增生性瘢痕治疗的现状与前沿进展
Hypertrophic Scar Treatment: Current Status and Cutting-Edge Advances
摘要: 增生性瘢痕是由纤维细胞在伤口愈合过程中过度增生而导致的病理性瘢痕,表现为红肿、增厚、瘙痒和疼痛的症状。此类瘢痕不仅影响美观,还可能导致功能障碍和心理负担。本文综述了增生性瘢痕的形成机制、现有治疗方法以及最新的研究进展,旨在为临床治疗提供参考并探讨未来的研究方向。
Abstract: Hypertrophic scars are pathological scars caused by the excessive proliferation of fibroblasts during the wound-healing process, characterized by redness, thickness, itching, and pain. These scars not only affect aesthetics but can also lead to functional impairment and psychological burden. This article reviews the formation mechanism of hypertrophic scars, existing treatment methods, and the latest research progress, aiming to provide references for clinical treatment and explore future research directions.
文章引用:杨晨, 杨喜明. 增生性瘢痕治疗的现状与前沿进展[J]. 临床医学进展, 2024, 14(9): 347-353. https://doi.org/10.12677/acm.2024.1492467

1. 引言

增生性瘢痕(Hypertrophic Scar)也称为肥厚性瘢痕,由于伤口愈合过程中纤维细胞过度增生、胶原蛋白合成增加而形成的突起于皮肤表面、质地较硬的病理性瘢痕。增生性瘢痕不仅会影响美观,还可能会导致关节活动受限等功能障碍,甚至会对患者的心理健康造成严重影响,增加焦虑和抑郁的风险[1]。尽管现有的治疗方法多种多样,但疗效仍不理想,且复发率较高。本文综述了增生性瘢痕的形成机制、现有治疗方法及最新研究进展,旨在为临床治疗提供参考,并探讨未来的研究方向。

2. 增生性瘢痕的形成机制

尽管增生性瘢痕的具体形成机制尚未完全阐明,但现有研究已经表明其与伤口愈合过程中的几个关键环节相关,这些环节包括纤维细胞的异常增生、胶原蛋白的合成过度、持续的炎症反应,以及细胞因子之间的平衡失调。在这些因素共同的作用下导致了瘢痕组织的异常增厚和红肿现象[2]

2.1. 纤维细胞的异常增生

纤维细胞在伤口愈合的早期阶段扮演着重要角色,它们大量增殖并产生修复伤口所需的细胞外基质,这些细胞外基质成分共同构成了伤口修复的基本框架[3] [4]。纤维细胞通过分泌这些基质成分,填补伤口缺损,促进组织再生,恢复皮肤的完整性和功能[5]。然而,当纤维细胞的增生失去控制时,会合成和分泌大量的细胞外基质,从而导致瘢痕组织的异常增厚[6]。这种过度的基质沉积不仅影响了瘢痕的外观,使其隆起、变硬,还可能导致瘢痕的功能异常,如牵拉感和疼痛[7]

2.2. 胶原蛋白的合成增加

在增生性瘢痕中,胶原蛋白的合成显著增加,尤其是Ⅰ型胶原蛋白和Ⅲ型胶原蛋白,这是增生性瘢痕形成的重要因素[8]。在伤口的正常愈合过程中,胶原蛋白的合成和降解处于动态平衡中,以确保伤口修复的正常进行[9]。Ⅰ型胶原蛋白是皮肤的主要结构蛋白,赋予皮肤强度和韧性[10];Ⅲ型胶原蛋白存在于伤口愈合的早期阶段,提供柔韧性和支持[11]。然而,在增生性瘢痕中,这种平衡被打破,导致胶原蛋白的过度积累,Ⅰ型胶原蛋白的过度合成使瘢痕组织变得更加坚硬和厚重[4];Ⅲ型胶原蛋白的过度合成和沉积增加了瘢痕组织的密度和韧性[11]

2.3. 炎症反应的持续性

在伤口愈合过程中,炎症反应是一个重要的阶段,它负责清除受损的组织并防止感染的发生[12]-[14]。但是当过度激活炎症反应时,反而会不利于伤口的愈合。过度的炎症反应会导致机体释放大量的促炎性细胞因子,包括转化生长因子β (TGF-β)和白细胞介素6 (IL-6)等。这些因子在伤口愈合过程中起着重要的调控作用[14] [15]。TGF-β是一种强效的纤维化驱动因子,它不仅能够促进纤维细胞的增生,还能增强纤维细胞合成胶原蛋白的能力。TGF-β的持续升高是增生性瘢痕形成中的一个关键因素。此外,TGF-β还能抑制基质金属蛋白酶(MMPs)的活性,减少胶原蛋白的降解,进一步促进瘢痕组织的形成[16]。IL-6在急性炎症和慢性炎症中都起到重要作用,不仅能够刺激急性炎症中反应蛋白的合成,还能推动慢性炎症中B细胞的成熟和抗体的生成。在伤口愈合过程中,IL-6通过促进纤维细胞的增殖和胶原蛋白的合成,从而加速了瘢痕的形成。伴随着IL-6的水平升高,还可能通过调控其他炎症介质和生长因子的表达增强炎症反应,从而促进瘢痕的增生。因此,精细调控炎症反应的强度及其持续时间对预防和治疗增生性瘢痕具有重要意义[13] [17]

2.4. 细胞因子的失衡

细胞因子在调节纤维细胞的增生和胶原蛋白的合成过程中起着至关重要的作用。它们通过复杂的信号传导通路影响纤维细胞的行为,从而决定了伤口愈合和瘢痕形成的最终结果。在增生性瘢痕中,促纤维化因子如TGF-β和VEGF在增生性瘢痕中水平显著升高,导致胶原蛋白的过度积累和血管生成增加[18]

TGF-β是主要的促纤维化因子之一,它在伤口愈合的各阶段发挥重要作用。它不仅促进纤维细胞增殖,还诱导其分泌大量的胶原蛋白和其他细胞外基质成分[19]。此外,TGF-β还抑制MMPs的活性,从而减少细胞外基质的降解[20] [21]。这种双重作用导致增生性瘢痕中胶原蛋白的过度积累,使瘢痕组织变得厚重坚硬。研究表明,增生性瘢痕中TGF-β的表达显著高于正常皮肤组织,且其活性持续时间更长,这正是增生性瘢痕形成的主要原因之一[16]

VEGF主要参与血管生成过程,在增生性瘢痕的形成中也起重要作用。VEGF通过促进血管内皮细胞的增殖和迁移,增加局部血供,为纤维细胞提供丰富的营养和氧气,支持其增殖和细胞外基质的合成[21]。增生性瘢痕中VEGF水平升高会导致血管生成增多,使瘢痕组织的血流量增加,进一步增强纤维细胞的活性和基质合成[22]

除了TGF-β和VEGF,其他细胞因子如IL-6、IL-1β、TNF-α等也在增生性瘢痕形成中起重要作用。它们通过途径和机制协同作用于纤维细胞,促进纤维细胞增殖和胶原蛋白合成[23]

3. 增生性瘢痕的现有治疗方法

增生性瘢痕的现有的治疗方法包括:药物治疗、物理治疗和手术治疗等。这些方法各有优缺点,通常需要根据患者的具体情况进行个性化选择和组合应用,以达到最佳的治疗效果[24]

3.1. 药物治疗

药物治疗包括类固醇、抗增生药物和免疫调节剂等多种药物的注射[25]。曲安奈德和泼尼松等类固醇药物能够抑制纤维细胞的增生和胶原蛋白的合成,从而减轻瘢痕的隆起和硬度。尽管类固醇药物注射操作简单且相对安全,但长期使用类固醇药物可能会引起皮肤萎缩、色素沉着等副作用[26]。有研究证明,注射曲安奈德的患者在瘢痕的厚度和外观上有了显著的改善,但有15%的患者出现了皮肤萎缩和色素沉着等副作用[27]。因此在使用类固醇注射治疗时,医生需仔细考虑其利弊,并进行个性化的调整和监控;通过注射博来霉素、咪喹莫特等抗增生药物能够抑制纤维细胞增生并促进瘢痕组织的吸收。博来霉素通过干扰细胞周期和DNA合成来减缓纤维细胞的增殖。咪喹莫特则通过增强免疫反应,促进瘢痕组织的自我修复[28]-[30];干扰素、他克莫司等免疫调节剂药物治疗瘢痕的原理是通过调节免疫系统的反应,抑制炎症反应和纤维化过程。干扰素减少TGF-β的产生来降低胶原蛋白的合成,而他克莫司则通过抑制T细胞的活性来减少炎症因子的产生[31]

3.2. 物理治疗

物理治疗包括压力疗法、硅胶片疗法、激光治疗和放射治疗等,通过机械或能量手段改善瘢痕的外观和质地[32]。压力疗法:通过对瘢痕部位施加持续压力,减少瘢痕组织的血供,从而抑制纤维细胞的增生和胶原蛋白的合成。这种方法主要适用于初期的增生性瘢痕,效果较好,但需要患者坚持佩戴压力衣或压力贴[33];硅胶片疗法:通过保持伤口湿润、减少水分流失和局部温度的增加,抑制纤维细胞增生和胶原蛋白的过度合成。硅胶片疗法简便易行,适用于各种类型的增生性瘢痕[34] [35];激光治疗通过热效应和光化学效应,破坏瘢痕组织,促进新生组织的形成。常用的激光包括脉冲染料激光(PDL)、CO2激光等。脉冲染料激光通过选择性破坏血管,减少瘢痕组织的血供;CO2激光通过气化瘢痕组织,促进皮肤再生[36] [37];放射治疗:通过低剂量辐射,抑制纤维细胞的增生和胶原蛋白的合成。虽然放射治疗对增生性瘢痕有较好的效果,但长期使用可能会增加癌症风险,因此通常用于其他治疗无效的顽固性瘢痕[38]

3.3. 手术治疗

手术治疗的主要适应症为严重或顽固的增生性瘢痕,其主要包括瘢痕切除术、皮肤移植术和皮瓣转移术等手术[39]。对于范围较小且特性不复杂的增生性瘢痕,可以通过手术切除将瘢痕组织彻底去除。术后为了降低瘢痕复发的风险,需要结合压力疗法或局部类固醇注射等治疗手段来维持治疗效果[40];对于较大面积的增生性瘢痕,尤其是影响生理功能的瘢痕,通常会采用皮肤移植术。通过将健康的肌肤移植到瘢痕区域,不仅促进伤口的愈合,还能恢复受损部位的功能[41]。对于更为复杂或深层的瘢痕,皮瓣转移手术能够将邻近的健康组织转移到瘢痕区,可以实现皮肤结构和生理功能的重建[42]。值得注意的是,即便进行了手术治疗,患者术后依然需要接受其他辅助治疗,以预防瘢痕的再次形成。

4. 增生性瘢痕治疗的前沿进展

近年来,随着分子生物学和再生医学的进步,增生性瘢痕的治疗取得了显著进展。科学家通过深入了解瘢痕形成的分子机制,开发了干细胞治疗、基因治疗、生物材料和免疫调节等新兴疗法,其在临床应用中展现出良好前景。

4.1. 干细胞治疗

干细胞治疗是通过调节细胞因子和生长因子的表达,从而促进伤口愈合和减少瘢痕形成。间充质干细胞(MSCs)能够分泌多种生物活性分子来抑制纤维细胞的增生和胶原蛋白的过度合成,不仅可以减少瘢痕的厚度和硬度,还可以改善瘢痕的外观和弹性。但是干细胞治疗在实际应用中也面临免疫排斥反应、伦理问题及技术不成熟等挑战。尽管MSCs具有低免疫原性,但异体移植时可能仍会引发免疫反应,影响治疗效果;此外,伦理问题也是干细胞治疗的一大挑战,尤其是胚胎干细胞的应用引发了广泛的争议。在国内,干细胞治疗的临床应用大多处于临床研究阶段,因此需要更多的研究和更成熟的技术来推动其在临床上的广泛应用[43]

4.2. 基因治疗

基因治疗通过调控基因表达,干预瘢痕形成的分子机制来达到治疗效果。例如,抑制TGF-β基因的表达可以显著减少纤维细胞的增生和胶原蛋白的合成。近年来,使用CRISPR/Cas9等基因编辑技术对TGF-β信号通路进行精确干预成为研究热点。基因治疗的另一个方向是通过抑制胶原蛋白合成的基因来增强抗纤维化基因的表达,从而减少瘢痕形成[44] [45]

4.3. 生物材料

生物材料在增生性瘢痕治疗中发挥着重要作用。纳米纤维支架和凝胶等生物材料可以作为药物载体,通过缓慢释放药物来提高药物的疗效和安全性。纳米纤维支架不仅能够模拟细胞外基质的结构,为细胞生长提供支撑,还可以加载抗纤维化药物逐步释放,持续发挥治疗作用。凝胶材料则可以填充在瘢痕组织中,缓慢释放药物和生长因子,促进组织再生和修复[46]-[48]

4.4. 免疫调节

在增生性瘢痕的治疗中,免疫调节通过控制炎症过程和成纤维细胞的活动来减少瘢痕的增生。通过使用非甾体抗炎药或免疫抑制剂等药物,可以显著减轻瘢痕的炎症和纤维化。此外,通过靶向调节免疫细胞功能,可以抑制T细胞和巨噬细胞的促纤维化作用,也可以减少瘢痕组织的形成。当前,免疫检查点抑制剂作为一种新兴的治疗手段,正在被研究用于调节免疫系统,以期达到预防和治疗增生性瘢痕的目的[31]

5. 结论

增生性瘢痕的治疗是一个医学挑战,现有的治疗方法虽然在一定程度上能够改善瘢痕的症状和外观,但仍存在治疗效果有限和瘢痕复发的问题。随着生物医学技术的发展,干细胞治疗、基因治疗、生物材料和免疫调节等前沿治疗策略为增生性瘢痕的临床治疗提供了新的思路和可能性。新兴疗法在实际应用中仍面临技术不成熟、缺乏安全性评估、伦理问题等诸多挑战。

综上所述,尽管增生性瘢痕的治疗面临诸多挑战,但通过持续的科学研究和技术革新,最终为患者提供更加有效、安全的治疗选择,实现对增生性瘢痕的治愈,进一步改善患者的生活质量。

NOTES

*通讯作者。

参考文献

[1] Sherris, D.A., Larrabee, W.F. and Murakami, C.S. (1995) Management of Scar Contractures, Hypertrophic Scars, and Keloids. Otolaryngologic Clinics of North America, 28, 1057-1068.
https://doi.org/10.1016/s0030-6665(20)30475-8
[2] Bharadia, S.K., Burnett, L. and Gabriel, V. (2023) Hypertrophic Scar. Physical Medicine and Rehabilitation Clinics of North America, 34, 783-798.
https://doi.org/10.1016/j.pmr.2023.05.002
[3] Zuo, J., Chen, Z., Zhong, X., Lan, W., Kuang, Y. and Huang, D. (2017) FBP1 Is Highly Expressed in Human Hypertrophic Scars and Increases Fibroblast Proliferation, Apoptosis, and Collagen Expression. Connective Tissue Research, 59, 120-128.
https://doi.org/10.1080/03008207.2017.1311327
[4] Li, S., Wang, Y., Chen, Y., Zhang, H., Shen, K. and Guan, H. (2024) PTEN Hinders the Formation of Scars by Regulating the Levels of Proteins in the Extracellular Matrix and Promoting the Apoptosis of Dermal Fibroblasts through Bcl-xl. Archives of Biochemistry and Biophysics, 753, Article ID: 109912.
https://doi.org/10.1016/j.abb.2024.109912
[5] Boraldi, F., Lofaro, F.D., Bonacorsi, S., Mazzilli, A., Garcia-Fernandez, M. and Quaglino, D. (2024) The Role of Fibroblasts in Skin Homeostasis and Repair. Biomedicines, 12, Article No. 1586.
https://doi.org/10.3390/biomedicines12071586
[6] Ma, F., Liu, H., Xia, T., Zhang, Z., Ma, S., Hao, Y., et al. (2023) HSFAS Mediates Fibroblast Proliferation, Migration, Trans-Differentiation and Apoptosis in Hypertrophic Scars via Interacting with ADAMTS8. Acta Biochimica et Biophysica Sinica, 56, 440-451.
https://doi.org/10.3724/abbs.2023274
[7] Ma, F., Shen, J., Zhang, H., Zhang, Z., Yang, A., Xiong, J., et al. (2022) A Novel LncRNA FPASL Regulates Fibroblast Proliferation via the PI3K/AKT and MAPK Signaling Pathways in Hypertrophic Scar. Acta Biochimica et Biophysica Sinica, 55, 274-284.
https://doi.org/10.3724/abbs.2022122
[8] Ma, D., Chen, L., Shi, J., Zhao, Y., Vasani, S., Chen, K., et al. (2020) Pigment Epithelium‐Derived Factor Attenuates Angiogenesis and Collagen Deposition in Hypertrophic Scars. Wound Repair and Regeneration, 28, 684-695.
https://doi.org/10.1111/wrr.12828
[9] Sharma, S., Rai, V.K., Narang, R.K. and Markandeywar, T.S. (2022) Collagen-Based Formulations for Wound Healing: A Literature Review. Life Sciences, 290, Article ID: 120096.
https://doi.org/10.1016/j.lfs.2021.120096
[10] Kössi, J., Vähä-Kreula, M., Peltonen, J., Risteli, J. and Laato, M. (2004) Hexose Sugars Differentially Alter Collagen Gene Expression and Synthesis in Fibroblasts Derived from Granulation Tissue, Hypertrophic Scar and Keloid. Archives of Dermatological Research, 295, 521-526.
https://doi.org/10.1007/s00403-004-0461-8
[11] Song, R., Bian, H., Lai, W., Chen, H. and Zhao, K. (2011) Normal Skin and Hypertrophic Scar Fibroblasts Differentially Regulate Collagen and Fibronectin Expression as Well as Mitochondrial Membrane Potential in Response to Basic Fibroblast Growth Factor. Brazilian Journal of Medical and Biological Research, 44, 402-410.
https://doi.org/10.1590/s0100-879x2011000500004
[12] Hong, Y., Chang, Y., Lin, Y., Chen, B., Guevara, B.E.K. and Hsu, C. (2023) Inflammation in Wound Healing and Pathological Scarring. Advances in Wound Care, 12, 288-300.
https://doi.org/10.1089/wound.2021.0161
[13] Ogawa, R. (2017) Keloid and Hypertrophic Scars Are the Result of Chronic Inflammation in the Reticular Dermis. International Journal of Molecular Sciences, 18, Article No. 606.
https://doi.org/10.3390/ijms18030606
[14] Huang, C. and Ogawa, R. (2022) Role of Inflammasomes in Keloids and Hypertrophic Scars—Lessons Learned from Chronic Diabetic Wounds and Skin Fibrosis. International Journal of Molecular Sciences, 23, Article No. 6820.
https://doi.org/10.3390/ijms23126820
[15] Wang, H.T., Han, J.T. and Hu, D.H. (2021) Research Advances on the Role and Mechanism of Inflammatory Response in the Formation of Hypertrophic Scars and Keloids. Chinese Journal of Burns, 37, 490-494.
[16] Li, Q., Lyu, C., Chen, D., Cai, W., Kou, F., Li, Q., et al. (2023) Gallic Acid Treats Hypertrophic Scar in Rabbit Ears via the Tgf-β/smad and TRPC3 Signaling Pathways. Pharmaceuticals, 16, Article No. 1514.
https://doi.org/10.3390/ph16111514
[17] Chen, Z.H., Yu, B., Ye, Q.F., et al. (2022) Research Advances on Interleukin-6 in Hypertrophic Scar Formation. Chinese Journal of Burns, 38, 874-877.
[18] Shirakami, E., Yamakawa, S. and Hayashida, K. (2020) Strategies to Prevent Hypertrophic Scar Formation: A Review of Therapeutic Interventions Based on Molecular Evidence. Burns & Trauma, 8, tkz003.
https://doi.org/10.1093/burnst/tkz003
[19] Shi, A., Li, J., Qiu, X., Sabbah, M., Boroumand, S., Huang, T.C., et al. (2021) Tgf-β Loaded Exosome Enhances Ischemic Wound Healing in Vitro and in Vivo. Theranostics, 11, 6616-6631.
https://doi.org/10.7150/thno.57701
[20] Larson, C., Oronsky, B., Carter, C.A., Oronsky, A., Knox, S.J., Sher, D., et al. (2020) TGF-beta: A Master Immune Regulator. Expert Opinion on Therapeutic Targets, 24, 427-438.
https://doi.org/10.1080/14728222.2020.1744568
[21] Lichtman, M.K., Otero‐Vinas, M. and Falanga, V. (2016) Transforming Growth Factor Beta (tgf‐β) Isoforms in Wound Healing and Fibrosis. Wound Repair and Regeneration, 24, 215-222.
https://doi.org/10.1111/wrr.12398
[22] Shi, J., Wu, Y., Guo, S., Zhang, H., Chen, G. and Xu, X. (2018) The Efficacy of Anti-Vegf Antibody-Modified Liposomes Loaded with Paeonol in the Prevention and Treatment of Hypertrophic Scars. Drug Development and Industrial Pharmacy, 45, 439-455.
https://doi.org/10.1080/03639045.2018.1546315
[23] Gumede, D.B., Abrahamse, H. and Houreld, N.N. (2024) Targeting Wnt/β-Catenin Signaling and Its Interplay with Tgf-Β and Notch Signaling Pathways for the Treatment of Chronic Wounds. Cell Communication and Signaling, 22, Article No. 244.
https://doi.org/10.1186/s12964-024-01623-9
[24] Ogawa, R., Dohi, T., Tosa, M., Aoki, M. and Akaishi, S. (2021) The Latest Strategy for Keloid and Hypertrophic Scar Prevention and Treatment: The Nippon Medical School (NMS) Protocol. Journal of Nippon Medical School, 88, 2-9.
https://doi.org/10.1272/jnms.jnms.2021_88-106
[25] Murakami, T. and Shigeki, S. (2024) Pharmacotherapy for Keloids and Hypertrophic Scars. International Journal of Molecular Sciences, 25, Article No. 4674.
https://doi.org/10.3390/ijms25094674
[26] Yue, S. and Ju, M. (2021) Letter to the Editor: Evaluation of Efficacy of Corticosteroid and Corticosteroid Combined with Botulinum Toxin Type a in the Treatment of Keloid and Hypertrophic Scars—A Meta-Analysis. Aesthetic Plastic Surgery, 46, 2095-2096.
https://doi.org/10.1007/s00266-021-02539-2
[27] Rimmer, S.N., Chandy, R.J., Khan, D. and Feldman, S.R. (2023) Recurrence Rates in the Treatment of Keloids and Hypertrophic Scars with Intralesional Triamcinolone Combined with Other Intralesional Agents. Archives of Dermatological Research, 315, 2757-2767.
https://doi.org/10.1007/s00403-023-02662-x
[28] Wu, W., Zhao, Y., Chen, Y. and Zhong, A. (2022) Comparing the Efficacy of Multiple Drugs Injection for the Treatment of Hypertrophic Scars and Keloid: A Network Meta-analysis. Aesthetic Plastic Surgery, 47, 465-472.
https://doi.org/10.1007/s00266-022-03163-4
[29] Bernabe, R.M., Won, P., Lin, J., Pham, C., Madrigal, P., Yenikomshian, H., et al. (2024) Combining Scar-Modulating Agents for the Treatment of Hypertrophic Scars and Keloids: A Systematic Review. Journal of Plastic, Reconstructive & Aesthetic Surgery, 88, 125-140.
https://doi.org/10.1016/j.bjps.2023.10.065
[30] Luo, Q. (2023) The Combined Application of Bleomycin and Triamcinolone for the Treatment of Keloids and Hypertrophic Scars: An Effective Therapy for Treating Refractory Keloids and Hypertrophic Scars. Skin Research and Technology, 29, e13389.
https://doi.org/10.1111/srt.13389
[31] Larouche, J., Sheoran, S., Maruyama, K. and Martino, M.M. (2018) Immune Regulation of Skin Wound Healing: Mechanisms and Novel Therapeutic Targets. Advances in Wound Care, 7, 209-231.
https://doi.org/10.1089/wound.2017.0761
[32] Fernández-Guarino, M., Bacci, S., Pérez González, L.A., Bermejo-Martínez, M., Cecilia-Matilla, A. and Hernández-Bule, M.L. (2023) The Role of Physical Therapies in Wound Healing and Assisted Scarring. International Journal of Molecular Sciences, 24, Article No. 7487.
https://doi.org/10.3390/ijms24087487
[33] Harris, I.M., Lee, K.C., Deeks, J.J., Moore, D.J., Moiemen, N.S. and Dretzke, J. (2024) Pressure-Garment Therapy for Preventing Hypertrophic Scarring after Burn Injury. Cochrane Database of Systematic Reviews, 1, CD013530.
https://doi.org/10.1002/14651858.cd013530.pub2
[34] Wiseman, J., Ware, R.S., Simons, M., McPhail, S., Kimble, R., Dotta, A., et al. (2019) Effectiveness of Topical Silicone Gel and Pressure Garment Therapy for Burn Scar Prevention and Management in Children: A Randomized Controlled Trial. Clinical Rehabilitation, 34, 120-131.
https://doi.org/10.1177/0269215519877516
[35] Kakinuma, T., Kagimoto, M., Kaneko, A., Ichii, N., Kakinuma, K., Kawarai, Y., et al. (2022) Prevention and Management of Hypertrophic Scars after Laparoscopic Surgery Using Silicone Gel Sheets: A Pilot Study. Journal of International Medical Research, 50, Article No. 665798771.
https://doi.org/10.1177/03000605221107597
[36] Guo, G., Chen, J., Han, X., et al. (2024) Advances in Laser Therapies for the Scar. Journal of Central South University. Medical Sciences, 49, 197-206.
[37] Leszczynski, R., da Silva, C.A., Pinto, A.C.P.N., Kuczynski, U. and da Silva, E.M. (2022) Laser Therapy for Treating Hypertrophic and Keloid Scars. Cochrane Database of Systematic Reviews, 2022, CD011642.
https://doi.org/10.1002/14651858.cd011642.pub2
[38] Guo, S., Sun, Q., Yu, E., Zhou, Y., Tong, S., Sun, X., et al. (2020) The Effects of Timing of Postoperative Radiotherapy on Hypertrophic Scar in a Rabbit Model. Medical Science Monitor, 26, e921263.
https://doi.org/10.12659/msm.921263
[39] Marquez, J.L., Sudduth, J.D., Ormiston, L., Patel, B.C. and Gociman, B. (2023) Multimodal Management of Facial Keloid with Tissue Expansion, Excision, and Injection of 5-FU and Triamcinolone. Plastic and Reconstructive SurgeryGlobal Open, 11, e4796.
https://doi.org/10.1097/gox.0000000000004796
[40] Dastagir, K., Obed, D., Bucher, F., Hofmann, T., Koyro, K.I. and Vogt, P.M. (2021) Non-Invasive and Surgical Modalities for Scar Management: A Clinical Algorithm. Journal of Personalized Medicine, 11, Article No. 1259.
https://doi.org/10.3390/jpm11121259
[41] Liu, J., Qu, L. and Song, B. (2022) A Comparative Study of Full‐Thickness Skin Grafting with and without Subcutaneous Fat Preservation. International Wound Journal, 20, 1160-1167.
https://doi.org/10.1111/iwj.13975
[42] Liang, W.Q., Shi, F., Zhang, J., et al. (2021) Indications, Selection, and Effect of Flap Application in Repairing Scar Carcinoma in the Lower Leg and Ankle. Chinese Journal of Burns, 37, 363-368.
[43] Bojanic, C., To, K., Hatoum, A., Shea, J., Seah, K.T.M., Khan, W., et al. (2021) Mesenchymal Stem Cell Therapy in Hypertrophic and Keloid Scars. Cell and Tissue Research, 383, 915-930.
https://doi.org/10.1007/s00441-020-03361-z
[44] Igarashi, J., Fukuda, N., Inoue, T., Nakai, S., Saito, K., Fujiwara, K., et al. (2015) Preclinical Study of Novel Gene Silencer Pyrrole-Imidazole Polyamide Targeting Human Tgf-β1 Promoter for Hypertrophic Scars in a Common Marmoset Primate Model. PLOS ONE, 10, e0125295.
https://doi.org/10.1371/journal.pone.0125295
[45] Chai, E.S.X., Cai, S.C.S., Chun, Y.Y., Tan, Y., Tan, T.T. and Tey, H.L. (2024) The Potential of RNA Therapeutics in Dermatology. Annals of the Academy of Medicine, Singapore, 53, 113-116.
https://doi.org/10.47102/annals-acadmedsg.2023316
[46] Fernandes, M.G., da Silva, L.P., Cerqueira, M.T., Ibañez, R., Murphy, C.M., Reis, R.L., et al. (2022) Mechanomodulatory Biomaterials Prospects in Scar Prevention and Treatment. Acta Biomaterialia, 150, 22-33.
https://doi.org/10.1016/j.actbio.2022.07.042
[47] Szabó, A., De Decker, I., Semey, S., E.Y. Claes, K., Blondeel, P., Monstrey, S., et al. (2024) Photo-Crosslinkable Polyester Microneedles as Sustained Drug Release Systems toward Hypertrophic Scar Treatment. Drug Delivery, 31, Article ID: 2305818.
https://doi.org/10.1080/10717544.2024.2305818
[48] Liu, Y., Wang, S., Yang, F., Wang, X., Zhang, J., Han, X., et al. (2024) Application and Progress of New Technologies and New Materials in the Treatment of Pathological Scar. Frontiers in Chemistry, 12, Article ID: 1389399.
https://doi.org/10.3389/fchem.2024.1389399