老年骨质疏松椎体压缩性骨折治疗的研究进展
Research Progress in the Treatment of Senile Osteoporotic Vertebral Compression Fracture
摘要: 随着全球各国逐渐步入老龄化社会,骨质疏松性椎体压缩性骨折(osteoporotic vertebral compression fracture, OVCF)的发病率越来越高,患者主要表现为腰背部的疼痛、活动受限,这严重影响患者的生活质量,所以早期诊断及治疗相当关键,目前有几种不同的治疗策略:保守治疗、微创手术及传统开放性手术治疗。目前临床医生大多首选微创手术治疗,因其治疗效果好且见效快,但针对各种不同实际病情的患者,要选择适合患者的治疗方案。近些年来,为了患者获得更好的预后,医生们也不断对每种治疗方式研究改进,该文旨在对OVCF的治疗进展作一综述。
Abstract: With the aging of the world, the incidence of osteoporotic vertebral compression fracture (OVCF) is increasing. The main manifestations of patients are pain in the lower back and limited activity, which seriously affect the quality of life of patients. So the key to early diagnosis and treatment of quite, there are several different treatment strategies: conservative treatment, minimally invasive surgery and traditional open surgery. At present, most clinicians prefer minimally invasive surgery because of its good therapeutic effect and quick effect. However, for patients with different actual conditions, we should choose the appropriate treatment plan for the patient. In recent years, in order to get better prognosis patients, doctors and continuous improvement for each treatment study, this paper aims to review summarized the progress in treatment of OVCF.
文章引用:王宇航, 赵建民, 甄志龙. 老年骨质疏松椎体压缩性骨折治疗的研究进展[J]. 临床医学进展, 2024, 14(9): 338-346. https://doi.org/10.12677/acm.2024.1492466

1. 引言

骨质疏松症(Osteoporosis, OP)是一种由于骨量和骨质下降而导致骨强度降低的疾病,且骨质疏松大多发生在老年人中,目前由于全球老龄化发展越来越普遍,使得骨质疏松症成为全球公共卫生的一个重大难题[1]-[4]。骨质疏松最严重的后果就是脆性骨折,其中最常见的骨折就是椎体压缩性骨折,且大多发于胸腰椎交界处。骨质疏松性椎体压缩性骨折(osteoporotic vertebral compression fracture, OVCF))的最常见的症状是突然发作的腰背部疼痛,站立或行走时导致疼痛加重,仰卧位时疼痛可有缓解,其次是脊柱活动受限、身高下降、畸形和残疾等[5]。骨质疏松性椎体压缩性骨折的确诊可根据患者的病史和体格检查(例如椎体扣压痛、神经功能的评估)和影像学检查[6]。据报道,骨质疏松性椎体压缩骨折可导致患者的生活质量下降,甚至与心肺疾病、抑郁和死亡都存在相关性[7]。因此,骨质疏松性椎体压缩骨折的治疗至关重要,本文将对骨质疏松性椎体压缩骨折的治疗现状进行综述。

2. 非手术治疗

2.1. 止痛治疗

腰背部的疼痛是骨质疏松性椎体压缩性骨折最常见的体征[8],椎体发生骨折后,早期炎症反应物质产生,且椎体骨的血供较丰富,使得椎体压力增高,压迫神经末梢从而引起患者的疼痛[9]。新发椎体骨折引起的急性疼痛通常会在6~12周内缓减[10],对于出现疼痛患者,为减轻患者的不适,临床医生一般会先使用镇痛药、热敷、卧床休息、物理治疗等方式[11],使用的最多药物是非甾体类消炎药和阿片类药物[12]。首先使用非甾体抗炎药的部分原因是安全性相对较高,与其他药物相比的更严重副作用的发生率较低,但它们并非没有自身的不良反应[13]。非甾体抗炎药的不良反应包括胃肠道反应、心血管血栓事件、卒中和肾毒性,且老年患者和已有相关疾病的患者发生这些不良反应的风险增加[14] [15]。如果非甾体类药物止疼效果差或疼痛为中度至重度疼痛,则可选择阿片类药物提供进一步的治疗,虽然阿片类药物的止疼效果较好,但其不良发应的发生率较高,最常见的是胃肠道症状、头晕和嗜睡等[16],当这些不良反应发生时可能导致治疗中断,导致疼痛控制效果不佳,进而导致患者出现焦虑和抑郁[17],且长期使用阿片类药物会产生成瘾性,耐药性和痛觉过敏等严重问题[18]。鉴于使用阿片类药物相关的争议,一项研究对比了阿片类药物和非阿片类药物对疼痛缓解的效果:虽然阿片类药物组的疼痛强度较低,这种改善小于最小的临床重要性差值(minimal clinical important difference, MCID),且未观察到有功能改善[19],因此,临床上对于阿片类相关药物的使用要谨慎,防止患者产生非必要的不良反应。

2.2. 支具固定治疗

临床上患者发生椎体骨折后,会建议患者佩戴脊柱矫形器以起到支撑和保护的作用,还可有效减轻疼痛和改善生活质量。但是,支具的使用一直存在争议,Genec等[20]的研究认为支具有助于受伤椎体的稳定,从而最大限度地减少椎体的压力,可使其正常愈合。而另有一些研究者则认为,支具在预防伤后脊柱后凸、镇痛或生活质量方面没有提供可量化的益处,只会导致肌肉力量失调和下降,同时还存在造成褥疮的风险[21]。最新的一项前瞻性研究[22],通过对2021年10月之前发表的随机试验进行系统评价和荟萃分析来调查,在受伤后3至6个月,与不戴支具相比,刚性支具的疼痛明显减轻,软支具组与无支具组没有重现这种效果,佩戴支具和不戴支具在脊柱后凸、功能或生活质量在任何时间点均无显著差异。鉴于现有的低质量证据,目前尚不清楚的是,佩戴矫形器是否明显优于在没有矫形器的情况下所能获得的结果,需要进一步的国际多中心随机试验来阐明这一点。

2.3. 抗骨质疏松治疗

治疗骨质疏松症的药物可分为骨吸收抑制剂、骨形成促进剂和骨矿化促进剂等。

骨吸收抑制剂有二磷酸盐、降钙素类、核因子κb受体活化因子配体(receptor activator of nuclear factor-κB ligand, RANKL)抑制剂和雌激素类等。

双膦酸盐(bisphosphonates, BP)是骨质疏松症的一线治疗药物,常用药物有阿仑膦酸钠、利塞膦酸钠和唑来膦酸钠。虽然使用双膦酸盐可以改善患者的临床症状,但长期使用会引起患者并发症,如颌骨坏死,非典型股骨颈骨折等。Kaleen N [23]等人的一项研究证明,强有力的证据支持大多数患者在连续使用双膦酸盐治疗三到五年后应停药,进入停药期,即药物假期(drug holiday, DH)。因为双膦酸酸盐停药后会沉积在骨表面,在发挥抑制骨吸收作用的同时,也会引起一些严重的不良反应。DH是一把双刃剑,一方面,它可以防止因使用药物而引起的并发症的发生,另一方面,它可以导致疾病进展和骨密度(bone mineral density, BMD)降低[24],而近些年缺乏与DH的长度适当的持续时间相关的研究。

降钙素是一种由32种氨基酸组成肽类激素,主要由人体甲状腺的滤泡旁细胞(C细胞)合成,通过抑制破骨细胞的骨吸收功能来调节血钙,也可以通过增加神经元分泌β-内啡肽和减少环氧合酶的方式,来减少中枢和周围神经系统对疼痛信号的传递发挥镇疼作用,特别推荐用于神经性疼痛、椎骨骨质疏松性骨折和佩吉特病等特定疾病[25] [26]。降钙素是最早用于治疗骨质疏松症的药物之一,1985年就被批准使用来治疗骨质疏松,尤其是针对绝经后女性的治疗。降钙素可有效增加腰椎的BMD,可以通过多种途径给药,包括口服、注射(肌内、静脉内和皮下)和鼻内喷雾剂,而临床中最常用的鲑鱼降钙素鼻喷雾剂。Li [27]等人的研究发现,鲑鱼降钙素鼻喷剂在改善腰椎和髋关节BMD方面没有明显的优势,且目前一些低质量证据表明,鲑鱼降钙素的使用与癌症的发生存在关联,因此在临床上该类药物应谨慎使用[28]

地舒单抗(denosumab, Dmab)是一种人源性药物,是一种速效、广泛使用的抗骨吸收药物,它通过破坏在破骨细胞上检测到的RANK受体的附着来发挥作用,可显着增加骨密度并降低所有骨骼部位的骨折率[29]。然而,由于破骨细胞数量和活性的大幅增加,其有益的骨骼效应在停药后迅速逆转,这导致随后骨吸收出现反弹性的增加,这种骨吸收强度甚至有可能高于治疗前,致使骨折风险增加,这种现象通常被描述为“反弹现象”[30]。Kim等[31]研究发现,使用地舒单抗时间与反跳性骨量丢失和椎体骨折的风险增加有关。目前停用地舒单抗后的目的旨在防止这种反弹变化,以避免骨质流失并降低骨折风险,后续的研究发现,使用BP的序贯治疗(如静脉唑来膦酸盐)可以减轻反弹现象[32],2020年,欧洲钙化组织学会(European Calcified Tissue Society, ECTS)建议,如果地舒单抗治疗持续时间较短(≤2.5年),则根据骨转化标志物(bone turnover markers, BTM)和BMD进行口服BP或静脉滴注唑来膦酸的序贯治疗1至2年,而在治疗时间较长(即>2.5年)的患者,静脉滴注唑来膦酸应在地舒单抗最后一次注射后6个月给药,如果BTM水平仍然高于健康绝经前女性阈值[C端肽 ≥ 280 ng/L或Ⅰ型前胶原n端肽 ≥ 35 µg/L),则可在3~6个月后重复使用[33]

绝经后的女性雌激素水平降低,这是导致骨代谢周期加快、骨密度降低、骨强度降低、骨结构破坏以及脆性骨折几率增加的因素,因此这类患者可用雌激素替代疗法(estrogen replacement treatment, ERT)进行治疗,但这种方法会顾此失彼,因为长期使用激素替代治疗会增加子宫内膜癌、乳腺癌风险,也会增加心脏病、卒中和静脉血栓栓塞的风险[34]。选择性雌激素受体调节剂(selective estrogen receptor modulator, SERMs)的出现恰巧避免长期激素替代疗法引起的不良反应风险,同时保持显着的抗骨折作用和雌激素的良好代谢特征[35],临床上常见的相关药物有他莫昔芬、雷洛昔芬、巴多昔芬、拉索昔芬等。

特立帕肽是目前最常用的骨形成促进剂(Teriparatide),特立帕肽已被证明可降低新发椎体骨折的风险,并增加椎体的BMD [36],特立帕肽治疗的最长时间为2年,值得注意的是患者终身只能进行一个疗程的治疗[37]。在一项使用特立帕肽治疗的10年随访研究中表明,使用特立帕肽进行治疗可将骨质疏松患者的骨折发生率降低至与正常人群相似的水平[38]。近些年研究者们发现,对于严重OP患者且未接受过任何治疗的,最好先使用骨形成促进剂治疗,后序贯骨吸收抑制剂治疗,可以获得良好的治疗效果。关于特立帕肽的序贯治疗,杨崇正等[39]研究表明,对于髋部骨密度的提高和骨代谢标志物的降低,特立帕肽序贯舒单抗较序贯唑来磷酸的作用更加明显,这两种治疗方案对于再骨折的发生并没有明显的影响。类似于特立帕肽,阿巴帕肽也是一种骨形成促进剂,特里怕肽在治疗18至24个月之间,会增加破骨细胞功能,导致过度吸收,可能会引起短暂性高钙血症的不良反应,而阿巴帕肽可以有效克服特立帕肽这一的缺点,降低高血钙的发生率,且阿巴帕肽增加 BMD 的速度快于特立帕肽,在降低骨折风险方面也稍优于特立帕肽[40]

罗莫株单抗(Romosozumab, ROMO)是目前唯一一个既可促骨形成,又有抑制骨吸收的治疗骨质疏松的药物,这是一种针对硬化素的人源化单克隆IgG2抗体。硬化素是一种骨细胞衍生的糖蛋白,通过干扰 Wnt/β-catenin信号传导来抑制骨形成,以达到抑制成骨细胞活性。一项为期12个月的回顾性研究对比了罗莫株单抗和地舒单抗疗效,发现罗莫索单抗更快、更有效地增加了患者的BMD [41]。Kendler等[42]研究发现罗莫珠单抗给药2年长期疗效和安全性最好,且基于这项研究的后续探索性研究表明,在罗莫珠单抗给药一年后,使用唑来膦酸盐可以维持BMD长达2年[43],这无疑对临床医生来说是一种另辟蹊径的选择。

骨矿化促进剂对OP的治疗也至关重要,临床上使用最多的是钙制剂及维生素D,他们可对骨骼健康起积极作用,建议每天通过饮食或补充剂摄入至少1000~1200毫克钙,800~1000 IU的维生素D,研究表明钙加维生素D补充剂可以降低15%总体骨折风险,而椎体骨折发生率明显下降18% [44]。临床上常将两者联用,但使用时要注意,监测血清钙和磷水平、尿钙排泄和甲状旁腺激素,避免两者的过量使用,过量的使用非但没有益处,还会导致结石、骨折的风险增加等不利影响[45]

长期抗骨质疏松治疗是是整个治疗中的基础,治疗的目的是抑制骨丢失,改善骨骼的质量和数量,尽可能的提高骨骼的强度,降低骨折风险,所以,抗骨质疏松治疗必须长期、规范、联合、个性化的应用。

3. 手术治疗

椎体骨折引起的神经压迫或者在保守治疗后未能有效康复的情况一般采用手术治疗,手术治疗可以简单分为微创和开放性手术治疗。

3.1. 微创手术治疗

微创手术具有创伤小,症状缓解快,恢复较快等优点,目前临床上治疗OVCF的常见的微创手术方式是经皮椎体强化术(percutaneous vertebral augmentation, PVA),包括经皮椎体成形术(Percutaneous vertebroplasty, PVP)和经皮椎体后凸成形术(Percutaneous kyphoplasty, PKP)两种。1984年,Deramond和Galibert [46]在法国进行了首例经皮椎体成形术,通过透视引导将聚甲基丙烯酸酯(PMMA)经皮注射到C2椎体内的椎血管瘤中,用于治疗C2椎体血管瘤,该技术很快被应用于骨质疏松性椎体压缩性骨折的治疗中,因其所具备的各种优点使这种技术迅速普及。一项研究表明,与非手术治疗的患者相比,接受PVP治疗的OVCF患者在治疗后死亡的可能性更小[47]。但因为要向椎体内注入具有弥散性的骨水泥,如果骨水泥超出了骨骼的范围,且低粘度水泥是在手术过程中高压注入的,就可能有骨水泥渗漏的风险,水泥渗漏的风险约为 30%,渗漏的骨水泥甚至有可能肺栓塞、脑栓塞和心脏穿孔,这些都是致命的[48]。此外,还存在一些其他可能的并发症,如感染,增加邻近椎体骨折的风险,椎体高度恢复较差。因为以上这些问题,有研究者根据PVP技术为基础发明了一种新的微创治疗方式PKP,这种新方式由Lieberman等人首次在临床上应用于OVCF患者,通过给插入椎体的球囊充气形成空腔并将骨水泥注入椎体来恢复椎体高度[49],相对于PVP,PKP的水泥渗漏率更低,这是因为后者将低压水泥注入球囊撑起所形成的腔内,而PVP需要将高压水泥注入具有残余小梁结构的椎体中,且PKP在恢复伤椎的高度上更具优势。近些年,关于两种治疗方式的优劣尚存争议,PVP具有手术操作简单,手术时间短,费用低廉等优势,PKP在术后骨水泥的渗漏、椎体高度恢复和后凸畸形的矫正方面等有优越性,但有研究认为,增加骨水泥的注入量可以在一定程度上弥补PVP这方面的不足,但是这无疑增加了骨水泥渗漏的风险。最近的一项关于两者的临床荟萃分析中,两者在疼痛症状缓减、术后临近椎体骨折发生率方面无显著差异[50],这与之前的大部分相关研究结论一致。但PKP在恢复椎体高度和降低骨水泥渗漏的优势是毋庸置疑的,PKP术后骨水泥渗漏率为9% [51],这也说明PKP并不能完全避免骨水泥渗漏问题。因此,如何预防骨水泥渗漏成了获得更好疗效的关键,世界各国医生也为此付出了巨大努力。Baroud等[52]研究发现,PVP中使用高粘度骨水泥可骨水泥渗漏率降低40%左右。另外一项相关研究表明,椎体成形术中采用高粘度骨水泥基本可以达到与普通骨水泥PKP相似的治疗效果[53]。除了在骨水泥粘度方面的探索,一些医生还发现不同手术入路也可以降低骨水泥渗漏率。一项研究表明,PVA中采用双侧入路,可使骨水泥弥散更加均匀,且单侧入路和双侧入路骨水泥渗漏发生率的差异虽无统计学意义,但对于压缩程度较大的椎体,采用双侧入路注入骨水泥不仅会得到良好的弥散效果,且能在一定程度上降低骨水泥渗漏的发生率[54]。还有许多通过不同骨水泥材质、骨水泥灌注方式,以及引入一些数字自动化辅助引导设备等方法[55]-[60],来改进优化治疗方式,也取得显著的临床疗效,例如蒋维利通过3D打印技术明显提高了穿刺的准确率,但这些技术成本昂贵,目前临床上运用较少,主要还是以人工穿刺为主。最近的一项研究也值得我们注意,Song等[61]研究新发现,术后骨水泥渗漏可能性与术前骨折类型也密切相关,研究结果示前楔形骨折发生骨水泥渗漏的概率最高,这项研究有助于临床医生根据患者的骨折类型及时调整治疗方案,制定更个体化的治疗措施。

3.2. 开放手术

对于OVCF的开放手术的适应症其实没有一个明确的共识,英国国家卫生与临床优化研究所(National institute for Health and Care Excellence, NICE)提出,开放手术治疗的适应症是脊柱后凸 > 35˚和神经功能缺损的不稳定骨折[62]。开放手术最常用的手术方式是椎弓根螺钉固定术,手术入路有前路手术、后路手术、前路和后路联合手术等。前路手术的优点是可以直接从椎体前方去除骨折碎片,从而以更少的步骤实现损伤脊髓或神经根的直接减压,因为椎体压缩性骨折往往发生在椎体前部,并通过植入支撑物重建脊柱前部结构,同时保持脊柱后方结构的完整性,增强脊柱稳固性。但前路手术通常需要开胸手术和腹膜后入路,许多胸腰椎段椎体骨折患者也需要膈肌分离,因此,在老年患者或合并症较多的患者中,前路手术具有高度侵入性,且手术风险更大。Wang等[63]研究表明,20%~30%的OVCF患者由于严重的多节段骨质疏松症、脊柱后凸进展或螺钉松动而接受简单的前路融合术,需要额外的后路强化。后路手术是目前的主流术式,因为外科医生通常对脊柱后方的解剖结构更为熟悉,且后路手术相对更简单一些,造成的创伤也较小。尽管后路与前路可以获得相当的效果,但后路融合与内固定可获得更好的术后脊柱稳定性,尤其是骨质疏松症或伴有脊柱后凸的多节段压缩性骨折患者中。Nakano等人[64]在治疗重度骨质疏松症患者中发现,使用椎弓根螺钉和棘突板通过后路短节段的融合,无需神经减压,也可以得到良好的效果。前后联合入路通过前路植骨移植物和后路椎弓根螺钉固定获得最佳生物力学结果,联合入路的优势在于固定强度强于单独的前路或后路手术,尤其是在严重骨质疏松症患者中。Machino等人[65]对比联合入路与后路手术,结果表明联合入路在矫正效果和并发症的发生率方面明显优于后路手术。前后路联合手术的不足之处也显而易见,相对于前、后路单独手术,联合手术耗时长和出血率较高,且在技术上也要求更为严格。

骨质疏松症作为当今世界公共卫生所面临的巨大挑战,给社会带来了巨大的医疗和经济负担,其中骨质疏松性椎体压缩性骨折的发病率逐年攀升,了解OVCF的发病机制、发展过程和临床特点对于疾病的诊治具有至关重要的意义,目前的治疗方式多种多样且各有利弊,而患者的病情又存在差异性,因此我们需要在开始治疗前对患者进行彻底的分析,给予患者一个最佳的治疗方案,预测潜在的并发症,并有针对性地进行预防,让患者的生活质量得到实质性的提升。

NOTES

*通讯作者。

参考文献

[1] Salari, N., Darvishi, N., Bartina, Y., Larti, M., Kiaei, A., Hemmati, M., et al. (2021) Global Prevalence of Osteoporosis among the World Older Adults: A Comprehensive Systematic Review and Meta-Analysis. Journal of Orthopaedic Surgery and Research, 16, Article No. 669.
https://doi.org/10.1186/s13018-021-02821-8
[2] Bukata, S.V., DiGiovanni, B.F., Friedman, S.M., Hoyen, H., Kates, A., Kates, S.L., et al. (2011) A Guide to Improving the Care of Patients with Fragility Fractures. Geriatric Orthopaedic Surgery & Rehabilitation, 2, 5-37.
https://doi.org/10.1177/2151458510397504
[3] Varacallo, M.A., Fox, E.J., Paul, E.M., Hassenbein, S.E. and Warlow, P.M. (2013) Patients’ Response toward an Automated Orthopedic Osteoporosis Intervention Program. Geriatric Orthopaedic Surgery & Rehabilitation, 4, 89-98.
https://doi.org/10.1177/2151458513502039
[4] Diab, D.L. and Watts, N.B. (2013) Diagnosis and Treatment of Osteoporosis in Older Adults. Endocrinology and Metabolism Clinics of North America, 42, 305-317.
https://doi.org/10.1016/j.ecl.2013.02.007
[5] Kutsal, F.Y. and Ergin Ergani, G.O. (2021) Vertebral Compression Fractures: Still an Unpredictable Aspect of Osteoporosis. Turkish Journal of Medical Sciences, 51, 393-399.
https://doi.org/10.3906/sag-2005-315
[6] McCarthy, J. and Davis, A. (2016) Diagnosis and Management of Vertebral Compression Fractures. American Family Physician, 94, 44-50.
[7] Dionyssiotis, Y. (2010) Management of Osteoporotic Vertebral Fractures. International Journal of General Medicine, 3, 167-171.
https://doi.org/10.2147/ijgm.s11751
[8] Patel, D., Liu, J. and Ebraheim, N.A. (2022) Managements of Osteoporotic Vertebral Compression Fractures: A Narrative Review. World Journal of Orthopedics, 13, 564-573.
https://doi.org/10.5312/wjo.v13.i6.564
[9] Včelák, J., Tóth, L., Šlégl, M., Šuman, R. and Majerníček, M. (2009) Vertebroplasty and Kyphoplasty—Treatment of Osteoporotic Vertebral Fractures. Acta chirurgiae orthopaedicae et traumatologiae Cechoslovaca, 76, 54-59.
https://doi.org/10.55095/achot2009/009
[10] Longo, U.G., Loppini, M., Denaro, L., Maffulli, N. and Denaro, V. (2011) Osteoporotic Vertebral Fractures: Current Concepts of Conservative Care. British Medical Bulletin, 102, 171-189.
https://doi.org/10.1093/bmb/ldr048
[11] LeBoff, M.S., Greenspan, S.L., Insogna, K.L., Lewiecki, E.M., Saag, K.G., Singer, A.J., et al. (2022) The Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporosis International, 33, 2049-2102.
https://doi.org/10.1007/s00198-021-05900-y
[12] 李坚, 董静, 杨瑞雪. 慢性腰痛患者焦虑敏感性与阿片类药物使用动机的关系[J]. 颈腰痛杂志, 2022, 43(6): 882-884.
[13] McCarberg, B.H. (2013) NSAIDs in the Older Patient: Balancing Benefits and Harms. Pain Medicine, 14, S43-S44.
https://doi.org/10.1111/pme.12253
[14] Grosser, T., Ricciotti, E. and FitzGerald, G.A. (2017) The Cardiovascular Pharmacology of Nonsteroidal Anti-Inflammatory Drugs. Trends in Pharmacological Sciences, 38, 733-748.
https://doi.org/10.1016/j.tips.2017.05.008
[15] Minhas, D., Nidhaan, A. and Husni, M.E. (2023) Recommendations for the Use of Nonsteroidal Anti-Inflammatory Drugs and Cardiovascular Disease Risk: Decades Later, Any New Lessons Learned? Rheumatic Disease Clinics of North America, 49, 179-191.
https://doi.org/10.1016/j.rdc.2022.08.006
[16] Genev, I.K., Tobin, M.K., Zaidi, S.P., Khan, S.R., Amirouche, F.M.L. and Mehta, A.I. (2017) Spinal Compression Fracture Management: A Review of Current Treatment Strategies and Possible Future Avenues. Global Spine Journal, 7, 71-82.
https://doi.org/10.1055/s-0036-1583288
[17] Migliorini, F., Maffulli, N., Baroncini, A., Eschweiler, J., Tingart, M. and Quack, V. (2021) Opioids for Chronic Low Back Pain Management: A Bayesian Network Meta-Analysis. Expert Review of Clinical Pharmacology, 14, 635-641.
https://doi.org/10.1080/17512433.2021.1903316
[18] Hwang, C.J., Lee, J.H., Kim, J., Min, S.H., Park, K., Seo, H., et al. (2019) Gabapentin versus Transdermal Fentanyl Matrix for the Alleviation of Chronic Neuropathic Pain of Radicular Origin: A Randomized Blind Multicentered Parallel-Group Noninferiority Trial. Pain Research and Management, 2019, Article ID: 4905013.
https://doi.org/10.1155/2019/4905013
[19] Chu, L.F., D’Arcy, N., Brady, C., Zamora, A.K., Young, C.A., Kim, J.E., et al. (2012) Analgesic Tolerance without Demonstrable Opioid-Induced Hyperalgesia: A Double-Blinded, Randomized, Placebo-Controlled Trial of Sustained-Release Morphine for Treatment of Chronic Nonradicular Low-Back Pain. Pain, 153, 1583-1592.
https://doi.org/10.1016/j.pain.2012.02.028
[20] Krebs, E.E., Gravely, A., Nugent, S., Jensen, A.C., DeRonne, B., Goldsmith, E.S., et al. (2018) Effect of Opioid vs Nonopioid Medications on Pain-Related Function in Patients with Chronic Back Pain or Hip or Knee Osteoarthritis Pain: The SPACE Randomized Clinical Trial. JAMA, 319, 872-882.
https://doi.org/10.1001/jama.2018.0899
[21] Mulcahy, M.J., Dower, A. and Tait, M. (2021) Orthosis versus No Orthosis for the Treatment of Thoracolumbar Burst Fractures: A Systematic Review. Journal of Clinical Neuroscience, 85, 49-56.
https://doi.org/10.1016/j.jocn.2020.11.044
[22] Squires, M., Green, J.H., Patel, R. and Aleem, I. (2023) Clinical Outcomes after Bracing for Vertebral Compression Fractures: A Systematic Review and Meta-Analysis of Randomized Trials. Journal of Spine Surgery, 9, 139-148.
https://doi.org/10.21037/jss-22-78
[23] Hayes, K.N., Winter, E.M., Cadarette, S.M. and Burden, A.M. (2021) Duration of Bisphosphonate Drug Holidays in Osteoporosis Patients: A Narrative Review of the Evidence and Considerations for Decision-Making. Journal of Clinical Medicine, 10, Article 1140.
https://doi.org/10.3390/jcm10051140
[24] Rizi, M.M., Salari, A., Salesi, M., Rasooli, L. and Karimifar, M. (2024) Comparison of Bone Mineral Density of Osteoporotic and Osteopenia Menopausal Women Treated with Oral Bisphosphonates before Stopping the Treatment and 1 Year after Drug Holiday Period. Clinical Rheumatology, 43, 1375-1379.
https://doi.org/10.1007/s10067-024-06906-7
[25] Ghani, A. and Arfee, S. (2023) Role of Calcitonin and Strontium Ranelate in Osteoporosis. Indian Journal of Orthopaedics, 57, 115-119.
https://doi.org/10.1007/s43465-023-01034-x
[26] Yazdani, J., Khiavi, R.K., Ghavimi, M.A., Mortazavi, A., Hagh, E.J. and Ahmadpour, F. (2019) Calcitonina como agente analgésico: revisão dos mecanismos de ação e das aplicações clínicas [Calcitonin as an Analgesic Agent: Review of Mechanisms of Action and Clinical Applications]. Brazilian Journal of Anesthesiology, 69, 594-604.
https://doi.org/10.1016/j.bjan.2019.08.004
[27] Li, N., Gong, Y.C. and Chen, J. (2021) A Meta-Analysis of the Therapeutic Effect of Intranasal Salmon Calcitonin on Osteoporosis. European Journal of Medical Research, 26, Article No. 140.
https://doi.org/10.1186/s40001-021-00610-x
[28] Xie, J., Guo, J., Kanwal, Z., Wu, M., Lv, X., Ibrahim, N.A., et al. (2020) Calcitonin and Bone Physiology: In Vitro, in Vivo, and Clinical Investigations. International Journal of Endocrinology, 2020, Article ID: 3236828.
https://doi.org/10.1155/2020/3236828
[29] Sauhta, R., Makkar, D. and Siwach, P.S. (2023) The Sequential Therapy in Osteoporosis. Indian Journal of Orthopaedics, 57, 150-162.
https://doi.org/10.1007/s43465-023-01067-2
[30] Anastasilakis, A.D., Makras, P., Yavropoulou, M.P., Tabacco, G., Naciu, A.M. and Palermo, A. (2021) Denosumab Discontinuation and the Rebound Phenomenon: A Narrative Review. Journal of Clinical Medicine, 10, Article 152.
https://doi.org/10.3390/jcm10010152
[31] Kim, A.S., Taylor, V.E., Castro-Martinez, A., Dhakal, S., Zamerli, A., Mohanty, S., et al. (2024) Temporal Patterns of Osteoclast Formation and Activity Following Withdrawal of RANKL Inhibition. Journal of Bone and Mineral Research, 39, 484-497.
https://doi.org/10.1093/jbmr/zjae023
[32] Grassi, G., Chiodini, I., Palmieri, S., Cairoli, E., Arosio, M. and Eller-Vainicher, C. (2021) Bisphosphonates after Denosumab Withdrawal Reduce the Vertebral Fractures Incidence. European Journal of Endocrinology, 185, 387-396.
https://doi.org/10.1530/eje-21-0157
[33] Tsourdi, E., Zillikens, M.C., Meier, C., Body, J., Gonzalez Rodriguez, E., Anastasilakis, A.D., et al. (2020) Fracture Risk and Management of Discontinuation of Denosumab Therapy: A Systematic Review and Position Statement by ECTS. The Journal of Clinical Endocrinology & Metabolism, 106, 264-281.
https://doi.org/10.1210/clinem/dgaa756
[34] 王青青. 原发性骨质疏松症药物治疗进展[J]. 浙江医学, 2024, 46(7): 673-681.
[35] Yavropoulou, M.P., Makras, P. and Anastasilakis, A.D. (2019) Bazedoxifene for the Treatment of Osteoporosis. Expert Opinion on Pharmacotherapy, 20, 1201-1210.
https://doi.org/10.1080/14656566.2019.1615882
[36] Hernandez, A.V., Pérez-López, F.R., Piscoya, A., Pasupuleti, V., Roman, Y.M., Thota, P., et al. (2019) Comparative Efficacy of Bone Anabolic Therapies in Women with Postmenopausal Osteoporosis: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials. Maturitas, 129, 12-22.
https://doi.org/10.1016/j.maturitas.2019.08.003
[37] Neer, R.M., Arnaud, C.D., Zanchetta, J.R., Prince, R., Gaich, G.A., Reginster, J., et al. (2001) Effect of Parathyroid Hormone (1-34) on Fractures and Bone Mineral Density in Postmenopausal Women with Osteoporosis. New England Journal of Medicine, 344, 1434-1441.
https://doi.org/10.1056/nejm200105103441904
[38] Kontogeorgos, G., Krantz, E., Trimpou, P., Laine, C.M. and Landin-Wilhelmsen, K. (2022) Teriparatide Treatment in Severe Osteoporosis—A Controlled 10-Year Follow-Up Study. BMC Musculoskeletal Disorders, 23, Article No. 1011.
https://doi.org/10.1186/s12891-022-05987-2
[39] 杨崇正, 刘衡, 吴志浩, 等. 特立帕肽序贯地舒单抗或唑来膦酸治疗OVCF患者的疗效比较[J]. 中国骨质疏松杂志, 2024, 30(8): 1180-1185+1192.
[40] Bhattacharyya, S., Pal, S. and Chattopadhyay, N. (2019) Abaloparatide, the Second Generation Osteoanabolic Drug: Molecular Mechanisms Underlying Its Advantages over the First-In-Class Teriparatide. Biochemical Pharmacology, 166, 185-191.
https://doi.org/10.1016/j.bcp.2019.05.024
[41] Mochizuki, T., Yano, K., Ikari, K. and Okazaki, K. (2021) Effects of Romosozumab or Denosumab Treatment on the Bone Mineral Density and Disease Activity for 6 Months in Patients with Rheumatoid Arthritis with Severe Osteoporosis: An Open-Label, Randomized, Pilot Study. Osteoporosis and Sarcopenia, 7, 110-114.
https://doi.org/10.1016/j.afos.2021.08.001
[42] Kendler, D.L., Bone, H.G., Massari, F., Gielen, E., Palacios, S., Maddox, J., et al. (2019) Bone Mineral Density Gains with a Second 12-Month Course of Romosozumab Therapy Following Placebo or Denosumab. Osteoporosis International, 30, 2437-2448.
https://doi.org/10.1007/s00198-019-05146-9
[43] Wu, D., Li, L., Wen, Z. and Wang, G. (2023) Romosozumab in Osteoporosis: Yesterday, Today and Tomorrow. Journal of Translational Medicine, 21, Article No. 668.
https://doi.org/10.1186/s12967-023-04563-z
[44] Weaver, C.M., Alexander, D.D., Boushey, C.J., Dawson-Hughes, B., Lappe, J.M., LeBoff, M.S., et al. (2015) Calcium Plus Vitamin D Supplementation and Risk of Fractures: An Updated Meta-Analysis from the National Osteoporosis Foundation. Osteoporosis International, 27, 367-376.
https://doi.org/10.1007/s00198-015-3386-5
[45] Bischoff-Ferrari, H.A., Dawson-Hughes, B., Orav, E.J., Staehelin, H.B., Meyer, O.W., Theiler, R., et al. (2016) Monthly High-Dose Vitamin D Treatment for the Prevention of Functional Decline: A Randomized Clinical Trial. JAMA Internal Medicine, 176, 175-183.
https://doi.org/10.1001/jamainternmed.2015.7148
[46] Galibert, P., Deramond, H., Rosat, P. and Le Gars, D. (1987) Note préliminaire sur le traitement des angiomes vertébraux par ver-tébroplastie acrylique percutanée [Preliminary Note on the Treatment of Vertebral Angioma by Percutaneous Acrylic Vertebroplasty]. Neurochirurgie, 33, 166-168.
[47] Noguchi, T., Yamashita, K., Kamei, R. and Maehara, J. (2022) Current Status and Challenges of Percutaneous Vertebroplasty (PVP). Japanese Journal of Radiology, 41, 1-13.
https://doi.org/10.1007/s11604-022-01322-w
[48] Cavka, M., Delimar, D., Rezan, R., Zigman, T., Duric, K.S., Cimic, M., et al. (2023) Complications of Percutaneous Vertebroplasty: A Pictorial Review. Medicina, 59, Article 1536.
https://doi.org/10.3390/medicina59091536
[49] Lieberman, I.H., Dudeney, S., Reinhardt, M. and Bell, G. (2001) Initial Outcome and Efficacy of “Kyphoplasty” in the Treatment of Painful Osteoporotic Vertebral Compression Fractures. Spine, 26, 1631-1637.
https://doi.org/10.1097/00007632-200107150-00026
[50] 赵海恩, 潘庆, 李东升. 经皮椎体成形术与经皮椎体后凸成形术治疗骨质疏松性椎体压缩性骨折: 一项针对随机对照研究的meta分析[J]. 空军军医大学学报, 2023, 44(4): 340-346.
[51] 丁宝丽, 张姗姗, 齐艳, 吴茂成, 董颖. 骨质疏松性椎体压缩骨折术后骨水泥渗漏的影响因素Meta分析[J]. 延边大学医学学报, 2022, 45(4): 275-279.
[52] Baroud, G., Crookshank, M. and Bohner, M. (2006) High-Viscosity Cement Significantly Enhances Uniformity of Cement Filling in Vertebroplasty: An Experimental Model and Study on Cement Leakage. Spine, 31, 2562-2568.
https://doi.org/10.1097/01.brs.0000240695.58651.62
[53] 张亮, 王静成, 冯新民, 等. 高粘度骨水泥椎体成形术与普通粘度椎体后凸成形术治疗骨质疏松性椎体压缩性骨折的效果比较[J]. 中国老年学杂志, 2017, 37(18): 4601-4603.
[54] Zhang, J., Zhou, Q., Zhang, Z. and Liu, G. (2023) Comparison between Unilateral and Bilateral Percutaneous Kyphoplasty in the Treatment of Osteoporotic Vertebral Compression Fracture: A Meta-Analysis and Systematic Review. Experimental and Therapeutic Medicine, 26, Article No. 533.
https://doi.org/10.3892/etm.2023.12252
[55] 杨惠林, 刘昊, 殷国勇, 等. 我国经皮椎体后凸成形术治疗骨质疏松性椎体骨折现状与创新[J]. 中华骨质疏松和骨矿盐疾病杂志, 2017, 10(1): 12-19.
[56] 柏涛, 纳强, 张雄文, 等. 经皮椎体强化术中分次调配骨水泥、靶点封堵裂口防止经椎体前壁骨水泥渗漏的效果[J]. 中国骨与关节损伤杂志, 2021, 36(1): 55-56.
[57] 刘滔, 张志明, 史金辉, 等. 骨水泥温度梯度灌注技术在经皮椎体后凸成形术中的应用[J]. 中国脊柱脊髓杂志, 2015, 25(12): 1073-1078.
[58] 吴晓宇, 赵文胜, 陈琦, 等. 标杆型3D打印导板在经皮椎体成形术中的初步应用[J]. 创伤外科杂志, 2022, 24(2):100-106.
[59] 王翔宇, 谭伦, 林旭, 等. 光电导航引导单侧穿刺椎体后凸成形术治疗胸腰椎骨质疏松性椎体压缩骨折[J]. 中国修复重建外科杂志, 2018, 32(2): 203-209.
[60] 廖江龙, 邓力, 李德光, 等. 3D打印经皮导板辅助经皮后凸成形术治疗骨质疏松椎体压缩性骨折[J]. 中国骨伤, 2023, 36(5): 445-449.
[61] Song, L.J., Wang, L.L., Ning, L., Fan, S., Zhao, X., Chen, Y., et al. (2018) A Modification and Validation of Quantitative Morphometry Classification System for Osteoporotic Vertebral Compressive Fractures in Mainland Chinese. Osteoporosis International, 29, 2495-2504.
https://doi.org/10.1007/s00198-018-4641-3
[62] Li, J., Xu, L., Liu, Y., Sun, Z., Wang, Y., Yu, M., et al. (2023) Open Surgical Treatments of Osteoporotic Vertebral Compression Fractures. Orthopaedic Surgery, 15, 2743-2748.
https://doi.org/10.1111/os.13822
[63] Wang, H., Hu, Y., Wu, Z., Wu, H., Ma, J., Jian, H., et al. (2021) One Approach Anterior Decompression and Fixation with Posterior Unilateral Pedicle Screw Fixation for Thoracolumbar Osteoporotic Vertebral Compression Fractures. Orthopaedic Surgery, 13, 908-919.
https://doi.org/10.1111/os.12947
[64] Nakano, A., Ryu, C., Baba, I., Fujishiro, T., Nakaya, Y. and Neo, M. (2017) Posterior Short Fusion without Neural Decompression Using Pedicle Screws and Spinous Process Plates: A Simple and Effective Treatment for Neurological Deficits Following Osteoporotic Vertebral Collapse. Journal of Orthopaedic Science, 22, 622-629.
https://doi.org/10.1016/j.jos.2017.03.004
[65] Machino, M., Yukawa, Y., Ito, K., Nakashima, H. and Kato, F. (2010) Posterior/Anterior Combined Surgery for Thoracolumbar Burst Fractures—Posterior Instrumentation with Pedicle Screws and Laminar Hooks, Anterior Decompression and Strut Grafting. Spinal Cord, 49, 573-579.
https://doi.org/10.1038/sc.2010.159