宝君, 梁文耀, 宋霜霜, 等. 可生物降解塑料的降解性能研究进展[J]. 工程塑料应用, 2012, 40(7): 85-88.
|
[17]
|
Ammala, A., Bateman, S., Dean, K., Petinakis, E., Sangwan, P., Wong, S., et al. (2011) An Overview of Degradable and Biodegradable Polyolefins. Progress in Polymer Science, 36, 1015-1049. https://doi.org/10.1016/j.progpolymsci.2010.12.002
|
[18]
|
Bhatia, A., Gupta, R.K., et al. (2007) Compatibility of Biodegradable Poly(Lactic Acid) (PLA) and Poly(Butylene Succinate) (PBS) Blends for Packaging Application. RMIT University.
|
[19]
|
李泽天. PBS/碱式硫酸镁晶须复合材料的制备与性能研究[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2018.
|
[20]
|
Rajgond, V., Mohite, A., More, N. and More, A. (2023) Biodegradable Polyester-Polybutylene Succinate (PBS): A Review. Polymer Bulletin, 81, 5703-5752. https://doi.org/10.1007/s00289-023-04998-w
|
[21]
|
Liu, B., Guan, T., Wu, G., Fu, Y. and Weng, Y. (2022) Biodegradation Behavior of Degradable Mulch with Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Poly(Butylene Succinate) (PBS) in Simulation Marine Environment. Polymers, 14, Article 1515. https://doi.org/10.3390/polym14081515
|
[22]
|
Kim, S., Kim, P., Lim, J., An, H. and Suuronen, P. (2016) Use of Biodegradable Driftnets to Prevent Ghost Fishing: Physical Properties and Fishing Performance for Yellow Croaker. Animal Conservation, 19, 309-319. https://doi.org/10.1111/acv.12256
|
[23]
|
Park, S., Bae, B., Cha, B., Kim, Y.J. and Kwak, H.W. (2023) Development of Poly(Butylene Adipate-Co-Butylene Succinate-Co-Ethylene Adipate-Co-Ethylene Succinate) (PBEAS) Net Twine as Biodegradable Fishing Gear. Marine Pollution Bulletin, 194, Article 115295. https://doi.org/10.1016/j.marpolbul.2023.115295
|
[24]
|
Liu, T., Huang, D., Xu, P., Lu, B., Zhen, Z., Zheng, W., et al. (2022) Study on Composting and Seawater Degradation Properties of Diethylene Glycol-Modified Poly(Butylene Succinate) Copolyesters. e-Polymers, 22, 615-626. https://doi.org/10.1515/epoly-2022-0057
|
[25]
|
潘文静, 白桢慧, 苏婷婷, 等. 生物降解塑料聚乳酸(PLA)的改性研究进展[J]. 应用化工, 2017, 46(5): 977-981.
|
[26]
|
舒爱艳, 张敏, 余雯雯, 等. 可生物降解PLA刺网与传统PA刺网的物理性能和捕捞效率的比较分析(英文) [J]. 海洋渔业, 2021, 43(1): 93-103.
|
[27]
|
Kalita, N.K., Nagar, M.K., Mudenur, C., Kalamdhad, A. and Katiyar, V. (2019) Biodegradation of Modified Poly(Lactic Acid) Based Biocomposite Films under Thermophilic Composting Conditions. Polymer Testing, 76, 522-536. https://doi.org/10.1016/j.polymertesting.2019.02.021
|
[28]
|
Gexia, W., Dan, H., Wei, Z., et al. (2020) Degradation Performance of Typical Biodegradable Polyesters in Seawater. Journal of Functional Polymers, 33, 492-499.
|
[29]
|
Chen, X., Wang, L., Shi, J., Shi, H. and Liu, Y. (2011) Environmental Degradation of Starch/Poly(Lactic Acid) Composite in Seawater. Polymers and Polymer Composites, 19, 559-566. https://doi.org/10.1177/096739111101900705
|
[30]
|
Guzman-Sielicka, A., Janik, H. and Sielicki, P. (2012) Proposal of New Starch-Blends Composition Quickly Degradable in Marine Environment. Journal of Polymers and the Environment, 21, 802-806. https://doi.org/10.1007/s10924-012-0558-7
|
[31]
|
Taiatele, I., Dal Bosco, T.C., Faria-Tischer, P.C.S., Bilck, A.P., Yamashita, F., Bertozzi, J., et al. (2019) Abiotic Hydrolysis and Compostability of Blends Based on Cassava Starch and Biodegradable Polymers. Journal of Polymers and the Environment, 27, 2577-2587. https://doi.org/10.1007/s10924-019-01541-9
|
[32]
|
闵明华, 李雄, 黄洪亮, 等. 渔用纳米蒙脱土改性聚乳酸单丝降解性能[J]. 海洋渔业, 2017, 39(6): 690-695.
|
[33]
|
闵明华, 陈晓蕾, 余雯雯, 等. 渔用纳米蒙脱土改性聚乳酸纤维制备及性能[J]. 海洋渔业, 2014, 36(6): 557-564.
|
[34]
|
陈晓蕾, 石建高, 王磊, 等. 聚乳酸/淀粉复合材料在海水中的降解性能[J]. 海洋渔业, 2009, 31(4): 420-425.
|
[35]
|
杨晓倩, 张俊贵, 王小昌. 碳酸钙填充改性PBAT的性能研究[J]. 石河子科技, 2024(2): 63-65.
|
[36]
|
刘金凤, 杨勇, 李永泉, 等. 木质素在合成可降解高分子材料中的应用研究进展[J]. 工程塑料应用, 2024, 52(2): 175-180.
|
[37]
|
王祖芳, 黄东, 王明亮. 生物可降解材料PBAT的生产现状及其研究进展[J]. 辽宁化工, 2024, 53(3): 416-422.
|
[38]
|
邱昱. 渔用淀粉改性聚己二酸/对苯二甲酸丁二醇酯材料的降解性能分析及其在蟹笼中的应用研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2023.
|
[39]
|
舒爱艳. 蒙脱土(MMT)改性渔用可降解材料的结构与性能研究[D]: [硕士学位论文]. 上海: 上海海洋大学, 2023.
|
[40]
|
Elfick, A.P.D. (2002) Poly(ε-Caprolactone) as a Potential Material for a Temporary Joint Spacer. Biomaterials, 23, 4463-4467. https://doi.org/10.1016/s0142-9612(02)00163-1
|
[41]
|
陈晓蕾, 石建高, 史航, 等. 聚己内酯在海水中降解性能的研究[J]. 海洋渔业, 2010, 32(1): 82-88.
|
[42]
|
Suzuki, M., Tachibana, Y., Oba, K., Takizawa, R. and Kasuya, K. (2018) Microbial Degradation of Poly(ε-Caprolactone) in a Coastal Environment. Polymer Degradation and Stability, 149, 1-8. https://doi.org/10.1016/j.polymdegradstab.2018.01.017
|
[43]
|
Hino, S., Kawasaki, N., Yamano, N., Nakamura, T. and Nakayama, A. (2023) Effects of Particle Size on Marine Biodegradation of Poly(l-Lactic Acid) and Poly(ε-Caprolactone). Materials Chemistry and Physics, 303, Article 127813. https://doi.org/10.1016/j.matchemphys.2023.127813
|
[44]
|
程文喜, 苗蔚, 白深奥, 等. 混合淀粉/聚乙烯醇复合膜的制备与性能研究[J]. 塑料科技, 2024, 52(3): 91-94.
|
[45]
|
杨华军. 淀粉/聚丙烯复合材料研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2010.
|
[46]
|
Yu, X., Chen, L., Jin, Z. and Jiao, A. (2021) Research Progress of Starch-Based Biodegradable Materials: A Review. Journal of Materials Science, 56, 11187-11208. https://doi.org/10.1007/s10853-021-06063-1
|
[47]
|
牟振亮. 淀粉改性生物基PBAT生物降解塑料的研发[J]. 潍坊: 山东力群环保科技有限公司, 2021-05-13.
|
[48]
|
石红锦, 魏文博, 栾道琦, 等. 热塑性淀粉/聚乳酸完全生物降解塑料的制备[J]. 橡塑技术与装备, 2020, 46(4): 45-48.
|
[49]
|
Nayak, S.K. (2010) Biodegradable PBAT/Starch Nanocomposites. Polymer-Plastics Technology and Engineering, 49, 1406-1418. https://doi.org/10.1080/03602559.2010.496397
|
[50]
|
Mohammadi Nafchi, A., Moradpour, M., Saeidi, M. and Alias, A.K. (2013) Thermoplastic Starches: Properties, Challenges, and Prospects. Starch-Stärke, 65, 61-72. https://doi.org/10.1002/star.201200201
|
[51]
|
张坤玉, 冉祥海, 吴航, 等. 新型热塑性淀粉的制备和性能[J]. 高等学校化学学报, 2009, 30(8): 1662-1667.
|
[52]
|
Hulleman, S.H.D., Janssen, F.H.P. and Feil, H. (1998) The Role of Water during Plasticization of Native Starches. Polymer, 39, 2043-2048. https://doi.org/10.1016/s0032-3861(97)00301-7
|
[53]
|
Gabriel, B., Tomasz, K., Malgorzata, P., et al. (2020) Effect of Flax Fibers Addition on the Mechanical Properties and Biodegradability of Biocomposites Based on Thermoplastic Starch. Archives of Environmental Protection, 46, 74-82.
|
[54]
|
Averous, L., Fringant, C. and Moro, L. (2001) Starch-Based Biodegradable Materials Suitable for Thermoforming Packaging. Starch-Stärke, 53, 368-371. https://doi.org/10.1002/1521-379x(200108)53:8<368::aid-star368>3.0.co;2-w
|
[55]
|
张莉, 梁多平, 侯理达. 植物纤维/聚乳酸复合材料的研究进展[J]. 塑料工业, 2023, 51(S1): 22-28.
|
[56]
|
Chen, J., Huang, Y., Deng, L., Jiang, H., Yang, Z., Yang, R., et al. (2023) Preparation and Research of PCL/Cellulose Composites: Cellulose Derived from Agricultural Wastes. International Journal of Biological Macromolecules, 235, Article 123785. https://doi.org/10.1016/j.ijbiomac.2023.123785
|
[57]
|
魏佳乐, 韩卿, 庄堃, 等. 纤维素基填料制备PBS可降解复合材料的研究进展[J]. 中国造纸, 2023, 42(11): 133-143.
|
[58]
|
吕瑶. 改性纤维素/PBAT复合薄膜的制备及性能研究[D]: [硕士学位论文]. 贵阳: 贵州师范大学, 2024.
|
[59]
|
韩宁宁. 纤维素基生物降解塑料的制备及其性能研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2019.
|
[60]
|
Lee, J., Kim, S., Park, S.B., Shin, M., Kim, S., Kim, M., et al. (2024) Mimicking Real-Field Degradation of Biodegradable Plastics in Soil and Marine Environments: From Product Utility to End-of-Life Analysis. Polymer Testing, 131, Article 108338. https://doi.org/10.1016/j.polymertesting.2024.108338
|
[61]
|
石建高, 王旭阳, 谢程兰, 等. 一种环保型聚拢吞拿鱼工具[P]. 中国专利, CN202211517657.6. 2024-06-11.
|