[1]
|
徐敏普, 殷勇, 沈文辉. 天然植物纤维及其加筋土体研究综述[J]. 四川建材, 2022, 48(4): 111-112.
|
[2]
|
Joshi, S.V., Drzal, L.T., Mohanty, A.K. and Arora, S. (2004) Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Composites Part A: Applied Science and Manufacturing, 35, 371-376. https://doi.org/10.1016/j.compositesa.2003.09.016
|
[3]
|
Dhakal, H., Zhang, Z. and Richardson, M. (2007) Effect of Water Absorption on the Mechanical Properties of Hemp Fibre Reinforced Unsaturated Polyester Composites. Composites Science and Technology, 67, 1674-1683. https://doi.org/10.1016/j.compscitech.2006.06.019
|
[4]
|
Thakur, V.K. and Thakur, M.K. (2014) Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites. Carbohydrate Polymers, 109, 102-117. https://doi.org/10.1016/j.carbpol.2014.03.039
|
[5]
|
姜华, 张祚, 梁洋杰, 等. 剑麻和蕉麻纤维定性鉴别[J]. 中国麻业科学, 2021, 43(2): 73-79.
|
[6]
|
李桂珍, 龚安达, 刘润昌, 等. 非木材纤维在卷烟工业用纸中的应用[J]. 中国造纸, 2011, 30(5): 69-73.
|
[7]
|
任泺彤, 陈小光, 马颜雪, 等. 麻文化发展与高值利用前景展望[J]. 中国麻业科学, 2021, 43(5): 272-280.
|
[8]
|
马强, 邢文文, 李丽华, 等. 棕麻纤维加筋砂的三轴试验研究[J]. 郑州大学学报(工学版), 2018, 39(2): 56-60.
|
[9]
|
高旭, 席蓓, 马婧, 等. 天然植物纤维复合材料的研究进展[J]. 西北民族大学学报(自然科学版), 2021, 42(4): 60-65.
|
[10]
|
Lacuna-Richman, C. (2002) The Role of Abaca (Musa textilis) in the Household Economy of a Forest Village. Small-scale Forest Economics, Management and Policy, 1, 93-101. https://doi.org/10.1007/s11842-002-0007-x
|
[11]
|
Moreno, L.O. (1995) Promising Abaca Accessions in the VISCA Germplasm Collection. Philippine Journal of Crop Science, 20, 23-30.
|
[12]
|
Aragon, C. (2000) Fiber Crops Program Area Research Planning and Prioritization. PIDS Discussion Paper Series.
|
[13]
|
Brewbaker, J.L., Gorrez, D.D. and Umali, D.L. (1956) Classification of Philippine Musae II. Canton and Minay Putative Hybrid Forms of Musa textilis Née and Musa balbisiana Colla. Philippine Agriculturist, 40, 258-268.
|
[14]
|
Göltenboth, F. and Abacá, W.M. (2010) Abacá—Cultivation, Extraction and Processing. Industrial Applications of Natural Fibres, 163-180.
|
[15]
|
Spencer, J.E. (1953) The Abacá Plant and Its Fiber, Manila Hemp. Economic Botany, 7, 195-213. https://doi.org/10.1007/bf02984947
|
[16]
|
Bande, M.M., Grenz, J., Asio, V.B. and Sauerborn, J. (2013) Fiber Yield and Quality of Abaca (Musa textilis Var. Laylay) Grown under Different Shade Conditions, Water and Nutrient Management. Industrial Crops and Products, 42, 70-77. https://doi.org/10.1016/j.indcrop.2012.05.009
|
[17]
|
Armecin, R.B. and Ferraren, A.S.A. (2001) Diagnosis of Nutrient Constraints to Abaca (Musa textilis Nee) among Selected Soils in Eastern Visayas [Philippines] by Nutrient Omission Pot Trial. Asian Agriculture Congress, Manila, 24-27 April 2001, 47.
|
[18]
|
叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报, 2006(8): 1782-1791.
|
[19]
|
Armentano, I., Dottori, M., Fortunati, E., Mattioli, S. and Kenny, J.M. (2010) Biodegradable Polymer Matrix Nanocomposites for Tissue Engineering: A Review. Polymer Degradation and Stability, 95, 2126-2146. https://doi.org/10.1016/j.polymdegradstab.2010.06.007
|
[20]
|
Armecin, R.B. and Gabon, F.M. (2008) Biomass, Organic Carbon and Mineral Matter Contents of Abaca (Musa textilis Nee) at Different Stages of Growth. Industrial Crops and Products, 28, 340-345. https://doi.org/10.1016/j.indcrop.2008.03.014
|
[21]
|
Vilaseca, F., Valadez-Gonzalez, A., Herrera-Franco, P.J., Pèlach, M.À., López, J.P. and Mutjé, P. (2010) Biocomposites from Abaca Strands and Polypropylene. Part I: Evaluation of the Tensile Properties. Bioresource Technology, 101, 387-395. https://doi.org/10.1016/j.biortech.2009.07.066
|
[22]
|
Malenab, R., Ngo, J. and Promentilla, M. (2017) Chemical Treatment of Waste Abaca for Natural Fiber-Reinforced Geopolymer Composite. Materials, 10, Article 579. https://doi.org/10.3390/ma10060579
|
[23]
|
Punyamurthy, R., Sampathkumar, D., Ranganagowda, R.P.G., Bennehalli, B. and Srinivasa, C.V. (2017) Mechanical Properties of Abaca Fiber Reinforced Polypropylene Composites: Effect of Chemical Treatment by Benzenediazonium Chloride. Journal of King Saud University—Engineering Sciences, 29, 289-294. https://doi.org/10.1016/j.jksues.2015.10.004
|
[24]
|
Sinha, A.K., Narang, H.K. and Bhattacharya, S. (2020) Experimental Investigation of Surface Modified Abaca Fibre. Materials Science Forum, 978, 291-295. https://doi.org/10.4028/www.scientific.net/msf.978.291
|
[25]
|
del Río, J.C. and Gutiérrez, A. (2006) Chemical Composition of Abaca (Musa textilis) Leaf Fibers Used for Manufacturing of High Quality Paper Pulps. Journal of Agricultural and Food Chemistry, 54, 4600-4610. https://doi.org/10.1021/jf053016n
|
[26]
|
Vijayalakshmi, K., Neeraja, C.Y.K., Kavitha, A., et al. (2014) Abaca Fibre. Transactions on Engineering and Sciences, 2, 16-19.
|
[27]
|
Shalwan, A. and Yousif, B.F. (2013) In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Materials & Design, 48, 14-24. https://doi.org/10.1016/j.matdes.2012.07.014
|
[28]
|
Wambua, P., Ivens, J. and Verpoest, I. (2003) Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Composites Science and Technology, 63, 1259-1264. https://doi.org/10.1016/s0266-3538(03)00096-4
|
[29]
|
Mohanty, A.K., Khan, M.A. and Hinrichsen, G. (2000) Influence of Chemical Surface Modification on the Properties of Biodegradable Jute Fabrics—Polyester Amide Composites. Composites Part A: Applied Science and Manufacturing, 31, 143-150. https://doi.org/10.1016/s1359-835x(99)00057-3
|
[30]
|
Srivastav, A.K., Behera, M.K. and Ray, B.C. (2007) Loading Rate Sensitivity of Jute/Glass Hybrid Reinforced Epoxy Composites: Effect of Surface Modifications. Journal of Reinforced Plastics and Composites, 26, 851-860. https://doi.org/10.1177/0731684407076735
|
[31]
|
Ramadevi, P., Sampathkumar, D., Srinivasa, C.V. and Bennehalli, B. (2012) Effect of Alkali Treatment on Water Absorption of Single Cellulosic Abaca Fiber. BioResources, 7, 3515-3524. https://doi.org/10.15376/biores.7.3.3515-3524
|
[32]
|
Cai, M., Takagi, H., Nakagaito, A.N., Katoh, M., Ueki, T., Waterhouse, G.I.N., et al. (2015) Influence of Alkali Treatment on Internal Microstructure and Tensile Properties of Abaca Fibers. Industrial Crops and Products, 65, 27-35. https://doi.org/10.1016/j.indcrop.2014.11.048
|
[33]
|
Valášek, P., Müller, M., Šleger, V., Kolář, V., Hromasová, M., D’Amato, R., et al. (2021) Influence of Alkali Treatment on the Microstructure and Mechanical Properties of Coir and Abaca Fibers. Materials, 14, Article 2636. https://doi.org/10.3390/ma14102636
|
[34]
|
Bledzki, A.K., Mamun, A.A., Jaszkiewicz, A. and Erdmann, K. (2010) Polypropylene Composites with Enzyme Modified Abaca Fibre. Composites Science and Technology, 70, 854-860. https://doi.org/10.1016/j.compscitech.2010.02.003
|
[35]
|
Ahmed, S.N., Prabhakar, M.N., Siddaramaiah, and Song, J. (2017) Influence of Silane-Modified Vinyl Ester on the Properties of Abaca Fiber Reinforced Composites. Advances in Polymer Technology, 37, 1970-1978. https://doi.org/10.1002/adv.21855
|
[36]
|
Vilaseca, F., Valadez-Gonzalez, A., Herrera-Franco, P.J., Pèlach, M.À., López, J.P. and Mutjé, P. (2010) Biocomposites from Abaca Strands and Polypropylene. Part I: Evaluation of the Tensile Properties. Bioresource Technology, 101, 387-395. https://doi.org/10.1016/j.biortech.2009.07.066
|
[37]
|
Punyamurthy, R., Sampathkumar, D., Ranganagowda, R.P., Bennehalli, B., Badyankal, P. and Venkateshappa, S.C. (2014) Surface Modification of Abaca Fiber by Benzene Diazonium Chloride Treatment and Its Influence on Tensile Properties of Abaca Fiber Reinforced Polypropylene Composites. Ciência & Tecnologia dos Materiais, 26, 142-149. https://doi.org/10.1016/j.ctmat.2015.03.003
|
[38]
|
Enomae, T., Asakawa, R., Onabe, F., Yoshizaki, M., Fukasawa, H., Hiyoshi, K., et al. (2006) Development of Nursing Care Sheets of Cellulosic Nonwoven Fabrics for Aging Society. Textile Research Journal, 76, 41-48. https://doi.org/10.1177/0040517506053912
|
[39]
|
Karasawa, Y., Mizuhashi, H., Uemae, M., Yoshida, H. and Kamijo, M. (2022) Comfort Properties of Fabrics Knitted from a Two-Ply Yarn Derived from Abacá and Cotton. Textile Research Journal, 92, 4325-4341. https://doi.org/10.1177/00405175221102638
|
[40]
|
Unal, F., Avinc, O. and Yavas, A. (2020) Sustainable Textile Designs Made from Renewable Biodegradable Sustainable Natural Abaca Fibers. In: Muthu, S.S. and Gardetti, M.A., Eds., Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, Springer International Publishing, 1-30. https://doi.org/10.1007/978-3-030-37929-2_1
|
[41]
|
Simbaña, E.A., Ordóñez, P.E., Ordóñez, Y.F., Guerrero, V.H., Mera, M.C. and Carvajal, E.A. (2020) Abaca: Cultivation, Obtaining Fibre and Potential Uses. In: Kozłowski, R.M. and Mackiewicz-Talarczyk, M., Eds., Handbook of Natural Fibres, Elsevier, 197-218. https://doi.org/10.1016/b978-0-12-818398-4.00008-6
|
[42]
|
Sinha, A.K., Narang, H.K. and Bhattacharya, S. (2017) Mechanical Properties of Natural Fibre Polymer Composites. Journal of Polymer Engineering, 37, 879-895. https://doi.org/10.1515/polyeng-2016-0362
|
[43]
|
Hintermann, M. (2005) Automotive Exterior Parts from Natural Fibers. RIKO.
|
[44]
|
Liu, K., Zhang, X., Takagi, H., Yang, Z. and Wang, D. (2014) Effect of Chemical Treatments on Transverse Thermal Conductivity of Unidirectional Abaca Fiber/Epoxy Composite. Composites Part A: Applied Science and Manufacturing, 66, 227-236. https://doi.org/10.1016/j.compositesa.2014.07.018
|
[45]
|
Gironès, J., Lopez, J.P., Vilaseca, F., Bayer R., J., Herrera-Franco, P.J. and Mutjé, P. (2011) Biocomposites from Musa textilis and Polypropylene: Evaluation of Flexural Properties and Impact Strength. Composites Science and Technology, 71, 122-128. https://doi.org/10.1016/j.compscitech.2010.10.012
|
[46]
|
Paglicawan, M.A., Emolaga, C.S., Sudayon, J.M.B. and Tria, K.B. (2021) Mechanical Properties of Abaca-Glass Fiber Composites Fabricated by Vacuum-Assisted Resin Transfer Method. Polymers, 13, Article 2719. https://doi.org/10.3390/polym13162719
|
[47]
|
Bledzki, A.K., Mamun, A.A. and Faruk, O. (2007) Abaca Fibre Reinforced PP Composites and Comparison with Jute and Flax Fibre PP Composites. Express Polymer Letters, 1, 755-762. https://doi.org/10.3144/expresspolymlett.2007.104
|
[48]
|
Sinha, A.K., Bhattacharya, S. and Narang, H.K. (2019) Experimental Determination and Modelling of the Mechanical Properties of Hybrid Abaca-Reinforced Polymer Composite Using RSM. Polymers and Polymer Composites, 27, 597-608. https://doi.org/10.1177/0967391119855843
|
[49]
|
Vijaya Ramnath, B., Manickavasagam, V.M., Elanchezhian, C., Vinodh Krishna, C., Karthik, S. and Saravanan, K. (2014) Determination of Mechanical Properties of Intra-Layer Abaca-Jute-Glass Fiber Reinforced Composite. Materials & Design, 60, 643-652. https://doi.org/10.1016/j.matdes.2014.03.061
|
[50]
|
Vijaya Ramnath, B., Junaid Kokan, S., Niranjan Raja, R., Sathyanarayanan, R., Elanchezhian, C., Rajendra Prasad, A., et al. (2013) Evaluation of Mechanical Properties of Abaca-Jute-Glass Fibre Reinforced Epoxy Composite. Materials & Design, 51, 357-366. https://doi.org/10.1016/j.matdes.2013.03.102
|