[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
苗儒林 李子禹 武爱文. 中国胃肠肿瘤外科联盟数据报告(2014-2016) [J]. 中国实用外科杂志, 2018, 38(1): 90-93.
|
[3]
|
Qu, J.-L., Qu, X.-J., Zhao, M.-F., Teng, Y.-E., Zhang, Y., Hou, K.-Z., et al. (2009) Gastric Cancer Exosomes Promote Tumour Cell Proliferation through PI3K/AKT and MAPK/ERK Activation. Digestive and Liver Disease, 41, 875-880. https://doi.org/10.1016/j.dld.2009.04.006
|
[4]
|
Xie, M., Yu, T., Jing, X., Ma, L., Fan, Y., Yang, F., et al. (2020) Exosomal circSHKBP1 Promotes Gastric Cancer Progression via Regulating the miR-582-3p/HUR/VEGF Axis and Suppressing HSP90 Degradation. Molecular Cancer, 19, Article No. 112. https://doi.org/10.1186/s12943-020-01208-3
|
[5]
|
Liu, H. and Dai, W. (2022) Circular RNA 0000654 Facilitates the Growth of Gastric Cancer Cells through Absorbing microRNA-149-5p to up-Regulate Inhibin-Beta A. Bioengineered, 13, 469-480. https://doi.org/10.1080/21655979.2021.2009414
|
[6]
|
Yang, J., Zhang, X., Cao, J., Xu, P., Chen, Z., Wang, S., et al. (2021) Circular RNA UBE2Q2 Promotes Malignant Progression of Gastric Cancer by Regulating Signal Transducer and Activator of Transcription 3-Mediated Autophagy and Glycolysis. Cell Death & Disease, 12, Article No. 910. https://doi.org/10.1038/s41419-021-04216-3
|
[7]
|
Shao, Y., Li, J., Lu, R., Li, T., Yang, Y., Xiao, B., et al. (2017) Global Circular RNA Expression Profile of Human Gastric Cancer and Its Clinical Significance. Cancer Medicine, 6, 1173-1180. https://doi.org/10.1002/cam4.1055
|
[8]
|
Wei, S., Peng, L., Yang, J., Sang, H., Jin, D., Li, X., et al. (2020) Exosomal Transfer of miR-15b-3p Enhances Tumorigenesis and Malignant Transformation through the DYNLT1/Caspase-3/Caspase-9 Signaling Pathway in Gastric Cancer. Journal of Experimental & Clinical Cancer Research, 39, Article No. 32. https://doi.org/10.1186/s13046-019-1511-6
|
[9]
|
Ren, W., Zhang, X., Li, W., Feng, Q., Feng, H., Tong, Y., et al. (2019) Exosomal miRNA-107 Induces Myeloid-Derived Suppressor Cell Expansion in Gastric Cancer. Cancer Management and Research, 11, 4023-4040. https://doi.org/10.2147/cmar.s198886
|
[10]
|
Shi, L., Wang, Z., Geng, X., Zhang, Y. and Xue, Z. (2020) Exosomal miRNA-34 from Cancer-Associated Fibroblasts Inhibits Growth and Invasion of Gastric Cancer Cells in Vitro and in Vivo. Aging, 12, 8549-8564. https://doi.org/10.18632/aging.103157
|
[11]
|
Yoon, J.H., Ashktorab, H., Smoot, D.T., Nam, S.W., Hur, H. and Park, W.S. (2020) Uptake and Tumor-Suppressive Pathways of Exosome-Associated GKN1 Protein in Gastric Epithelial Cells. Gastric Cancer, 23, 848-862. https://doi.org/10.1007/s10120-020-01068-2
|
[12]
|
Fu, H., Yang, H., Zhang, X., Wang, B., Mao, J., Li, X., et al. (2018) Exosomal TRIM3 Is a Novel Marker and Therapy Target for Gastric Cancer. Journal of Experimental & Clinical Cancer Research, 37, Article No. 162. https://doi.org/10.1186/s13046-018-0825-0
|
[13]
|
Lu, J., Wang, Y., Yoon, C., Huang, X., Xu, Y., Xie, J., et al. (2020) Circular RNA Circ-RanGAP1 Regulates VEGFA Expression by Targeting miR-877-3p to Facilitate Gastric Cancer Invasion and Metastasis. Cancer Letters, 471, 38-48. https://doi.org/10.1016/j.canlet.2019.11.038
|
[14]
|
Xia, X., Wang, S., Ni, B., Xing, S., Cao, H., Zhang, Z., et al. (2020) Hypoxic Gastric Cancer-Derived Exosomes Promote Progression and Metastasis via MiR-301a-3p/PHD3/HIF-1α Positive Feedback Loop. Oncogene, 39, 6231-6244. https://doi.org/10.1038/s41388-020-01425-6
|
[15]
|
Zhang, Y., Chen, L., Ye, X., Wu, Z., Zhang, Z., Sun, B., et al. (2021) Expression and Mechanism of Exosome-Mediated A FOXM1 Related Long Noncoding RNA in Gastric Cancer. Journal of Nanobiotechnology, 19, Article No. 133. https://doi.org/10.1186/s12951-021-00873-w
|
[16]
|
Li, Q., Li, B., Li, Q., Wei, S., He, Z., Huang, X., et al. (2018) Exosomal miR-21-5p Derived from Gastric Cancer Promotes Peritoneal Metastasis via Mesothelial-To-Mesenchymal Transition. Cell Death & Disease, 9, Article No. 854. https://doi.org/10.1038/s41419-018-0928-8
|
[17]
|
Wang, M., Yu, W., Cao, X., Gu, H., Huang, J., Wu, C., et al. (2022) Exosomal CD44 Transmits Lymph Node Metastatic Capacity between Gastric Cancer Cells via YAP-CPT1A-Mediated FAO Reprogramming. Frontiers in Oncology, 12, Article 860175. https://doi.org/10.3389/fonc.2022.860175
|
[18]
|
Wang, M., Zhao, X., Qiu, R., Gong, Z., Huang, F., Yu, W., et al. (2021) Lymph Node Metastasis-Derived Gastric Cancer Cells Educate Bone Marrow-Derived Mesenchymal Stem Cells via YAP Signaling Activation by Exosomal Wnt5a. Oncogene, 40, 2296-2308. https://doi.org/10.1038/s41388-021-01722-8
|
[19]
|
Qiu, S., Xie, L., Lu, C., Gu, C., Xia, Y., Lv, J., et al. (2022) Gastric Cancer-Derived Exosomal miR-519a-3p Promotes Liver Metastasis by Inducing Intrahepatic M2-Like Macrophage-Mediated Angiogenesis. Journal of Experimental & Clinical Cancer Research, 41, Article No. 296. https://doi.org/10.1186/s13046-022-02499-8
|
[20]
|
Jain, R.K. (2001) Normalizing Tumor Vasculature with Anti-Angiogenic Therapy: A New Paradigm for Combination Therapy. Nature Medicine, 7, 987-989. https://doi.org/10.1038/nm0901-987
|
[21]
|
Zhou, Z., Zhang, H., Deng, T., Ning, T., Liu, R., Liu, D., et al. (2019) RETRACTED: Exosomes Carrying MicroRNA-155 Target Forkhead Box O3 of Endothelial Cells and Promote Angiogenesis in Gastric Cancer. Molecular Therapy-Oncolytics, 15, 223-233. https://doi.org/10.1016/j.omto.2019.10.006
|
[22]
|
Chen, Z., Xie, Y., Chen, W., Li, T., Chen, X. and Liu, B. (2021) RETRACTED: microRNA-6785-5p-Loaded Human Umbilical Cord Mesenchymal Stem Cells-Derived Exosomes Suppress Angiogenesis and Metastasis in Gastric Cancer via INHBA. Life Sciences, 284, Article 119222. https://doi.org/10.1016/j.lfs.2021.119222
|
[23]
|
Ning, X., Zhang, H., Wang, C. and Song, X. (2018) Exosomes Released by Gastric Cancer Cells Induce Transition of Pericytes into Cancer-Associated Fibroblasts. Medical Science Monitor, 24, 2350-2359. https://doi.org/10.12659/msm.906641
|
[24]
|
Gu, J., Qian, H., Shen, L., Zhang, X., Zhu, W., Huang, L., et al. (2012) Gastric Cancer Exosomes Trigger Differentiation of Umbilical Cord Derived Mesenchymal Stem Cells to Carcinoma-Associated Fibroblasts through TGF-β/Smad Pathway. PLOS ONE, 7, e52465. https://doi.org/10.1371/journal.pone.0052465
|
[25]
|
Arneth, B. (2019) Tumor Microenvironment. Medicina, 56, Article 15. https://doi.org/10.3390/medicina56010015
|
[26]
|
Zhang, H., Deng, T., Liu, R., Ning, T., Yang, H., Liu, D., et al. (2020) CAF Secreted miR-522 Suppresses Ferroptosis and Promotes Acquired Chemo-Resistance in Gastric Cancer. Molecular Cancer, 19, Article No. 43. https://doi.org/10.1186/s12943-020-01168-8
|
[27]
|
Jing, X., Xie, M., Ding, K., Xu, T., Fang, Y., Ma, P., et al. (2022) Exosome-Transmitted miR-769-5p Confers Cisplatin Resistance and Progression in Gastric Cancer by Targeting CASP9 and Promoting the Ubiquitination Degradation of P53. Clinical and Translational Medicine, 12, e780. https://doi.org/10.1002/ctm2.780
|
[28]
|
Qi, H., Liu, C., Long, L., Ren, Y., Zhang, S., Chang, X., et al. (2016) Blood Exosomes Endowed with Magnetic and Targeting Properties for Cancer Therapy. ACS Nano, 10, 3323-3333. https://doi.org/10.1021/acsnano.5b06939
|
[29]
|
Shen, D., Pang, J., Bi, Y., Zhao, L., Li, Y., Zhao, L., et al. (2022) LSD1 Deletion Decreases Exosomal PD-L1 and Restores T-Cell Response in Gastric Cancer. Molecular Cancer, 21, Article No. 75. https://doi.org/10.1186/s12943-022-01557-1
|
[30]
|
Jiang, L., Zhang, Y., Guo, L., Liu, C., Wang, P. and Ren, W. (2021) Exosomal microRNA-107 Reverses Chemotherapeutic Drug Resistance of Gastric Cancer Cells through HMGA2/mTOR/P-gp Pathway. BMC Cancer, 21, Article No. 1290. https://doi.org/10.1186/s12885-021-09020-y
|
[31]
|
Seo, N., Shirakura, Y., Tahara, Y., Momose, F., Harada, N., Ikeda, H., et al. (2018) Activated CD8+ T Cell Extracellular Vesicles Prevent Tumour Progression by Targeting of Lesional Mesenchymal Cells. Nature Communications, 9, Article No. 435. https://doi.org/10.1038/s41467-018-02865-1
|
[32]
|
Li, Y., Tian, L., Zhao, T. and Zhang, J. (2023) A Nanotherapeutic System for Gastric Cancer Suppression by Synergistic Chemotherapy and Immunotherapy Based on iPSCs and DCs Exosomes. Cancer Immunology, Immunotherapy, 72, 1673-1683. https://doi.org/10.1007/s00262-022-03355-6
|