血浆代谢物丙酮酸对急性Stanford B型主动脉夹层的预测诊断价值
The Predictive Diagnostic Value of Plasma Metabolite Pyruvate for Acute Stanford B Aortic Dissection
DOI: 10.12677/md.2024.143042, PDF, HTML, XML, 下载: 3  浏览: 45  国家自然科学基金支持
作者: 迪里夏提·斯提, 阿斯亚·阿不得斯木, 侣 慧, 马 翔*:新疆医科大学第一附属医院,心脏中心,新疆 乌鲁木齐
关键词: Stanford B型主动脉夹层丙酮酸代谢组学Stanford B aortic dissection; Pyruvate; Metabolomics
摘要: 目的:观察急性Stanford B型主动脉夹层(Aortic Dissection, AD)患者血浆代谢物丙酮酸水平变化,探讨其预测诊断价值。方法:选取2023年1月至2024年1在新疆医科大学第一附属医院诊治的急性Stanford B型AD患者及健康对照组,进行非靶向代谢物组学检测及扩大人群ELISA实验验证。结果:筛选出胍基丁胺、N-乙酰苯丙氨酸、D-甘油酸等代谢物在AD组中含量明显高于HC组,分布差异有统计学意义(P < 0.001)。而L-组氨酸、L-瓜氨酸、1-硬脂酰-2-花生酰-SN-甘油、L-乳酸、sn-甘油-3-磷酸胆碱、L-脯氨酸、2-磷酸-D-甘油酸、丙酮酸、L-鸟氨酸、烟酸等代谢物在AD组中含量低于HC组,分布差异有统计学意义(P < 0.001),其中丙酮酸与主动脉夹层相关性最强(r = −0.835)。扩大人群(AD = 82, HC = 82)用丙酮酸酶联免疫吸附测定(Enzyme-Linked Immunosorbent Assay, ELISE)试剂盒进行验证,得到AD vs HC组中丙酮酸在AD组中的含量低于HC组,差异有统计学意义(AD: 1.527 ± 0.215; HC: 2.116 ± 0.249, AD vs HC, P < 0.001)。进一步行丙酮酸与AD患者血生化指标间的相关性分析得出丙酮酸与尿酸、甘油三脂、总胆固醇、高密、低密、总胆红素及CK-MB等均正相关,皮尔逊相关系数r分别是0.025、0.015、0.210、0.264、0.293、0.170,而与尿素、肌酐、血糖、总胆红素、直胆、非结合胆红素胆、CK、D二聚体、C反应蛋白、白介素-6及降钙素原等均负相关,皮尔逊相关系数r为−0.05、−0.215、−0.037、−0.265、−0.084、−0.098、−0.168、−0.392、−0.626、−0.457、−0.647。最终丙酮酸预测区分Stanford B型AD和HC,AUC值为0.959,95% CI:0.927~0.990,P < 0.001,约登指数为0.878,灵敏度为0.927,特异度为0.951。结论:急性Stanford B型AD中丙酮酸水平较低,预测诊断急性Stanford B型主动脉夹层的效能良好,可作为潜在的新型生物标志物,为临床上探寻快捷、灵敏的预测诊断方法提供一定的理论基础。
Abstract: Objective: Observing the changes in plasma metabolite pyruvate levels in patients with acute Stanford B aortic dissection (AD) and exploring its predictive diagnostic value. Method: We identified 28 patients with acute Stanford B AD treated at the First Affiliated Hospital of Xinjiang Medical University from January 2022 to July 2023, and matched them with 28 healthy control subjects. Conduct non targeted metabolomics testing and expand population ELISA experiments for validation. Results: The metabolites of Agmatine, N-Acetyl-L-phenylalanine, and D-glycerate Acid were significantly higher in the AD group than in the HC group, and the distribution difference was statistically significant (P < 0.001).The levels of metabolites such as N-2-Phospho-D-glyceric acid, L-Histidine, L-Citrulline, 1-Stearoyl-2-arachidonoyl-SN-glycerol, L-Lactic Acid, Pyruvic Acid, Sn-Glycero-3-Phosphocholine, L-Ornithine, L-Proline and Nicotinic Acid in the AD group were lower than those in the HC group, and the distribution difference was statistically significant (P < 0.001). Among them, pyruvate had the strongest correlation with aortic dissection (r = −0.835). Expanded population (AD = 82, HC = 82) was validated using the Enzyme Linked Immunosorbent Assay (ELISE) kit, and it was found that the content of pyruvate in the AD vs HC group was lower than that in the HC group, with statistical significance (AD: 1.527 ± 0.215; HC: 2.116 ± 0.249, AD vs HC, P < 0.001). Further correlation analysis between pyruvate and blood biochemical indicators in AD patients revealed that pyruvate was positively correlated with uric acid, triglycerides, total cholesterol, high-density, low-density, total bilirubin, and CK-MB, with Pearson correlation coefficients of 0.025, 0.015, 0.210, 0.264, 0.293, and 0.170, respectively. However, it was negatively correlated with urea, creatinine, blood glucose, total bilirubin, straight bile, unconjugated bilirubin bile, CK, D-dimer, C-reactive protein, interleukin-6, and procalcitonin, with Pearson correlation coefficients of −0.05, −0.215, −0.037, −0.265, −0.084. −0.098, −0.168, −0.392, −0.626, −0.457, −0.647. The final prediction of pyruvate distinguishes Stanford B AD and HC, with an AUC value of 0.959, 95% CI: 0.927~0.990, P < 0.001, Youden index of 0.878, sensitivity of 0.927, and specificity of 0.951. Conclusions: The levels of pyruvate in acute Stanford B AD are low, indicating good predictive diagnostic efficacy for acute Stanford B AD. It can serve as a potential new biomarker and provide a theoretical basis for exploring fast and sensitive predictive diagnostic methods in clinical practice.
文章引用:迪里夏提·斯提, 阿斯亚·阿不得斯木, 侣慧, 马翔. 血浆代谢物丙酮酸对急性Stanford B型主动脉夹层的预测诊断价值[J]. 医学诊断, 2024, 14(3): 281-292. https://doi.org/10.12677/md.2024.143042

1. 引言

Stanford B型主动脉夹层(Aortic Dissection, AD)是一种严重危害生命健康的心血管疾病,有较高的病死率,多数Stanford B AD具有起病急、发展快的特点。有研究结果显示,欧美国家AD的年发病率为(2.6~6.0)/10万。急性主动脉夹层国际注册研究(The International Registry of Acute Aortic Dissection, IRAD)结果显示Stanford B AD患者占所有类型夹层的33% [1]。B型AD患者症状没有特异性,与心肌梗死或肺栓塞的症状相似,有时症状不明显。因此,B型AD往往难以诊断,需要丰富的临床经验。AD在未经治疗的患者中,症状发作后死亡率每小时约为1%,可见早期及时准确的诊断并且选择适当的手术或医疗干预以降低高致死率至关重要[2]

代谢组学在识别预测心血管疾病方面已成为热点,一些特征性的代谢物已成为心脏肥大、心力衰竭、冠状动脉疾病等心血管疾病风险预测因子[3]。然而只有少数研究专注于胸主动脉疾病,如富马酸盐和琥珀酸盐在主动脉疾病中改变,可作为潜在生物标志物[4]-[7]。既往研究已证明丙酮酸是体内产生的三碳酮酸,它是糖酵解途径的最终产物,丙酮酸在三大营养物质的代谢联系中起着重要的枢纽作用[8],有抗氧化作[9]。然而丙酮酸与主动脉夹层之间的关系尚未报道。因此本研究首次观察急性Stanford B型AD病人血浆代谢物丙酮酸水平变化,探讨丙酮酸在急性Stanford B型AD中的预测价值。

2. 资料与方法

2.1. 一般资料

从2023年1月至2023年7月,在新疆医科大学第一附属医院明确诊断为Stanford B型AD患者28名,以及同期在新疆医科大学第一附属医院体检的健康人群28名进行血浆代谢组学分析。同时纳入了从2023年1月至2024年1月期间在新疆医科大学第一附属医院明确诊断为Stanford B型AD患者82名,以及同期在新疆医科大学第一附属医院体检的健康人群82名,进行扩大人群ELISA验证。AD组纳入标准:1) 18~80岁通过主动脉CTA诊断为Standford B型主动脉夹层且发病14天内的急性期患者。排除标准:酗酒、主动脉疾病遗传家族史、肿瘤合并症、严重器官衰竭、免疫系统疾病、胃肠道疾病等。2) HC组纳入标准:年龄在18~80岁且无明确病史的健康志愿者。排除标准:慢性病患者及长期使用药物,如他汀类药物、阿司匹林等主要心脑血管预防药物。主动脉CTA数据由本研究中的两名观察者独立确认。本研究经新疆医科大学第一附属医院伦理委员会批准通过(伦理编号:230306-88),研究对象均签署知情同意书。

2.2. 方法

2.2.1. 临床资料收集

通过嘉禾电子病历系统记录患者性别、年龄、吸烟史、饮酒史、血压、脉搏及血生化指标。

2.2.2. 血浆代谢物检测

患者入院后第二天早晨空腹采集外周血3~5 ml,3000 r/分钟离心10分钟分离血浆,−80℃保存。后期基于UPLC-MS/MS检测平台以非靶向代谢组技术鉴定出差异代谢物丙酮酸。具体方法:数据采集仪器系统主要包括超高效液相色谱(Ultra Performance Liquid Chromatography, UPLC)和四级杆飞行时间质谱(Quadrupole-Time of Flight)。液相色谱条件主要包括:色谱柱:ACQUITY HSS T3 (2.1 × 100 mm, 1.8 μm)、流动相A:0.1%甲酸/水;流动相B:0.1%甲酸/乙睛;柱温:40℃;流速:0.4 ml/min;进样量:5 μL。

2.2.3. 酶联免疫吸附试验验证

应用酶联免疫吸附试验(Enzyme-Linked Immunosorbent Assay, ELISA)试剂盒(上海源桔生物科技中心)及多功能酶标仪(美国THERMO Multiskan 60)检测验证血浆丙酮酸水平。

2.3. 统计学处理

应用SPSS26.0软件进行统计分析,正态分布计量资料以均数 ± 标准差表示,2组比较采用独立样本t检验;非正态分布计量资料以中位数(四分位数) [M, (Q1, Q3)]表示,2组比较采用Mann-Whitney U检验;计数资料比较采用χ2检验;采用多因素线性回归分析丙酮酸与主动脉夹层危险因素之间的相关性;绘制ROC曲线,评估血浆丙酮酸水平预测Stanford B型主动脉夹层的效能;检验水准α = 0.05。

3. 结果

3.1. 2组基线资料比较

AD组与对照组年龄、性别、收缩压、舒张压等基线资料是匹配的,两组间比较无统计学差异(P > 0.05);然而,AD组中吸烟患者占比明显高于对照组,而且AD患者脉搏大于对照组,以上差异有统计学意义(P < 0.05),结果见表1

Table 1. Comparison of baseline data between two groups

1. 2组基线资料比较

分组

对照组n = 28

ADn =28

P

年龄(岁)

55.50 ± 12.43

55.77 ± 12.95

0.937

男性(%)

16 (57.1%)

22 (73.3%)

0.195

吸烟(否)

3 (10.7%)

15 (50.5%)

0.001

饮酒(否)

2 (7.1%)

3 (10.0%)

0.698

脉搏(次/分)

73.04 ± 5.23

79.43 ± 13.26

0.019

收缩压(mmHG)

133.61 ± 7.02

141.40 ± 23.26

0.089

舒张压(mmHG)

78.21 ± 8.29

80.13 ± 13.93

0.524

3.2. 分组主成分分析

其中PC1表示第一主成分,PC2表示第二主成分,PC3表示第三主成分。AD:Stanford B型AD,HC:健康对照。

Figure 1. Principal component analysis three dimensional diagram

1. 主成分分析三维图

主成分分析的三维模型显示出AD vs HC组内均存在显著的聚类,两组之间存在明显的分离,结果如图1所示。

3.3. 差异代谢物分析

血浆非靶向代谢组学分析之后得出AD vs HC差异代谢物主要有氨基酸代谢物、胆汁酸代谢物、维生素及辅酶、黄酮类化合物、糖代谢、脂肪酸代谢、色氨酸等。见图2

Alcohol and amines:醇、胺类;Aldehyde,Ketones,Esters:醛、酮、酯类;Alkaloids:生物碱;Amino acid and Its metabolites:氨基酸及其代谢产物;Bile acids:胆汁酸;Carbohydrates and Its metabolites:碳水化合物及其代谢产物;CoEnzyme and vitamins:辅酶和维生素;FA:脂肪酰类;Flavonoids:黄酮类化合物;GL:糖代谢;GP:甘油磷脂类;Heterocyclic compounds:杂环化合物;Hormones and hormone related compounds:激素和激素相关化合物;Lignans and Coumarins:木质素和香豆素;Nucleotide and Its metabolites:核苷酸及其代谢产物;Others:其他;Phenolic acids:酚酸类;SL:鞘脂类;Phenolic acids:类固醇;Terpenoids:萜类;Tryptamines,Cholines,Pigments:色氨酸、胆碱、色素。图中的每一个点表示一种代谢物,不同颜色表示不同分类;横坐标表示某物质在两组样品中相对含量差异倍数的对数值(log2FC),横坐标绝对值越大,说明该物质在两组样品间的含量差异越大,圆点的大小代表VIP值。

Figure 2. Scatter plot of differential metabolites

2. 差异代谢物散点图

3.4. 差异代谢物KEGG富集分析

差异代谢物P-value排名前20个通路展示如下图(图3)所示,可见,差异代谢产物主要富集在脂代谢、氨基酸转运、炎症过程中的琥珀酸信号传导以及丙酮酸代谢等通路。

Fatty Acid Biosynthesis:脂肪酸生物合成;Glycerolipid Metabolism:甘油代谢;Familial Lipoprotein Lipase Deficiency:家族性脂蛋白脂酶缺乏症;D-Glyceric Acidura:D-甘油酸;tRNA Charging:Proline:tRNA装载脯氨酸;Mitochondrial Beta-Oxidation of Medium Chain Saturated Fatty Acids:中链饱和脂肪酸的线粒体β氧化;Succinate Signalling During Inflammation:炎症过程中的琥珀酸信号传导;Buprenorphine Action Pathway;3-Methylthiofentanyl Action Pathway:3-甲硫基芬太尼作用途径;Pyruvate Dehydrogenase Complex Deficiency:丙酮酸脱氢酶复合体缺乏症;Leigh Syndrome:亚急性坏死性脑脊髓病;Pyruvate Metabolism:丙酮酸代谢;Pyruvate Decarboxylase E1 Component Deficiency (PDHE1 Deficiency):丙酮酸脱羧酶E1成分缺乏症(PDHE1缺乏症);Primary Hyperoxaluria II,PH2:原发性高草酸尿II,PH2;Pyruvate Kinase Deficiency:丙酮酸激酶缺乏;Taurine and Hypotaurine Metabolism:牛磺酸和低牛磺酸代谢;Alpha Linolenic Acid and Linoleic Acid Metabolism:α亚油酸与亚油酸代谢。横坐标是对应于每条通路的Rich因子,纵坐标是通道名(根据P值进行排列),点的颜色反应P值的尺寸,红色的点代表丰富程度更高。这些点的尺寸反映了不同代谢产物被富集数量。

Figure 3. Enrichment map of differential metabolite KEGG

3. 差异代谢物KEGG富集图

3.5. 初筛差异代谢物

N-Acetyl-L-phenylalanine:N-乙酰苯丙氨酸;2-Phospho-D-glyceric acid:2-磷酸-D-甘油酸;Agmatine:胍基丁胺;L-Histidine:L-组氨酸;D-Glyceric Acid:D-甘油酸;L-Citrulline:L-瓜氨酸;1-Stearoyl-2-arachidonoyl-SN-glycerol:1-硬脂酰-2-花生酰-SN-甘油;L-Lactic Acid:L-乳酸;Pyruvic Acid:丙酮酸;Sn-Glycero-3-Phosphocholine:Sn-甘油-3-磷酸胆碱;L-Ornithine:L-鸟氨酸;L-Proline:L-脯氨酸;Nicotinic Acid:烟酸。AD:Stanford B型AD,HC:健康对照。***P < 0.001。

Figure 4. Column chart of differential metabolites

4. 差异代谢物柱状图

根据检测出的差异代谢物及其富集通路,初步筛选出了13种差异代谢物。这13种差异代谢物在组间分布情况如图4所示。可见胍基丁胺、N-乙酰苯丙氨酸、D-甘油酸3种代谢物在AD组中含量明显高于HC组,分布差异有统计学意义(P < 0.001)。而其余L-组氨酸、L-瓜氨酸、1-硬脂酰-2-花生酰-SN-甘油、L-乳酸、sn-甘油-3-磷酸胆碱、L-脯氨酸、2-磷酸-D-甘油酸、丙酮酸、L-鸟氨酸、烟酸等代谢物在AD组中含量低于HC组,分布差异有统计学意义(P < 0.001)。

3.6. 差异代谢物与Stanford B型AD之间相关性强度分析

为了确定最具有特征性的差异代谢物,我们进一步做了差异代谢物与Stanford B型AD之间相关性热图分析(图5),图中显示相关系数大小,其越大说明相关性越强,越小说明相关性越弱。可见N-乙酰苯丙氨酸、胍基丁胺、D-甘油酸与AD vs HC正相关;而2-磷酸-D-甘油酸、L-Histidine:L-组氨酸、L-Citrulline:L-瓜氨酸、1-硬脂酰-2-花生酰-SN-甘油、L-乳酸、丙酮酸、Sn-甘油-3-磷酸胆碱、L-鸟氨酸、L-脯氨酸和烟酸与AD vs HC负相关,其中丙酮酸与AD vs HC相关性最强(r = −0.835)。

N-Acetyl-L-phenylalanine:N-乙酰苯丙氨酸;2-Phospho-D-glyceric acid:2-磷酸-D-甘油酸;Agmatine:胍基丁胺;L-Histidine:L-组氨酸;D-Glyceric Acid:D-甘油酸;L-Citrulline:L-瓜氨酸;1-Stearoyl-2-arachidonoyl-SN-glycerol:1-硬脂酰-2-花生酰-SN-甘油;L-Lactic Acid:L-乳酸;Pyruvic Acid:丙酮酸;Sn-Glycero-3- Phosphocholine:Sn-甘油-3-磷酸胆碱;L-Ornithine:L-鸟氨酸;L-Proline:L-脯氨酸;Nicotinic Acid:烟酸。热图填充颜色偏红表示正相关,颜色偏蓝负相关。

Figure 5. Heat map of differential metabolite correlation

5. 差异代谢物相关性热图

3.7. 扩大人群ELISA实验验证

综合以上结果,我们初步筛选出丙酮酸为特异性代谢物,并且进一步扩大人群AD = 82例、HC = 82例进行ELISA实验验证。结果如下图所示(图6),在AD vs HC组中丙酮酸在AD组中的含量低于HC组,差异有统计学意义(AD: 1.527 ± 0.215; HC: 2.116 ± 0.249, AD vs HC, P < 0.001)。

AD:Stanford B型AD,HC:健康对照。***P < 0.001。

Figure 6. ELISA validation bar chart

6. 血清ELISA验证柱状图

3.8. 丙酮酸与血生化指标间的相关性分析

丙酮酸与血生化指标之间的相关性分析结果如图7所示:丙酮酸与尿酸、甘油三脂、总胆固醇、高密、低密、总胆红素及CK-MB等均正相关,皮尔逊相关系数r分别是0.025、0.015、0.210、0.264、0.293、0.170,而与尿素、肌酐、血糖、总胆红素、直胆、非结合胆红素胆、CK、D二聚体、C反应蛋白、白介素-6及降钙素原等均负相关,皮尔逊相关系数r为−0.05、−0.215、−0.037、−0.265、−0.084、−0.098、−0.168、−0.392、−0.626、−0.457、−0.647。

Figure 7. Heat map analysis of the correlation between pyruvate and blood biochemical indicators

7. 丙酮酸与血生化指标间的相关性热图分析

3.9. 丙酮酸鉴别Stanford B型AD效能分析

Figure 8. Prediction Model ROC Curve

8. 预测模型ROC曲线图

鉴于以上结果得出丙酮酸在AD与HC组中分布有明显差异,我们把丙酮酸作为Stanford B型AD的潜在生物标志物,建立了预测诊断模型,结果如图8所示,得出代谢物丙酮酸预测区分Stanford B型AD和HC,AUC值为0.959,95% CI:0.927-0.990,P < 0.001,约登指数为0.878,灵敏度为0.927,特异度为0.951。

4. 讨论

主动脉夹层系血液从主动脉内膜撕裂处进入主动脉中膜,使中膜分离,沿主动脉长轴方向扩展形成主动脉壁的真假两腔分离状态,通常从症状出现迅速发展到发生危及生命的并发症甚至死亡。急性Stanford B型AD特征是仅累及降主动脉,可以通过早期及时的药物及介入治疗控制疾病进一步发展。然而若诊断不及时导致治疗延误,急性Stanford B型AD的30天死亡率可达13.3% [10]。此外有研究报道,B型AD院内总死亡率为13%,大多数死亡发生在第一周内[11]。鉴于以上所述,针对Stanford B型AD早期诊断和治疗非常有必要[12]

在本研究中,我们使用代谢组学方法对B型AD与HC组研究对象的血浆样本进行分析。发现胍基丁胺、N-乙酰苯丙氨酸、D-甘油酸3种代谢物在AD组中含量明显高于HC组。胍基丁胺是多胺家族的普通成员,并且通过精氨酸脱羧酶(Arginine Decarboxylase, ADC)的作用由L-精氨酸产生;因此它有时也被称为脱羧精氨酸。有研究报道胍基丁胺对几种分子和细胞靶点具有多效神经调节活性,包括一氧化氮(NO)、胰岛素和BDNF信号传导[13] [14]。在本研究中胍基丁胺与主动脉夹层的发生有关,其对主动脉夹层的具体作用机制有待进一步研究。有一项关于N-乙酰苯丙氨酸的研究中对44例死后人脑组织进行了非靶向和靶向代谢组学研究[15],比较阿尔茨海默病组与正常对照组海马组织代谢的差异,发现阿尔茨海默病组N-乙酰苯丙氨酸上调[15],具体机制暂无研究。而在我们的研究中N-乙酰苯丙氨酸在主动脉夹层组较健康对照组含量高。正常量的D甘油酸在人体内扮演着重要的角色,具有促进代谢、抗炎、维持健康等功效,但是D甘油酸含量增加时则适得其反,既往有研究共收集28份羊水标本,其中生长受限组18份,对照组10份,通过色谱–质谱法检测所有样品中的差异代谢产物,发现羊水细胞中D甘油酸表达上调[16],我们的研究中D甘油酸也是与病例组正相关。

在本研究中我们又得到L-组氨酸、L-瓜氨酸、1-硬脂酰-2-花生酰-SN-甘油、L-乳酸、sn-甘油-3-磷酸胆碱、L-脯氨酸、2-磷酸-D-甘油酸、丙酮酸、L-鸟氨酸、烟酸等代谢物在AD组中含量低于HC组。L-组氨酸是一种营养必需氨基酸,具有独特的生物化学和生理学特性,L-组氨酸作为营养补充剂在多种疾病中的应用提供了良好的理论依据[17]。有研究显示,口服外源性的L-精氨酸和L-瓜氨酸可以通过增加NO的产生有效降低血压[18]。来自人类和动物研究的可用数据表明,2型糖尿病患者补充L-瓜氨酸可降低血糖和游离脂肪酸并改善血脂异常,其潜在机制包括胰腺β细胞胰岛素分泌增加、骨骼肌葡萄糖摄取增加以及脂肪组织中脂解和β-氧化增加和甘油生成减少[19]。乳酸作为一种代谢产物,不仅为细胞的生长发育提供能量,而且作为一种重要的信号分子,影响细胞内蛋白质的生化功能,调节各种细胞的生物学功能,包括能量调节,免疫耐受性,记忆形成,伤口愈合,缺血性组织损伤等[20]

有一项病例对照研究中发现L-鸟氨酸通过提高能量消耗效率和促进氨排泄而具有抗疲劳作用[21]。在缺乏抑制性G蛋白的ADP的胰岛中,L-鸟氨酸引起的胰岛素分泌增加2~3倍[22],可见L-鸟氨酸对氨排泄,降低血糖等方面有积极的促进作用。脯氨酸是一种非必需的蛋白质氨基酸,可从饮食和内源性合成中获得。脯氨酸可直接改变氧化还原稳态的替代手段是由于脯氨酸本身已被证明可抑制ROS [23] [24]。最近的一项研究表明,心肌梗死后脯氨酸代谢发生了变化,但重要的是,脯氨酸补充能够减少氧化应激和细胞凋亡[25]。有研究报道,烟酸通过抑制NLRP 3炎性小体/焦亡途径减轻实验性非酒精性脂肪性肝炎[26],烟酸衍生物能够改善兔的粥样硬化性心肌病[27]

在以上差异性代谢物中我们最终确定了关联性最强的丙酮酸作为特异性代谢物,并且扩大人群后仍发现其在AD组含量较少,而在HC组含量高,为了探寻丙酮酸对AD的影响,我们进一步做了丙酮酸与AD患者血生化指标之间的相关性分析,发现丙酮酸与AD危险因素如炎症因子之间呈负相关。最终建立预测诊断模型发现丙酮酸对Stanford B型主动脉夹层预测诊断效能理想。我们知道,糖尿病和肥胖可促进AD发生发展,而丙酮酸可以缓解2型糖尿病和肥胖症的代谢问题[28] [29],因此其与AD呈负相关。

本研究结果体现了预测诊断生物标志物的高敏感性和特异性、方便易行、安全、经济等特征,在临床实践中具有一定的参考价值。然而,本研究是单中心研究,样本量少,仍需要多中心,扩大样本量进一步证实,尚需进行分子机制的探讨。

5. 结论

急性Stanford B型AD中丙酮酸水平较低,预测诊断急性Stanford B型主动脉夹层的效能良好,可作为潜在的新型生物标志物,为临床上探寻快捷、灵敏的预测诊断方法提供一定的理论基础。

基金项目

国家自然科学基金项目(82360090);新疆维吾尔自治区自然科学基金资助项目(2022D01D66);新疆维吾尔自治区重点研发任务专项(2022B03022-3)。

NOTES

*通讯作者。

参考文献

[1] Pape, L.A., Awais, M., Woznicki, E.M., Suzuki, T., Trimarchi, S., Evangelista, A., et al. (2015) Presentation, Diagnosis, and Outcomes of Acute Aortic Dissection: 17-Year Trends from the International Registry of Acute Aortir Dissection. Journal of the American College of Cardiology, 66, 350-358.
https://doi.org/10.1016/j.jacc.2015.05.029
[2] Vilacosta, I., San Román, J.A., di Bartolomeo, R., Eagle, K., Estrera, A.L., Ferrera, C., et al. (2021) Acute Aortic Syndrome Revisited: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 78, 2106-2125.
https://doi.org/10.1016/j.jacc.2021.09.022
[3] McGarrah, R.W., Crown, S.B., Zhang, G., Shah, S.H. and Newgard, C.B. (2018) Cardiovascular Metabolomics. Circulation Research, 122, 1238-1258.
https://doi.org/10.1161/circresaha.117.311002
[4] Zhou, X., Wang, R., Zhang, T., Liu, F., Zhang, W., Wang, G., et al. (2019) Identification of Lysophosphatidylcholines and Sphingolipids as Potential Biomarkers for Acute Aortic Dissection via Serum Metabolomics. European Journal of Vascular and Endovascular Surgery, 57, 434-441.
https://doi.org/10.1016/j.ejvs.2018.07.004
[5] Zeng, Q., Rong, Y., Li, D., Wu, Z., He, Y., Zhang, H., et al. (2020) Identification of Serum Biomarker in Acute Aortic Dissection by Global and Targeted Metabolomics. Annals of Vascular Surgery, 68, 497-504.
https://doi.org/10.1016/j.avsg.2020.06.026
[6] Huang, H., Ye, G., Lai, S., Zou, H., Yuan, B., Wu, Q., et al. (2021) Plasma Lipidomics Identifies Unique Lipid Signatures and Potential Biomarkers for Patients with Aortic Dissection. Frontiers in Cardiovascular Medicine, 8, Article ID: 757022.
https://doi.org/10.3389/fcvm.2021.757022
[7] Cui, H., Chen, Y., Li, K., Zhan, R., Zhao, M., Xu, Y., et al. (2021) Untargeted Metabolomics Identifies Succinate as a Biomarker and Therapeutic Target in Aortic Aneurysm and Dissection. European Heart Journal, 42, 4373-4385.
https://doi.org/10.1093/eurheartj/ehab605
[8] 王翔魏. 丙酮酸补充与运动能力[J]. 北京体育大学学报, 2002, 25(2): 207-210.
[9] 干懿洁, 丁树哲. 丙酮酸的抗氧化作用[J]. 中国临床康复, 2006, 10(8): 141-143.
[10] Howard, D.P.J., Banerjee, A., Fairhead, J.F., Perkins, J., Silver, L.E. and Rothwell, P.M. (2013) Population-Based Study of Incidence and Outcome of Acute Aortic Dissection and Premorbid Risk Factor Control: 10-Year Results from the Oxford Vascular Study. Circulation, 127, 2031-2037.
https://doi.org/10.1161/circulationaha.112.000483
[11] Evangelista, A., Isselbacher, E.M., Bossone, E., Gleason, T.G., Eusanio, M.D., Sechtem, U., et al. (2018) Insights from the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research. Circulation, 137, 1846-1860.
https://doi.org/10.1161/circulationaha.117.031264
[12] Nienaber, C.A., Clough, R.E., Sakalihasan, N., Suzuki, T., Gibbs, R., Mussa, F., et al. (2016) Aortic Dissection. Nature Reviews Disease Primers, 2, Article No. 16053.
https://doi.org/10.1038/nrdp.2016.53
[13] Lavinsky, D., Arteni, N.S. and Netto, C.A. (2003) Agmatine Induces Anxiolysis in the Elevated Plus Maze Task in Adult Rats. Behavioural Brain Research, 141, 19-24.
https://doi.org/10.1016/s0166-4328(02)00326-1
[14] Valverde, A.P., Camargo, A. and Rodrigues, A.L.S. (2021) Agmatine as a Novel Candidate for Rapid-Onset Antidepressant Response. World Journal of Psychiatry, 11, 981-996.
https://doi.org/10.5498/wjp.v11.i11.981
[15] Liu, P., Yang, Q., Yu, N., Cao, Y., Wang, X., Wang, Z., et al. (2021) Phenylalanine Metabolism Is Dysregulated in Human Hippocampus with Alzheimer’s Disease Related Pathological Changes. Journal of Alzheimers Disease, 83, 609-622.
https://doi.org/10.3233/jad-210461
[16] Chen, F., Li, Z., Xu, Y., Huang, S., Li, Y. and Jiang, W. (2023) Non-Targeted Metabolomic Study of Fetal Growth Restriction. Metabolites, 13, Article No. 761.
https://doi.org/10.3390/metabo13060761
[17] Holeček, M. (2020) Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients, 12, Article No. 848.
https://doi.org/10.3390/nu12030848
[18] Khalaf, D., Krüger, M., Wehland, M., Infanger, M. and Grimm, D. (2019) The Effects of Oral L-Arginine and L-Citrulline Supplementation on Blood Pressure. Nutrients, 11, Article No. 1679.
https://doi.org/10.3390/nu11071679
[19] Bagheripour, F., Jeddi, S., Kashfi, K. and Ghasemi, A. (2023) Metabolic Effects of L-Citrulline in Type 2 Diabetes. Acta Physiologica, 237, e13937.
https://doi.org/10.1111/apha.13937
[20] Zhang, Y., Zhai, Z., Duan, J., Wang, X., Zhong, J., Wu, L., et al. (2022) Lactate: The Mediator of Metabolism and Immunosuppression. Frontiers in Endocrinology, 13, Article ID: 901495.
https://doi.org/10.3389/fendo.2022.901495
[21] Sugino, T., Shirai, T., Kajimoto, Y. and Kajimoto, O. (2008) L-Ornithine Supplementation Attenuates Physical Fatigue in Healthy Volunteers by Modulating Lipid and Amino Acid Metabolism. Nutrition Research, 28, 738-743.
https://doi.org/10.1016/j.nutres.2008.08.008
[22] Leiss, V., Flockerzie, K., Novakovic, A., Rath, M., Schönsiegel, A., Birnbaumer, L., et al. (2014) Insulin Secretion Stimulated by l-Arginine and Its Metabolite l-Ornithine Depends on Gα(i2). American Journal of Physiology-Endocrinology and Metabolism, 307, E800-E812.
https://doi.org/10.1152/ajpendo.00337.2014
[23] Kaul, S., Sharma, S.S. and Mehta, I.K. (2006) Free Radical Scavenging Potential of L-Proline: Evidence from in Vitro Assays. Amino Acids, 34, 315-320.
https://doi.org/10.1007/s00726-006-0407-x
[24] Phang, J.M., Liu, W., Hancock, C. and Christian, K.J. (2012) The Proline Regulatory Axis and Cancer. Frontiers in Oncology, 2, Article No. 60.
https://doi.org/10.3389/fonc.2012.00060
[25] Wang, J., Xue, Z., Lin, J., Wang, Y., Ying, H., Lv, Q., et al. (2020) Proline Improves Cardiac Remodeling Following Myocardial Infarction and Attenuates Cardiomyocyte Apoptosis via Redox Regulation. Biochemical Pharmacology, 178, Article ID: 114065.
https://doi.org/10.1016/j.bcp.2020.114065
[26] Cardoso-Lezama, I., Fuentes-Figueroa, M.Á., Ramos-Tovar, E., Márquez-Quiroga, L.V., Ortiz-Fernández, A., Vargas-Pozada, E.E., et al. (2023) Nicotinic Acid Attenuates Experimental Non-Alcoholic Steatohepatitis by Inhibiting the NLRP3 Inflammasome/Pyroptosis Pathway. Biochemical Pharmacology, 216, Article ID: 115762.
https://doi.org/10.1016/j.bcp.2023.115762
[27] Priksz, D., Lampe, N., Kovacs, A., Herwig, M., Bombicz, M., Varga, B., et al. (2022) Nicotinic‐Acid Derivative BGP‐15 Improves Diastolic Function in a Rabbit Model of Atherosclerotic Cardiomyopathy. British Journal of Pharmacology, 179, 2240-2258.
https://doi.org/10.1111/bph.15749
[28] Kiilerich, K., Gudmundsson, M., Birk, J.B., Lundby, C., Taudorf, S., Plomgaard, P., et al. (2009) Low Muscle Glycogen and Elevated Plasma Free Fatty Acid Modify but Do Not Prevent Exercise-Induced PDH Activation in Human Skeletal Muscle. Diabetes, 59, 26-32.
https://doi.org/10.2337/db09-1032
[29] Constantin-Teodosiu, D., Constantin, D., Stephens, F., Laithwaite, D. and Greenhaff, P.L. (2012) The Role of FOXO and PPAR Transcription Factors in Diet-Mediated Inhibition of PDC Activation and Carbohydrate Oxidation during Exercise in Humans and the Role of Pharmacological Activation of PDC in Overriding These Changes. Diabetes, 61, 1017-1024.
https://doi.org/10.2337/db11-0799