[1]
|
中华医学会心血管病学分会, 中华心血管病杂志编辑委员会. 中国心力衰竭诊断和治疗指南2014[J]. 中华心血管病杂志, 2014, 42(2): 98-122.
|
[2]
|
吴伟东, 易永盛, 周洋洋. microRNA在心力衰竭病理变化过程中的调节意义[J]. 心血管病学进展, 2016(5): 554-558.
|
[3]
|
Lu, Y., Wang, Y., Wang, X., Chen, H., Cai, Z. and Xiang, M. (2016) SIRT3 in Cardiovascular Diseases: Emerging Roles and Therapeutic Implications. International Journal of Cardiology, 220, 700-705. https://doi.org/10.1016/j.ijcard.2016.06.236
|
[4]
|
Dai, L., Xie, Y., Zhang, W., Zhong, X., Wang, M., Jiang, H., et al. (2021) Weighted Gene Co-Expression Network Analysis Identifies ANGPTL4 as a Key Regulator in Diabetic Cardiomyopathy via FAK/SIRT3/ROS Pathway in Cardiomyocyte. Frontiers in Endocrinology, 12, Article 705154. https://doi.org/10.3389/fendo.2021.705154
|
[5]
|
Zhang, D., Zhang, C., Fu, B., Sun, L., Wang, X., Chen, W., et al. (2018) Sirtuin3 Protects Aged Human Mesenchymal Stem Cells against Oxidative Stress and Enhances Efficacy of Cell Therapy for Ischaemic Heart Diseases. Journal of Cellular and Molecular Medicine, 22, 5504-5517. https://doi.org/10.1111/jcmm.13821
|
[6]
|
Chen, Y., Chen, C., Dong, B., Xing, F., Huang, H., Yao, F., et al. (2017) AMPK Attenuates Ventricular Remodeling and Dysfunction Following Aortic Banding in Mice via the Sirt3/oxidative Stress Pathway. European Journal of Pharmacology, 814, 335-342. https://doi.org/10.1016/j.ejphar.2017.08.042
|
[7]
|
Fu, M., Liu, M., Sauve, A.A., Jiao, X., Zhang, X., Wu, X., et al. (2006) Hormonal Control of Androgen Receptor Function through Sirt1. Molecular and Cellular Biology, 26, 8122-8135. https://doi.org/10.1128/mcb.00289-06
|
[8]
|
Zhang, J., Xiang, H., Liu, J., Chen, Y., He, R. and Liu, B. (2020) Mitochondrial Sirtuin 3: New Emerging Biological Function and Therapeutic Target. Theranostics, 10, 8315-8342. https://doi.org/10.7150/thno.45922
|
[9]
|
Onyango, P., Celic, I., McCaffery, J.M., Boeke, J.D. and Feinberg, A.P. (2002) SIRT3, a Human SIR2 Homologue, Is an NAD-Dependent Deacetylase Localized to Mitochondria. Proceedings of the National Academy of Sciences, 99, 13653-13658. https://doi.org/10.1073/pnas.222538099
|
[10]
|
Schwer, B., North, B.J., Frye, R.A., Ott, M. and Verdin, E. (2002) The Human Silent Information Regulator (sir)2 Homologue Hsirt3 Is a Mitochondrial Nicotinamide Adenine Dinucleotide-Dependent Deacetylase. The Journal of Cell Biology, 158, 647-657. https://doi.org/10.1083/jcb.200205057
|
[11]
|
Zhang, X., Ameer, F.S., Azhar, G. and Wei, J.Y. (2021) Alternative Splicing Increases Sirtuin Gene Family Diversity and Modulates Their Subcellular Localization and Function. International Journal of Molecular Sciences, 22, Article 473. https://doi.org/10.3390/ijms22020473
|
[12]
|
Paku, M., Haraguchi, N., Takeda, M., Fujino, S., Ogino, T., Takahashi, H., et al. (2021) Sirt3-Mediated SOD2 and Pgc-1α Contribute to Chemoresistance in Colorectal Cancer Cells. Annals of Surgical Oncology, 28, 4720-4732. https://doi.org/10.1245/s10434-020-09373-x
|
[13]
|
Mihanfar, A., Nejabati, H.R., Fattahi, A., latifi, Z., Faridvand, Y., Pezeshkian, M., et al. (2018) Sirt3-Mediated Cardiac Remodeling/Repair Following Myocardial Infarction. Biomedicine & Pharmacotherapy, 108, 367-373. https://doi.org/10.1016/j.biopha.2018.09.079
|
[14]
|
Li, M., Li, C., Ye, Z., Huang, J., Li, Y., Lai, W., et al. (2020) Sirt3 Modulates Fatty Acid Oxidation and Attenuates Cisplatin-Induced AKI in Mice. Journal of Cellular and Molecular Medicine, 24, 5109-5121. https://doi.org/10.1111/jcmm.15148
|
[15]
|
Barroso, E., Rodríguez-Rodríguez, R., Zarei, M., Pizarro-Degado, J., Planavila, A., Palomer, X., et al. (2020) SIRT3 Deficiency Exacerbates Fatty Liver by Attenuating the HIF1α-LIPIN 1 Pathway and Increasing CD36 through Nrf2. Cell Communication and Signaling, 18, Article No. 147. https://doi.org/10.1186/s12964-020-00640-8
|
[16]
|
Anamika Khanna, A., Acharjee, P., Acharjee, A. and Trigun, S.K. (2019) Mitochondrial SIRT3 and Neurodegenerative Brain Disorders. Journal of Chemical Neuroanatomy, 95, 43-53. https://doi.org/10.1016/j.jchemneu.2017.11.009
|
[17]
|
Sopic, M., Robinson, E.L., Emanueli, C., Srivastava, P., Angione, C., Gaetano, C., et al. (2023) Integration of Epigenetic Regulatory Mechanisms in Heart Failure. Basic Research in Cardiology, 118, Article No. 16. https://doi.org/10.1007/s00395-023-00986-3
|
[18]
|
Stillman, B. (2018) Histone Modifications: Insights into Their Influence on Gene Expression. Cell, 175, 6-9. https://doi.org/10.1016/j.cell.2018.08.032
|
[19]
|
Strahl, B.D. and Allis, C.D. (2000) The Language of Covalent Histone Modifications. Nature, 403, 41-45. https://doi.org/10.1038/47412
|
[20]
|
Koser, F., Hobbach, A.J., Abdellatif, M., Herbst, V., Türk, C., Reinecke, H., et al. (2022) Acetylation and Phosphorylation Changes to Cardiac Proteins in Experimental HfpEF Due to Metabolic Risk Reveal Targets for Treatment. Life Sciences, 309, Article 120998. https://doi.org/10.1016/j.lfs.2022.120998
|
[21]
|
de Loof, M., Renguet, E., Ginion, A., Bouzin, C., Horman, S., Beauloye, C., et al. (2023) Enhanced Protein Acetylation Initiates Fatty Acid-Mediated Inhibition of Cardiac Glucose Transport. American Journal of Physiology-Heart and Circulatory Physiology, 324, H305-H317. https://doi.org/10.1152/ajpheart.00449.2022
|
[22]
|
Chelladurai, P., Boucherat, O., Stenmark, K., Kracht, M., Seeger, W., Bauer, U. M., Bonnet,Chelladurai, P., Boucherat, O., Stenmark, K., Kracht, M., Seeger, W., Bauer, U., et al. (2020) Targeting Histone Acetylation in Pulmonary Hypertension and Right Ventricular Hypertrophy. British Journal of Pharmacology, 178, 54-71. https://doi.org/10.1111/bph.14932
|
[23]
|
Qin, J., Guo, N., Tong, J. and Wang, Z. (2021) Function of Histone Methylation and Acetylation Modifiers in Cardiac Hypertrophy. Journal of Molecular and Cellular Cardiology, 159, 120-129. https://doi.org/10.1016/j.yjmcc.2021.06.011
|
[24]
|
Scott, I. and Sack, M.N. (2020) Rethinking Protein Acetylation in Pressure Overload-Induced Heart Failure. Circulation Research, 127, 1109-1111. https://doi.org/10.1161/circresaha.120.317910
|
[25]
|
Yu, Q., Zhao, G., Liu, J., Peng, Y., Xu, X., Zhao, F., et al. (2023) The Role of Histone Deacetylases in Cardiac Energy Metabolism in Heart Diseases. Metabolism, 142, Article 155532. https://doi.org/10.1016/j.metabol.2023.155532
|
[26]
|
Chan, D.C. (2020) Mitochondrial Dynamics and Its Involvement in Disease. Annual Review of Pathology: Mechanisms of Disease, 15, 235-259. https://doi.org/10.1146/annurev-pathmechdis-012419-032711
|
[27]
|
van der Bliek, A.M., Shen, Q. and Kawajiri, S. (2013) Mechanisms of Mitochondrial Fission and Fusion. Cold Spring Harbor Perspectives in Biology, 5, a011072. https://doi.org/10.1101/cshperspect.a011072
|
[28]
|
Hu, J., Liu, T., Fu, F., Cui, Z., Lai, Q., Zhang, Y., et al. (2022) Omentin1 Ameliorates Myocardial Ischemia-Induced Heart Failure via SIRT3/FOXO3a-Dependent Mitochondrial Dynamical Homeostasis and Mitophagy. Journal of Translational Medicine, 20, Article No. 447. https://doi.org/10.1186/s12967-022-03642-x
|
[29]
|
Nan, J., Hu, H., Sun, Y., Zhu, L., Wang, Y., Zhong, Z., et al. (2017) TNFR2 Stimulation Promotes Mitochondrial Fusion via Stat3-and NF-kB-Dependent Activation of OPA1 Expression. Circulation Research, 121, 392-410. https://doi.org/10.1161/circresaha.117.311143
|
[30]
|
胡伯昂. SIRT3基因在慢性心力衰竭患者中的表达及其与氧化应激的相关性研究[D]: [硕士学位论文]. 济南: 山东大学, 2019.
|
[31]
|
Li, H. and Cai, Z. (2023) SIRT3 Regulates Mitochondrial Biogenesis in Aging-Related Diseases. The Journal of Biomedical Research, 37, 77-88. https://doi.org/10.7555/jbr.36.20220078
|
[32]
|
Samant, S.A., Zhang, H.J., Hong, Z., Pillai, V.B., Sundaresan, N.R., Wolfgeher, D., et al. (2014) SIRT3 Deacetylates and Activates OPA1 to Regulate Mitochondrial Dynamics during Stress. Molecular and Cellular Biology, 34, 807-819. https://doi.org/10.1128/mcb.01483-13
|
[33]
|
Liu, J., Yan, W., Zhao, X., Jia, Q., Wang, J., Zhang, H., Liu, C., He, K. and Sun, Z. (2019) Sirt3 Attenuates Post-Infarction Cardiac Injury via Inhibiting Mitochondrial Fission and Normalization of Ampk-Drp1 Pathways. Cellular Signalling, 53, 1-13. https://doi.org/10.1016/j.cellsig.2018.09.009
|
[34]
|
Geng, Z., Chen, W., Lu, Q., Fu, B. and Fu, X. (2024) UCP2 Overexpression Activates SIRT3 to Regulate Oxidative Stress and Mitochondrial Dynamics Induced by Myocardial Injury. Archives of Biochemistry and Biophysics, 753, Article 109918. https://doi.org/10.1016/j.abb.2024.109918
|
[35]
|
Tsutsui, H., Kinugawa, S. and Matsushima, S. (2008) Mitochondrial Oxidative Stress and Dysfunction in Myocardial Remodelling. Cardiovascular Research, 81, 449-456. https://doi.org/10.1093/cvr/cvn280
|
[36]
|
Pagan, L.U., Gomes, M.J., Martinez, P.F. and Okoshi, M.P. (2022) Oxidative Stress and Heart Failure: Mechanisms, Signalling Pathways, and Therapeutics. Oxidative Medicine and Cellular Longevity, 2022, 1-3. https://doi.org/10.1155/2022/9829505
|
[37]
|
Peng, S., Lu, X., Qi, Y., Li, J., Xu, J., Yuan, T., et al. (2020) LCZ696 Ameliorates Oxidative Stress and Pressure Overload-Induced Pathological Cardiac Remodeling by Regulating the Sirt3/MnSOD Pathway. Oxidative Medicine and Cellular Longevity, 2020, 1-15. https://doi.org/10.1155/2020/9815039
|
[38]
|
Chen, Y., Luo, H., Sun, L., Xu, M., Yu, J., Liu, L., et al. (2018) Dihydromyricetin Attenuates Myocardial Hypertrophy Induced by Transverse Aortic Constriction via Oxidative Stress Inhibition and SIRT3 Pathway Enhancement. International Journal of Molecular Sciences, 19, Article 2592. https://doi.org/10.3390/ijms19092592
|
[39]
|
Chang, G., Chen, Y., Zhang, H. and Zhou, W. (2019) Trans Sodium Crocetinate Alleviates Ischemia/reperfusion-Induced Myocardial Oxidative Stress and Apoptosis via the SIRT3/FOXO3a/SOD2 Signaling Pathway. International Immunopharmacology, 71, 361-371. https://doi.org/10.1016/j.intimp.2019.03.056
|
[40]
|
郑婧婧, 卜宁, 赵钊, 等. 心肌肥大表观遗传调控的研究进展[J]. 基础医学与临床, 2022(3): 520-524.
|
[41]
|
Ding, Y., Zhang, Y., Lu, J., Li, B., Yu, W., Yue, Z., et al. (2020) Microrna-214 Contributes to Ang II-Induced Cardiac Hypertrophy by Targeting SIRT3 to Provoke Mitochondrial Malfunction. Acta Pharmacologica Sinica, 42, 1422-1436. https://doi.org/10.1038/s41401-020-00563-7
|
[42]
|
Li, Z., Lu, G., Lu, J., Wang, P., Zhang, X., Zou, Y., et al. (2022) SZC-6, a Small-Molecule Activator of SIRT3, Attenuates Cardiac Hypertrophy in Mice. Acta Pharmacologica Sinica, 44, 546-560. https://doi.org/10.1038/s41401-022-00966-8
|
[43]
|
Li, Z., Hu, O., Xu, S., Lin, C., Yu, W., Ma, D., et al. (2024) The SIRT3-ATAD3A Axis Regulates MAM Dynamics and Mitochondrial Calcium Homeostasis in Cardiac Hypertrophy. International Journal of Biological Sciences, 20, 831-847. https://doi.org/10.7150/ijbs.89253
|
[44]
|
Feng, X., Wang, Y., Chen, W., Xu, S., Li, L., Geng, Y., et al. (2020) SIRT3 Inhibits Cardiac Hypertrophy by Regulating PARP-1 Activity. Aging, 12, 4178-4192. https://doi.org/10.18632/aging.102862
|
[45]
|
Wang, M., Ding, Y., Hu, Y., Li, Z., Luo, W., Liu, P., et al. (2023) SIRT3 Improved Peroxisomes-Mitochondria Interplay and Prevented Cardiac Hypertrophy via Preserving PEX5 Expression. Redox Biology, 62, Article 102652. https://doi.org/10.1016/j.redox.2023.102652
|
[46]
|
Soliman, H. and Rossi, F.M.V. (2020) Cardiac Fibroblast Diversity in Health and Disease. Matrix Biology, 91, 75-91. https://doi.org/10.1016/j.matbio.2020.05.003
|
[47]
|
易胜利, 邓玮. 心肌纤维化发病机制研究进展[J]. 现代医药生, 2022, 38(12): 2051-2055.
|
[48]
|
Su, H., Zeng, H., Liu, B. and Chen, J. (2020) Sirtuin 3 Is Essential for Hypertension-Induced Cardiac Fibrosis via Mediating Pericyte Transition. Journal of Cellular and Molecular Medicine, 24, 8057-8068. https://doi.org/10.1111/jcmm.15437
|
[49]
|
Su, H., Cantrell, A.C., Chen, J., Gu, W. and Zeng, H. (2023) SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via P53 Acetylation. Cells, 12, Article 1428. https://doi.org/10.3390/cells12101428
|
[50]
|
Palomer, X., Román-Azcona, M.S., Pizarro-Delgado, J., Planavila, A., Villarroya, F., Valenzuela-Alcaraz, B., et al. (2020) Sirt3-Mediated Inhibition of FOS through Histone H3 Deacetylation Prevents Cardiac Fibrosis and Inflammation. Signal Transduction and Targeted Therapy, 5, Article No. 14. https://doi.org/10.1038/s41392-020-0114-1
|
[51]
|
雷雨, 任静, 付蓉, 等. 心力衰竭与心肌细胞凋亡及中医药研究进展[J]. 中医药临床杂志, 2021(9): 1834-1837.
|
[52]
|
Zhai, M., Li, B., Duan, W., Jing, L., Zhang, B., Zhang, M., et al. (2017) Melatonin Ameliorates Myocardial Ischemia Reperfusion Injury through Sirt3-Dependent Regulation of Oxidative Stress and Apoptosis. Journal of Pineal Research, 63, e12419. https://doi.org/10.1111/jpi.12419
|
[53]
|
Adam, L.N., Al-Habib, O.A.M. and Shekha, M.S. (2023) Exploring the Role of Sirtuin 3 Gene Polymorphisms and Oxidative Stress Markers in the Susceptibility to Coronary Artery Disease. Molecular Biology Reports, 50, 9221-9228. https://doi.org/10.1007/s11033-023-08825-3
|
[54]
|
Song, X., Wang, H., Wang, C., Ji, G., Jiang, P., Liang, D., et al. (2022) Association of Sirtuin Gene Polymorphisms with Susceptibility to Coronary Artery Disease in a North Chinese Population. BioMed Research International, 2022, 1-8. https://doi.org/10.1155/2022/4294008
|
[55]
|
朱林. SIRT3基因多态性与老年慢性心衰相关性的初步临床研究[D]: [硕士学位论文]. 济南: 山东大学, 2017.
|