肩袖损伤合并糖尿病疾病发展、发病机制及预后的研究进展
Research Progress on the Development, Pathogenesis and Prognosis of Rotator Cuff Injury Complicated with Diabetes Mellitus
DOI: 10.12677/acm.2024.1492469, PDF, HTML, XML,   
作者: 朱宸玮:西安医学院研究生处,陕西 西安;强 辉*:陕西省人民医院骨科,陕西 西安
关键词: 肩袖损伤糖尿病流行病学发病机制Rotator Cuff Injury Diabetes Mellitus Epidemiology Pathogenesis
摘要: 肩袖损伤是导致肩痛的主要原因,糖尿病与肩袖肌腱的改变有着密切的联系,糖尿病是肩袖损伤的危险因素之一,同时影响肩袖损伤的发生及术后愈合。随着糖尿病患病率的逐年上升,它们对肩袖损伤的影响研究变得更为重要。然而,糖尿病影响肩袖损伤的机制尚不清楚。有几个因素被提出,包括炎症反应、营养供应及血液供应等。本文就糖尿病与肩袖损伤的关系,影响肩袖的病理生理变化及其发病机制,以及对肩袖修补术后愈合和术后并发症的影响等方面进行综述,为提供个性化的预防措施及康复指导提供相关依据。
Abstract: Rotator cuff injury is the main cause of shoulder pain. Diabetes is closely related to rotator cuff tendon changes. Diabetes is one of the risk factors for rotator cuff injury, and it also affects the occurrence and postoperative healing of rotator cuff injury. As the prevalence of diabetes increases year by year, the study of their impact on rotator cuff injury becomes more important. However, the mechanism by which diabetes affects rotator cuff injury is unclear. Several factors have been proposed, including inflammation, nutrient supply, and blood supply. This article reviews the relationship between diabetes mellitus and rotator cuff injury, the pathophysiological changes and pathogenesis of rotator cuff, and the effects on healing and complications after rotator cuff repair, in order to provide relevant basis for personalized preventive measures and rehabilitation guidance.
文章引用:朱宸玮, 强辉. 肩袖损伤合并糖尿病疾病发展、发病机制及预后的研究进展[J]. 临床医学进展, 2024, 14(9): 359-367. https://doi.org/10.12677/acm.2024.1492469

1. 引言

肩袖是一组肌腱的统称,它由冈上肌、冈下肌、小圆肌以及肩胛下肌的肌腱包绕在肱骨头周围形成的复杂结构,同时可执行外展、外旋、内旋等活动,在维持肩关节稳定性与活动方面发挥着极其重要的作用[1]。肩袖损伤是肩部疼痛最常见的原因,据统计肩袖损伤发病率达50% [2],发病人群通常在40岁以上,平均年龄为55岁[3]。会导致肩关节不稳定和日常工作活动受限。肩袖损伤或撕裂是指一个或多个肌腱的或从肱骨撕脱[4]。肩袖损伤的发生率与多种代谢因素相关,如糖尿病、肥胖、甲状腺功能减退等[5]

目前证实,老年患者、男性、吸烟、糖尿病、高血压是肩袖撕裂的危险因素[6]。而糖尿病作为代谢性疾病的重要组成,在肩袖损伤发生发展和预后中的作用也逐渐受到临床医生的重视,同时也是影响肩袖损伤预后和术后相关并发症的重要危险因素之一。因此明确糖尿病对肩袖损伤发展的机制以及对肩袖损伤的预防和相关治疗有重大意义。本文通过回顾文献,更好地了解糖尿病与肩袖损伤之间的关系及术后愈合将有助于改善更有效的治疗策略。

2. 肩袖损伤合并糖尿病发病的临床研究

2.1. 肩袖损伤合并糖尿病的流行病学研究

糖尿病是一种以慢性高血糖为特征被定义为一种复杂的慢性代谢性疾病[7],其发病率在全球范围内呈上升趋势,当前已成为发病率最高、危害最大的慢性非传染性疾病之一,根据国际糖尿病联合会(International Diabetes Federation, IDF)的最新数据显示,2021年全球糖尿病患者数量达到约5.37亿人,预计到2045年这一数字将增加至7.36亿人。糖尿病的高发地区包括北美、欧洲以及一些亚太地区国家[8]。糖尿病被认为是与慢性肌肉骨骼疾病相关的重要危险因素,与身体各个部位的肌腱损伤之间存在联系[9]。目前的流行病学证据普遍表明,糖尿病会引起肌腱显着的结构、炎症和血管变化,这可能使糖尿病患者患慢性肌腱病或创伤性断裂的风险更大[10]。据报道,糖尿病也是肩关节挛缩的危险因素[11]。在流行病学研究中,法国的一项横断面研究表明,糖尿病是肩袖病变的重要危险因素之一[12],据统计,在年龄超过50岁人群中的影响更为突出[13]。糖尿病患者患有肌腱疾病的概率是非糖尿病患者的3倍多[14],且2型糖尿病病人肌腱断裂的风险更高[15]。芬兰一项基于人群的横断面研究显示,独立糖尿病患者发生肩袖肌腱炎的风险增加8.8倍[16]。Nichols等人的研究表明,2型糖尿病患者发生肩袖疾病的风险是无糖尿病患者的4倍,肩袖撕裂或断裂的风险是无糖尿病患者的5倍[17]。肩袖中肌腱损伤的病因和发病机制当然是多因素和复杂的。而在现有的研究中有着了强有力的证据,证明糖尿病与肩袖损伤风险增加相关,糖尿病已被确定人群中导致肩袖肌腱病发生的风险和相关因素[18]

总之,肩袖损伤在糖尿病人群中比非糖尿病人群中发病的风险更高。所以在临床工作中应该注意肩袖损伤合并糖尿病病人,更加关注其肩袖损伤发生的进展,科学合理调整手术方式并且监测预防高血糖。

2.2. 肩袖损伤合并糖尿病的肌腱病理变化

不受控制的糖尿病或高血糖状况可导致肌腱病理结构和功能异常。糖尿病患者更容易出现撕裂和退行性现象,冈上肌腱厚度增加,这是由于组织中胶原蛋白层的异常储存,因此它本身就是退行性变化的一种表现[19]

肩袖肌腱结构特性改变可能使糖尿病患者易患肌腱病变和肌腱撕裂。在建立的各种糖尿病动物模型中,糖尿病改变了肌腱的生物力学特性和对负荷的动态反应[20]。Oliveira等人表明,与非糖尿病肌腱相比,糖尿病肌腱的比应变、最大应变和能量/肌腱面积均有所增加[21]。Bezerra等人报告了糖尿病肌腱的弹性系数和最大张力增加[22]。大鼠模型中,与血糖正常的大鼠相比糖尿病大鼠冈上肌腱的肌腱–骨复合体也表现出平均破坏负荷和硬度下降,损害肌腱骨愈合[23]

组织病理学中观察发现糖尿病或高血糖状态下肌腱的特征是失去了正常的亮白色外观并且肿胀。与健康肌腱相比,糖尿病肌腱表现得泛黄、脆弱、萎缩[24]。临床研究表明,糖尿病肌腱结构发生异常[25],肌腱的厚度[26]、体积[27]、僵硬度均有所增加[28]。除此之外,糖尿病肌腱还表现出腱–骨连接区明显破裂、肌腱细胞变性、胶原纤维撕裂和周围血管增生[29]。与非糖尿病肌腱相比,糖尿病肌腱的纤维细胞和总细胞结构、血管和肥大细胞的密度显着增加[13]。光镜下在糖尿病患者的肌腱中观察到局灶性胶原变性以及无炎症细胞浸润弹性蛋白纤维的数量减少[30]

对肌腱细胞的组织化学和超微结构进行了研究。糖尿病还会导致人体受损肌腱发生显著的组织、细胞和分子变化。之前的研究中证实,糖尿病患者撕裂肌腱中基质金属蛋白酶(MMP)-9和白细胞介素(IL)-6水平也升高[31]。糖尿病肩袖撕裂患者肩峰下关节液中炎性细胞因子IL-1β水平高于非糖尿病患者[32]。糖尿病肌腱的免疫组织化学(IHC)染色显示I型胶原的密度增加,这可能表示血管内皮生长因子(VEGF)和NF-κB在这些血管变化中起作用的表达有关[13]。此外,在糖尿病肌腱中也观察到轻度中性粒细胞浸润[20]。这些发现表明,炎症增加、血液供应和营养供应与糖尿病肌腱病变的发生和发展有关。

糖尿病肌腱表现出退行性和损伤特征。糖尿病会引起肌腱生物力学、组织学、结构、炎症和血管的显著改变,这也是糖尿病患者合并肩袖损伤的病理基础,使得糖尿病患者更容易发生肌腱病变甚至提高肌腱断裂的风险。高血糖条件下肌腱组织的这些病理变化可能为糖尿病和肌腱愈合之间的潜在机制提供新的见解。

2.3. 糖尿病合并肩袖损伤的发病机制

肩袖肌腱病是一种慢性的、多方面的肌腱病理改变,其特征是肌腱结构、功能和组成的改变。糖尿病性肌腱病变的发生是一个复杂的过程,它还受到多种因素的影响,包括高糖环境、炎症、细胞因子、激素以及氧化应激等[10]。尽管在糖尿病性肌腱病变中已经观察到并检测细胞和分子的改变,但是其潜在的确切机制尚未被揭示。

糖尿病引起的高血糖状态与肩袖肌腱退变有关。结果显示,组织学检查证实,糖尿病与AGEs积累和脂肪浸润增加有关。AGEs的过量产生也可能在糖尿病肌腱病变的发病机制中发挥重要作用。AGEs是一种蛋白质或脂质,在接触后会发生非酶糖基化和氧化,蛋白质通常通过其赖氨酸残基被糖化[33]。AGEs还可以下调VEGF表达,诱导细胞周期停滞、促炎性变化以及增强氧化应激,阻断一氧化氮(NO)活性,激活NF-κB,结合炎性细胞和内皮细胞,通过AGE受体(RAGE)诱导细胞分泌细胞因子,导致细胞凋亡、炎症、钙化和血管并发症增加[34]。据此前研究中证实,大鼠肌腱中AGEs的数量随糖尿病持续时间的延长而增加,从而损害受损肌腱的功能,糖尿病的代谢危险因素也可能有助于糖尿病患者肌腱病变的发病机制[35]。此外,AGEs与肩关节活动限制之间存在显著关联。总的来说,研究结果表明,AGEs沉积引起的氧化应激导致纤维化和局部炎症,可能是糖尿病患者肩袖损伤伴活动受限的原因[36]

此外,高血糖可导致包括肩袖区域在内的不同组织部位的微血管功能障碍。这可能导致肩袖受损。关于血管在肩袖疾病中的作用的证据尚未统一。研究报道,在肌腱断裂发生过程中,肩关节冈上肌腱区域可能存在血管增生[37]。急性期肌腱病变可能比没有受损侧肌腱病变血管化程度更低[38]。但是,在慢性肌腱病变中,撕裂可能与血管增生有关,这是由于变性和缺血的愈合反应导致的新生血管形成[38]。因此,在某些情况下,由于肌腱基质中新生血管的形成而导致血管拥挤,可能会损伤肌腱的完整性,使其更容易撕裂。

目前,糖尿病微环境中肌腱病变的潜在机制尚不清楚,有效的治疗策略尚未建立。糖尿病对肌腱愈合的影响在临床实践中常常被忽视,因此,需要确定和评估确切的机制以制定有效的治疗方法。

3. 糖尿病对肩袖损伤预后的影响

最近的一项研究显示,从1996年到2006年,全球肩关节镜修复手术增加了6倍[39]。小至中等撕裂的初次关节镜肩袖修复通常是成功的,然而,已经确定了几个失败的风险因素,除了较大的撕裂外,目前的研究表示肌腱质量差或肌腱病可能其中的风险因素之一[40]。例如,年龄、性别、肥胖、他汀类药物的使用和血糖水平升高[41]与肩袖修复后肌腱质量不良或肌腱病的倾向有关,因此可能影响其预后表现。

3.1. 糖尿病对肩袖损伤修补术后活动度的影响

关于糖尿病患者肩袖修复术后的临床表现和结果有不同的证据。一些研究表明,糖尿病患者的活动范围(ROM)明显比非糖尿病患者更受限制[42]

研究表明高血糖会影响肌腱胶原纤维的交联[41]、降低蛋白多糖的含量[43]。更容易表现出肩关节活动受限、肩部肌肉力量降低和肩关节功能受损[44]和肩袖退化[45]。严重肩关节僵硬被定义为肘关节被动外旋小于或等于10˚,当被动外旋大于10˚但被动外展或上抬测量值小于或等于130˚时被分类为中度僵硬[46]。Blonna等人证实糖尿病是中度僵硬的危险因素,糖尿病合并肩袖损伤术后僵硬的发生率为23%,其中17%被诊断为严重的术后肩关节僵硬[42]

目前不同研究对术后僵硬的概念没有确切的定义,再加上部分研究中纳入的样本量较少,对于该结论尚存在争议,Miyatake K等人发现围手术期血糖控制良好的糖尿病患者在关节镜下肩袖修复术后表现出与非糖尿病患者相当的愈后结果[47]。因此未来需进一步探究糖尿病对术后僵硬的影响。

3.2. 糖尿病对肩袖损伤组织愈合的影响

肩袖损伤通常需要进行肩袖修补手术,随着技术的进步,关节镜下肩袖损伤修补术成为治疗的金标准。影响肩袖修复术后恢复的因素包括病人年龄、治疗环境、症状持续时间、骨质疏松、糖尿病、吸烟和非甾体抗炎药(NSAIDs)的使用[48]。不受控制的高血糖的长期影响包括周围神经病变、肌肉骨骼和组织修复障碍[49]。糖尿病患者可能会增加手术风险,包括感染、修复组织质量受损以及伤口愈合问题的倾向[50]。虽然先前有报道了糖尿病与肌腱愈合之间的关系,但目前的机制仍不清楚。

肌腱是由胶原纤维组成的承重组织,以三维层次结构组成。胶原蛋白合成和沉积的增加对伤口愈合和拉伸强度至关重要。肌腱愈合发生在重叠的三个阶段:最初的48小时发生的炎症、持续约6周的增生和重塑。他们指出,持续的高血糖与肌腱愈合不良以及最大强度降低有关。在实验大鼠模型中,未控制的糖尿病会影响肌腱的生物力学和损伤肌腱的愈合[24]。Aygit C等人发现糖尿病动物的损伤部位有明显的AGEs积累[51]。先前也有报道发现,老鼠体内的AGEs水平显著增加,AGEs的增加被认为是肌腱病变或生物力学减弱的关键发病机制,在非糖尿病大鼠中并不普遍存在。AGEs还可以改变信号转导通路,降低细胞因子和蛋白质功能,这也影响到糖尿病的预后[52]。Acar等认为AGEs在急性肩袖损伤的糖尿病大鼠肌腱断裂后脂肪变性进展中起重要作用[53]。Ueda等人和Tsai等人发现,在高糖条件下培养的大鼠细胞,分解代谢酶(基质金属蛋白酶2、9、13)和促炎细胞因子-6。这些研究表明,高糖可破坏肌腱细胞稳态并改变促炎/促纤维化介质的表达[54]。Chbinou等人认为糖尿病会导致炎症、血管生成和增殖过程的显著损害,这可能对损伤后肌腱愈合或重塑产生不利影响[55]

尽管大量研究表明,高葡萄糖状态可以影响肌腱细胞的改变,但这些特异性改变导致糖尿病肌腱病变或组织愈合受损的情况仍不清楚。因此,合并糖尿病的肩袖损伤的患者还应通过改变生活方式及饮食严格控制血糖水平,降低肩关节的持重载荷。

3.3. 糖尿病对肩袖损伤修复术后再撕裂的影响

随着关节镜技术的快速发展,肩袖损伤的临床治疗效果较好,但患者在自身或手术等多种因素的影响下,术后仍有一定的再撕裂风险[56]。此前也有报道表示未控制的糖尿病患者,在肩袖损伤修补术后的二次手术率明显高于控制的糖尿病患者(HbA1c < 7%) [49]。在临床研究中糖尿病对肩袖肌腱的病理影响是有限的。Borton等人发现,糖尿病患者的肩袖损伤肌腱再撕裂率约为非糖尿病患者的两倍[57]。糖尿病患者在关节镜下肩袖损伤修复后出现并发症的可能性是其两倍,发生肩周炎的可能性是其四倍以上。

Kim MS等人通过队列研究证实,糖化血红蛋白(HbA1c)水平升高是再次撕裂的独立危险因素,术后3~6个月肌腱愈合过程中的血糖控制对再撕裂率有显著影响。血糖控制不良的糖尿病患者术后再撕裂率是血糖控制良好的约1.67倍,说明持续高血糖增加了肩袖修复失败的可能性[58]

在大鼠实验中,Bedi等人用实验研究支持了持续高血糖增加了肩袖修复后肌腱再次撕裂的可能性[23];糖尿病大鼠表现出纤维软骨和有组织胶原明显减少,肌腱–骨界面晚期糖基化终产物(AGEs)沉积增加。胶原纤维内AGEs的交联被认为会恶化肌腱的生物和力学功能,使肌腱变得更硬、弹性更低、更弱,更容易撕裂[59]。再次表明围手术期高血糖对肩袖修复术后肌腱–骨愈合有不良影响。另一方面,Chung等人分析了糖尿病和肩袖撕裂患者的肩袖肌腱,发现糖尿病患者中基质金属蛋白酶-9和白细胞介素-6的基因表达高于非糖尿病患者;他们认为,这些基因的过表达可能是糖尿病患者肩袖撕裂手术后撕裂率增加的一个重要原因[31]

综上所述,糖尿病患者包括术前未控制围手术期血糖控制的患者,关节镜下肩袖修补术后血糖控制可能会获得更好的临床效果。围手术期局部和全身控制高血糖可能是实现糖尿病患者肩袖修复愈合术中最重要的技术因素[23]

根据大量的研究结果,血糖控制不佳的糖尿病患者在肩袖损伤修复或重建手术后失败的风险可能高于血糖正常的患者。这些发现对血糖控制不良的糖尿病患者所有肌腱修复或重建手术的预期结果具有重要的临床意义。

4. 总结与展望

尽管目前对于肩袖损伤与糖尿病之间关系的研究仍处于初步阶段,但当前流行病学证据普遍表明,糖尿病是肩袖损伤发生、进展和治疗预后的重要危险因素之一。

肌腱损伤在糖尿病患者中很常见。糖尿病引起肌腱的结构、炎症和血管变化,更容易发生肌腱病变甚至撕裂。在糖尿病患者中,周围感觉神经病变和无症状肩袖撕裂等并发症可能在无意识的情况下发生。

对于糖尿病患者应及早发现其肩袖病变并采取干预措施,如早期局部药物注射治疗等,延缓患者肩袖病变的进展;其次,围手术期局部和全身控制血糖可能是实现糖尿病患者肩袖损伤修复术后愈合最重要的因素;最后,加强对肩袖损伤的糖尿病患者的健康教育,采取不同的方式强调血糖控制水平对肩袖损伤发展及预后的影响,提高患者的血糖自我管理能力。有氧体育训练可以通过增加外周葡萄糖和糖原代谢的摄取来改善糖尿病的病情。在这方面,中等强度的有氧训练已经被报道可以恢复糖尿病肌腱的正常力学性能[21]

目前关于此方面相关性尚缺乏研究,未来应该进一步探索糖尿病代谢控制与肩袖损伤发病及术后预后之间的联系。在未来,建议进行前瞻性队列调查和分析控制血糖水平的预防效果,为患者提供更准确、更精准的个体化治疗。

NOTES

*通讯作者。

参考文献

[1] Ellenbecker, T.S. and Cools, A. (2010) Rehabilitation of Shoulder Impingement Syndrome and Rotator Cuff Injuries: An Evidence-Based Review. British Journal of Sports Medicine, 44, 319-327.
https://doi.org/10.1136/bjsm.2009.058875
[2] Zong, L., Duan, M., Yuan, W. and Lu, H. (2020) Efficacy of Shoulder Arthroscopic Surgery for the Treatment of Rotator Cuff Injury. Medicine, 99, e20591.
https://doi.org/10.1097/md.0000000000020591
[3] Bartoszewski, N. and Parnes, N. (2018) Rotator Cuff Injuries. JAAPA, 31, 49-50.
https://doi.org/10.1097/01.jaa.0000531046.74384.c7
[4] Craig, R., Holt, T. and Rees, J.L. (2017) Acute Rotator Cuff Tears. BMJ, 359, j5366.
https://doi.org/10.1136/bmj.j5366
[5] Le, B.T.N., Wu, X.L., Lam, P.H. and Murrell, G.A.C. (2014) Factors Predicting Rotator Cuff Retears. The American Journal of Sports Medicine, 42, 1134-1142.
https://doi.org/10.1177/0363546514525336
[6] Zhao, J., Luo, M., Liang, G., Wu, M., Pan, J., Zeng, L., et al. (2021) Risk Factors for Supraspinatus Tears: A Meta-Analysis of Observational Studies. Orthopaedic Journal of Sports Medicine, 9, Article No. 23259671211042826.
https://doi.org/10.1177/23259671211042826
[7] Venables, M.C. and Jeukendrup, A.E. (2009) Physical Inactivity and Obesity: Links with Insulin Resistance and Type 2 Diabetes Mellitus. Diabetes/Metabolism Research and Reviews, 25, S18-S23.
https://doi.org/10.1002/dmrr.983
[8] Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119.
https://doi.org/10.1016/j.diabres.2021.109119
[9] Giordano, J., Tarazi, J.M., Partan, M.J. and Cohn, R.M. (2023) Risk Factors for Unexpected Admission Following Arthroscopic and Open Treatment of Shoulder Instability: A National Database Study of 11, 230 Cases. Clinics in Shoulder and Elbow, 26, 41-48.
https://doi.org/10.5397/cise.2022.01305
[10] Lui, P.P.Y. (2017) Tendinopathy in Diabetes Mellitus Patients—Epidemiology, Pathogenesis, and Management. Scandinavian Journal of Medicine & Science in Sports, 27, 776-787.
https://doi.org/10.1111/sms.12824
[11] Whelton, C. and Peach, C.A. (2017) Review of Diabetic Frozen Shoulder. European Journal of Orthopaedic Surgery & Traumatology, 28, 363-371.
https://doi.org/10.1007/s00590-017-2068-8
[12] Roquelaure, Y., Bodin, J., Ha, C., Petit Le Manac’h, A., Descatha, A., Chastang, J., et al. (2011) Personal, Biomechanical, and Psychosocial Risk Factors for Rotator Cuff Syndrome in a Working Population. Scandinavian Journal of Work, Environment & Health, 37, 502-511.
https://doi.org/10.5271/sjweh.3179
[13] Leong, H., Fu, S., He, X., Oh, J., Yamamoto, N. and Yung, S. (2019) Risk Factors for Rotator Cuff Tendinopathy: A Systematic Review and Meta-Analysis. Journal of Rehabilitation Medicine, 51, 627-637.
https://doi.org/10.2340/16501977-2598
[14] Ranger, T.A., Wong, A.M.Y., Cook, J.L. and Gaida, J.E. (2015) Is There an Association between Tendinopathy and Diabetes Mellitus? A Systematic Review with Meta-Analysis. British Journal of Sports Medicine, 50, 982-989.
https://doi.org/10.1136/bjsports-2015-094735
[15] Zakaria, M.H.B., Davis, W.A. and Davis, T.M.E. (2013) Incidence and Predictors of Hospitalization for Tendon Rupture in Type 2 Diabetes: The Fremantle Diabetes Study. Diabetic Medicine, 31, 425-430.
https://doi.org/10.1111/dme.12344
[16] Miranda, H., Viikari-Juntura, E., Heistaro, S., Heliövaara, M. and Riihimäki, H. (2005) A Population Study on Differences in the Determinants of a Specific Shoulder Disorder versus Nonspecific Shoulder Pain without Clinical Findings. American Journal of Epidemiology, 161, 847-855.
https://doi.org/10.1093/aje/kwi112
[17] Nichols, A.E.C., Oh, I. and Loiselle, A.E. (2019) Effects of Type II Diabetes Mellitus on Tendon Homeostasis and Healing. Journal of Orthopaedic Research, 38, 13-22.
https://doi.org/10.1002/jor.24388
[18] Rechardt, M., Shiri, R., Karppinen, J., Jula, A., Heliövaara, M. and Viikari-Juntura, E. (2010) Lifestyle and Metabolic Factors in Relation to Shoulder Pain and Rotator Cuff Tendinitis: A Population-Based Study. BMC Musculoskeletal Disorders, 11, Article No. 165.
https://doi.org/10.1186/1471-2474-11-165
[19] Shingh, S.S., Joshi, B.R. and Thapa, S.S. (2021) Comparison of Sonographic Findings of the Rotator Cuff between Diabetic and Non-Diabetic Patients with Shoulder Pain. Journal of Nepal Health Research Council, 19, 39-43.
https://doi.org/10.33314/jnhrc.v19i1.2449
[20] Boivin, G.P. (2014) Biomechanical Properties and Histology of Db/Db Diabetic Mouse Achille Tendon. Muscles, Ligaments and Tendons Journal, 4, 280-284.
https://doi.org/10.11138/mltj/2014.4.3.280
[21] de Oliveira, R.R., Bezerra, M.A., de Lira, K.D.S., Novaes, K.A., Teixeira, M.F.H.B.I., Chaves, C.D.C., et al. (2012) Aerobic Physical Training Restores Biomechanical Properties of Achilles Tendon in Rats Chemically Induced to Diabetes Mellitus. Journal of Diabetes and its Complications, 26, 163-168.
https://doi.org/10.1016/j.jdiacomp.2012.03.017
[22] Bezerra Marcio, A., et al. (2016) Previous Physical Exercise Slows down the Complications from Experimental Diabetes in the Calcaneal Tendon. Muscles, Ligaments and Tendons Journal, 6, 97-103.
https://doi.org/10.11138/mltj/2016.6.1.097
[23] Bedi, A., Fox, A.J.S., Harris, P.E., Deng, X., Ying, L., Warren, R.F., et al. (2010) Diabetes Mellitus Impairs Tendon-Bone Healing after Rotator Cuff Repair. Journal of Shoulder and Elbow Surgery, 19, 978-988.
https://doi.org/10.1016/j.jse.2009.11.045
[24] Fox, A.J.S., Bedi, A., Deng, X., Ying, L., Harris, P.E., Warren, R.F., et al. (2011) Diabetes Mellitus Alters the Mechanical Properties of the Native Tendon in an Experimental Rat Model. Journal of Orthopaedic Research, 29, 880-885.
https://doi.org/10.1002/jor.21327
[25] de Jonge, S., Rozenberg, R., Vieyra, B., Stam, H.J., Aanstoot, H., Weinans, H., et al. (2015) Achilles Tendons in People with Type 2 Diabetes Show Mildly Compromised Structure: An Ultrasound Tissue Characterisation Study. British Journal of Sports Medicine, 49, 995-999.
https://doi.org/10.1136/bjsports-2014-093696
[26] Akturk, M., Ozdemir, A., Maral, I., Yetkin, I. and Arslan, M. (2007) Evaluation of Achilles Tendon Thickening in Type 2 Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 115, 92-96.
https://doi.org/10.1055/s-2007-955097
[27] Shah, K.M., Clark, B.R., McGill, J.B., Lang, C.E., Maynard, J. and Mueller, M.J. (2015) Relationship between Skin Intrinsic Fluorescence—An Indicator of Advanced Glycation End Products—And Upper Extremity Impairments in Individuals with Diabetes Mellitus. Physical Therapy, 95, 1111-1119.
https://doi.org/10.2522/ptj.20140340
[28] Couppé, C., Svensson, R.B., Kongsgaard, M., Kovanen, V., Grosset, J., Snorgaard, O., et al. (2016) Human Achilles Tendon Glycation and Function in Diabetes. Journal of Applied Physiology, 120, 130-137.
https://doi.org/10.1152/japplphysiol.00547.2015
[29] Ji, J., wang, Z., Shi, D., Gao, X. and Jiang, Q. (2009) Pathologic Changes of Achilles Tendon in Leptin-Deficient Mice. Rheumatology International, 30, 489-493.
https://doi.org/10.1007/s00296-009-1001-9
[30] Guney, A., Vatansever, F., Karaman, I., Kafadar, I., Oner, M. and Turk, C. (2015) Biomechanical Properties of Achilles Tendon in Diabetic vs. Non-Diabetic Patients. Experimental and Clinical Endocrinology & Diabetes, 123, 428-432.
https://doi.org/10.1055/s-0035-1549889
[31] Chung, S.W., Choi, B.M., Kim, J.Y., Lee, Y., Yoon, J.P., Oh, K., et al. (2017) Altered Gene and Protein Expressions in Torn Rotator Cuff Tendon Tissues in Diabetic Patients. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 33, 518-526.e1.
https://doi.org/10.1016/j.arthro.2016.08.017
[32] Siu, K., Zheng, L., Ko, J., Wang, F., Wang, C., Wong, T., et al. (2013) Increased Interleukin 1β Levels in the Subacromial Fluid in Diabetic Patients with Rotator Cuff Lesions Compared with Nondiabetic Patients. Journal of Shoulder and Elbow Surgery, 22, 1547-1551.
https://doi.org/10.1016/j.jse.2013.01.011
[33] Ansari, N.A., Moinuddin, and Ali, R. (2011) Glycated Lysine Residues: A Marker for Non-Enzymatic Protein Glycation in Age-Related Diseases. Disease Markers, 30, 317-324.
https://doi.org/10.1155/2011/718694
[34] Goldin, A., Beckman, J.A., Schmidt, A.M. and Creager, M.A. (2006) Advanced Glycation End Products. Circulation, 114, 597-605.
https://doi.org/10.1161/circulationaha.106.621854
[35] Turk, Z., Mišur, I., Turk, N. and Benko, B. (1999) Rat Tissue Collagen Modified by Advanced Glycation: Correlation with Duration of Diabetes and Glycemic Control. Clinical Chemistry and Laboratory Medicine (CCLM), 37, 813-820.
https://doi.org/10.1515/cclm.1999.122
[36] Shinohara, I., Mifune, Y., Inui, A., Nishimoto, H., Yamaura, K., Mukohara, S., et al. (2022) Advanced Glycation End Products Are Associated with Limited Range of Motion of the Shoulder Joint in Patients with Rotator Cuff Tears Associated with Diabetes Mellitus. BMC Musculoskeletal Disorders, 23, Article No. 271.
https://doi.org/10.1186/s12891-022-05229-5
[37] Factor, D. and Dale, B. (2014) Current Concepts of Rotator Cuff Tendinopathy. International Journal of Sports Physical Therapy, 9, 274-288.
[38] Levy, O., Relwani, J., Zaman, T., Even, T., Venkateswaran, B. and Copeland, S. (2008) Measurement of Blood Flow in the Rotator Cuff Using Laser Doppler Flowmetry. The Journal of Bone and Joint Surgery. British Volume, 90, 893-898.
https://doi.org/10.1302/0301-620x.90b7.19918
[39] Nho, S.J., Yadav, H., Shindle, M.K. and MacGillivray, J.D. (2008) Rotator Cuff Degeneration. The American Journal of Sports Medicine, 36, 987-993.
https://doi.org/10.1177/0363546508317344
[40] Riley, G. (2003) The Pathogenesis of Tendinopathy. A Molecular Perspective. Rheumatology, 43, 131-142.
https://doi.org/10.1093/rheumatology/keg448
[41] Reddy, G.K. (2003) Glucose‐mediated in Vitro Glycation Modulates Biomechanical Integrity of the Soft Tissues but Not Hard Tissues. Journal of Orthopaedic Research, 21, 738-743.
https://doi.org/10.1016/s0736-0266(03)00006-8
[42] Blonna, D., Fissore, F., Bellato, E., La Malfa, M., Calò, M., Bonasia, D.E., et al. (2015) Subclinical Hypothyroidism and Diabetes as Risk Factors for Postoperative Stiff Shoulder. Knee Surgery, Sports Traumatology, Arthroscopy, 25, 2208-2216.
https://doi.org/10.1007/s00167-015-3906-z
[43] Burner, T., Gohr, C., Mitton-Fitzgerald, E. and Rosenthal, A.K. (2012) Hyperglycemia Reduces Proteoglycan Levels in Tendons. Connective Tissue Research, 53, 535-541.
https://doi.org/10.3109/03008207.2012.710670
[44] Shah, K.M., Clark, B.R., McGill, J.B. and Mueller, M.J. (2015) Upper Extremity Impairments, Pain and Disability in Patients with Diabetes Mellitus. Physiotherapy, 101, 147-154.
https://doi.org/10.1016/j.physio.2014.07.003
[45] Abate, M., Schiavone, C. and Salini, V. (2010) Sonographic Evaluation of the Shoulder in Asymptomatic Elderly Subjects with Diabetes. BMC Musculoskeletal Disorders, 11, Article No. 278.
https://doi.org/10.1186/1471-2474-11-278
[46] Brislin, K.J., Field, L.D. and Savoie, F.H. (2007) Complications after Arthroscopic Rotator Cuff Repair. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 23, 124-128.
https://doi.org/10.1016/j.arthro.2006.09.001
[47] Miyatake, K., Takeda, Y., Fujii, K., Suzue, N., Kawasaki, Y., Omichi, Y., et al. (2018) Comparable Clinical and Structural Outcomes after Arthroscopic Rotator Cuff Repair in Diabetic and Non-Diabetic Patients. Knee Surgery, Sports Traumatology, Arthroscopy, 26, 3810-3817.
https://doi.org/10.1007/s00167-018-4994-3
[48] Mall, N.A., Tanaka, M.J., Choi, L.S. and Paletta, G.A. (2014) Factors Affecting Rotator Cuff Healing. Journal of Bone and Joint Surgery, 96, 778-788.
https://doi.org/10.2106/jbjs.m.00583
[49] Cho, N.S., Moon, S.C., Jeon, J.W. and Rhee, Y.G. (2015) The Influence of Diabetes Mellitus on Clinical and Structural Outcomes after Arthroscopic Rotator Cuff Repair. The American Journal of Sports Medicine, 43, 991-997.
https://doi.org/10.1177/0363546514565097
[50] Engelgau, M.M., Geiss, L.S., Saaddine, J.B., Boyle, J.P., Benjamin, S.M., Gregg, E.W., et al. (2004) The Evolving Diabetes Burden in the United States. Annals of Internal Medicine, 140, 945-950.
https://doi.org/10.7326/0003-4819-140-11-200406010-00035
[51] Egemen, O., Ozkaya, O., Ozturk, M., Sen, E., Akan, M., Sakiz, D., et al. (2016) The Biomechanical and Histological Effects of Diabetes on Tendon Healing: Experimental Study in Rats. Journal of Hand and Microsurgery, 4, 60-64.
https://doi.org/10.1007/s12593-012-0074-y
[52] Kim, D.H., Min, S.G., Kim, H., Kang, H.R., Choi, J., Lee, H.J., et al. (2022) Comparison of the Characteristics of Rotator Cuff Tissue in a Diabetic Rat Model. Orthopedics, 45, e154-e161.
https://doi.org/10.3928/01477447-20220128-08
[53] Acar, B. (2018) Diabetes Mellitus Accelerates Fatty Degeneration of the Supraspinatus Muscle after Tendon Tear: An Experimental Study in Rats. Joint Diseases and Related Surgery, 29, 176-183.
https://doi.org/10.5606/ehc.2018.62388
[54] Ueda, Y., Inui, A., Mifune, Y., Sakata, R., Muto, T., Harada, Y., et al. (2018) The Effects of High Glucose Condition on Rat Tenocytes in Vitro and Rat Achilles Tendon in Vivo. Bone & Joint Research, 7, 362-372.
https://doi.org/10.1302/2046-3758.75.bjr-2017-0126.r2
[55] Chbinou, N. and Frenette, J. (2004) Insulin-Dependent Diabetes Impairs the Inflammatory Response and Delays Angiogenesis Following Achilles Tendon Injury. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 286, R952-R957.
https://doi.org/10.1152/ajpregu.00536.2003
[56] 韩庆欣, 张磊, 张晟, 等. 关节镜下缝线桥技术治疗肩袖损伤5年以上临床随访结果: 术后再撕裂率及再撕裂对肩关节功能的影响[J]. 中国运动医学杂志, 2021, 40(6): 427-432.
[57] Borton, Z., Shivji, F., Simeen, S., Williams, R., Tambe, A., Espag, M., et al. (2019) Diabetic Patients Are Almost Twice as Likely to Experience Complications from Arthroscopic Rotator Cuff Repair. Shoulder & Elbow, 12, 109-113.
https://doi.org/10.1177/1758573219831691
[58] Kim, M.S., Rhee, S.M. and Cho, N.S. (2023) Increased Hba1c Levels in Diabetics during the Postoperative 3-6 Months after Rotator Cuff Repair Correlated with Increased Retear Rates. Arthroscopy: The Journal of Arthroscopic & Related Surgery, 39, 176-182.
https://doi.org/10.1016/j.arthro.2022.08.021
[59] Ahmed, A.S. (2016) Does Diabetes Mellitus Affect Tendon Healing? In: Ackermann, P. and Hart, D., Eds., Metabolic Influences on Risk for Tendon Disorders, Springer, 179-184.
https://doi.org/10.1007/978-3-319-33943-6_16