[1]
|
Pape, L.A., Awais, M., Woznicki, E.M., Suzuki, T., Trimarchi, S., Evangelista, A., et al. (2015) Presentation, Diagnosis, and Outcomes of Acute Aortic Dissection: 17-Year Trends from the International Registry of Acute Aortir Dissection. Journal of the American College of Cardiology, 66, 350-358. https://doi.org/10.1016/j.jacc.2015.05.029
|
[2]
|
Vilacosta, I., San Román, J.A., di Bartolomeo, R., Eagle, K., Estrera, A.L., Ferrera, C., et al. (2021) Acute Aortic Syndrome Revisited: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 78, 2106-2125. https://doi.org/10.1016/j.jacc.2021.09.022
|
[3]
|
McGarrah, R.W., Crown, S.B., Zhang, G., Shah, S.H. and Newgard, C.B. (2018) Cardiovascular Metabolomics. Circulation Research, 122, 1238-1258. https://doi.org/10.1161/circresaha.117.311002
|
[4]
|
Zhou, X., Wang, R., Zhang, T., Liu, F., Zhang, W., Wang, G., et al. (2019) Identification of Lysophosphatidylcholines and Sphingolipids as Potential Biomarkers for Acute Aortic Dissection via Serum Metabolomics. European Journal of Vascular and Endovascular Surgery, 57, 434-441. https://doi.org/10.1016/j.ejvs.2018.07.004
|
[5]
|
Zeng, Q., Rong, Y., Li, D., Wu, Z., He, Y., Zhang, H., et al. (2020) Identification of Serum Biomarker in Acute Aortic Dissection by Global and Targeted Metabolomics. Annals of Vascular Surgery, 68, 497-504. https://doi.org/10.1016/j.avsg.2020.06.026
|
[6]
|
Huang, H., Ye, G., Lai, S., Zou, H., Yuan, B., Wu, Q., et al. (2021) Plasma Lipidomics Identifies Unique Lipid Signatures and Potential Biomarkers for Patients with Aortic Dissection. Frontiers in Cardiovascular Medicine, 8, Article ID: 757022. https://doi.org/10.3389/fcvm.2021.757022
|
[7]
|
Cui, H., Chen, Y., Li, K., Zhan, R., Zhao, M., Xu, Y., et al. (2021) Untargeted Metabolomics Identifies Succinate as a Biomarker and Therapeutic Target in Aortic Aneurysm and Dissection. European Heart Journal, 42, 4373-4385. https://doi.org/10.1093/eurheartj/ehab605
|
[8]
|
王翔魏. 丙酮酸补充与运动能力[J]. 北京体育大学学报, 2002, 25(2): 207-210.
|
[9]
|
干懿洁, 丁树哲. 丙酮酸的抗氧化作用[J]. 中国临床康复, 2006, 10(8): 141-143.
|
[10]
|
Howard, D.P.J., Banerjee, A., Fairhead, J.F., Perkins, J., Silver, L.E. and Rothwell, P.M. (2013) Population-Based Study of Incidence and Outcome of Acute Aortic Dissection and Premorbid Risk Factor Control: 10-Year Results from the Oxford Vascular Study. Circulation, 127, 2031-2037. https://doi.org/10.1161/circulationaha.112.000483
|
[11]
|
Evangelista, A., Isselbacher, E.M., Bossone, E., Gleason, T.G., Eusanio, M.D., Sechtem, U., et al. (2018) Insights from the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Research. Circulation, 137, 1846-1860. https://doi.org/10.1161/circulationaha.117.031264
|
[12]
|
Nienaber, C.A., Clough, R.E., Sakalihasan, N., Suzuki, T., Gibbs, R., Mussa, F., et al. (2016) Aortic Dissection. Nature Reviews Disease Primers, 2, Article No. 16053. https://doi.org/10.1038/nrdp.2016.53
|
[13]
|
Lavinsky, D., Arteni, N.S. and Netto, C.A. (2003) Agmatine Induces Anxiolysis in the Elevated Plus Maze Task in Adult Rats. Behavioural Brain Research, 141, 19-24. https://doi.org/10.1016/s0166-4328(02)00326-1
|
[14]
|
Valverde, A.P., Camargo, A. and Rodrigues, A.L.S. (2021) Agmatine as a Novel Candidate for Rapid-Onset Antidepressant Response. World Journal of Psychiatry, 11, 981-996. https://doi.org/10.5498/wjp.v11.i11.981
|
[15]
|
Liu, P., Yang, Q., Yu, N., Cao, Y., Wang, X., Wang, Z., et al. (2021) Phenylalanine Metabolism Is Dysregulated in Human Hippocampus with Alzheimer’s Disease Related Pathological Changes. Journal of Alzheimer’s Disease, 83, 609-622. https://doi.org/10.3233/jad-210461
|
[16]
|
Chen, F., Li, Z., Xu, Y., Huang, S., Li, Y. and Jiang, W. (2023) Non-Targeted Metabolomic Study of Fetal Growth Restriction. Metabolites, 13, Article No. 761. https://doi.org/10.3390/metabo13060761
|
[17]
|
Holeček, M. (2020) Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients, 12, Article No. 848. https://doi.org/10.3390/nu12030848
|
[18]
|
Khalaf, D., Krüger, M., Wehland, M., Infanger, M. and Grimm, D. (2019) The Effects of Oral L-Arginine and L-Citrulline Supplementation on Blood Pressure. Nutrients, 11, Article No. 1679. https://doi.org/10.3390/nu11071679
|
[19]
|
Bagheripour, F., Jeddi, S., Kashfi, K. and Ghasemi, A. (2023) Metabolic Effects of L-Citrulline in Type 2 Diabetes. Acta Physiologica, 237, e13937. https://doi.org/10.1111/apha.13937
|
[20]
|
Zhang, Y., Zhai, Z., Duan, J., Wang, X., Zhong, J., Wu, L., et al. (2022) Lactate: The Mediator of Metabolism and Immunosuppression. Frontiers in Endocrinology, 13, Article ID: 901495. https://doi.org/10.3389/fendo.2022.901495
|
[21]
|
Sugino, T., Shirai, T., Kajimoto, Y. and Kajimoto, O. (2008) L-Ornithine Supplementation Attenuates Physical Fatigue in Healthy Volunteers by Modulating Lipid and Amino Acid Metabolism. Nutrition Research, 28, 738-743. https://doi.org/10.1016/j.nutres.2008.08.008
|
[22]
|
Leiss, V., Flockerzie, K., Novakovic, A., Rath, M., Schönsiegel, A., Birnbaumer, L., et al. (2014) Insulin Secretion Stimulated by l-Arginine and Its Metabolite l-Ornithine Depends on Gα(i2). American Journal of Physiology-Endocrinology and Metabolism, 307, E800-E812. https://doi.org/10.1152/ajpendo.00337.2014
|
[23]
|
Kaul, S., Sharma, S.S. and Mehta, I.K. (2006) Free Radical Scavenging Potential of L-Proline: Evidence from in Vitro Assays. Amino Acids, 34, 315-320. https://doi.org/10.1007/s00726-006-0407-x
|
[24]
|
Phang, J.M., Liu, W., Hancock, C. and Christian, K.J. (2012) The Proline Regulatory Axis and Cancer. Frontiers in Oncology, 2, Article No. 60. https://doi.org/10.3389/fonc.2012.00060
|
[25]
|
Wang, J., Xue, Z., Lin, J., Wang, Y., Ying, H., Lv, Q., et al. (2020) Proline Improves Cardiac Remodeling Following Myocardial Infarction and Attenuates Cardiomyocyte Apoptosis via Redox Regulation. Biochemical Pharmacology, 178, Article ID: 114065. https://doi.org/10.1016/j.bcp.2020.114065
|
[26]
|
Cardoso-Lezama, I., Fuentes-Figueroa, M.Á., Ramos-Tovar, E., Márquez-Quiroga, L.V., Ortiz-Fernández, A., Vargas-Pozada, E.E., et al. (2023) Nicotinic Acid Attenuates Experimental Non-Alcoholic Steatohepatitis by Inhibiting the NLRP3 Inflammasome/Pyroptosis Pathway. Biochemical Pharmacology, 216, Article ID: 115762. https://doi.org/10.1016/j.bcp.2023.115762
|
[27]
|
Priksz, D., Lampe, N., Kovacs, A., Herwig, M., Bombicz, M., Varga, B., et al. (2022) Nicotinic‐Acid Derivative BGP‐15 Improves Diastolic Function in a Rabbit Model of Atherosclerotic Cardiomyopathy. British Journal of Pharmacology, 179, 2240-2258. https://doi.org/10.1111/bph.15749
|
[28]
|
Kiilerich, K., Gudmundsson, M., Birk, J.B., Lundby, C., Taudorf, S., Plomgaard, P., et al. (2009) Low Muscle Glycogen and Elevated Plasma Free Fatty Acid Modify but Do Not Prevent Exercise-Induced PDH Activation in Human Skeletal Muscle. Diabetes, 59, 26-32. https://doi.org/10.2337/db09-1032
|
[29]
|
Constantin-Teodosiu, D., Constantin, D., Stephens, F., Laithwaite, D. and Greenhaff, P.L. (2012) The Role of FOXO and PPAR Transcription Factors in Diet-Mediated Inhibition of PDC Activation and Carbohydrate Oxidation during Exercise in Humans and the Role of Pharmacological Activation of PDC in Overriding These Changes. Diabetes, 61, 1017-1024. https://doi.org/10.2337/db11-0799
|