免疫检查点抑制剂相关风湿性不良反应的诊疗及预测进展
Progress in Diagnosis, Treatment and Prediction of Rheumatic Adverse Events Associated with Immune Checkpoint Inhibitors
摘要: 随着免疫检查点抑制剂(ICIs)在肿瘤治疗领域的广泛应用,其引发的免疫相关不良反应(irAEs)也备受关注。irAEs可发生于全身任何器官系统,其中以肌肉骨骼表现为主的风湿性irAEs在临床中常有报道,如炎性关节炎、风湿性多肌痛、肌炎、血管炎等,早期识别和干预此类不良反应对改善肿瘤患者预后尤为重要,而寻找有助于精确预测irAEs发生的生物标志物也成为未来研究的热点。因此,本文就ICIs相关风湿性不良反应的临床特点、诊断和鉴别诊断、管理及潜在预测性标志物加以综述,以加强临床医师对此类疾病的认识。
Abstract: With the wide application of immune checkpoint inhibitors (ICIs) in the field of tumor therapy, the immune-related adverse events (irAEs) induced by ICIs have also attracted much attention. The irAEs can occur in any organ system, among which rheumatic irAEs which are mainly characterized by musculoskeletal manifestations have often been reported in clinic, such as inflammatory arthritis, polymyalgia rheumatica, myositis, vasculitis. Early identification and intervention of these adverse events are important for improving prognosis of cancer patients. Finding biomarkers that can help to accurately predict the development of irAEs will be a focus of future research. Therefore, this article reviews the clinical features, diagnosis, differential diagnosis, management and potential predictive markers of ICIs-associated rheumatic adverse events to enhance clinicians’ understanding of these diseases.
文章引用:李悦, 刘宇宏. 免疫检查点抑制剂相关风湿性不良反应的诊疗及预测进展[J]. 临床医学进展, 2024, 14(9): 503-510. https://doi.org/10.12677/acm.2024.1492489

1. 引言

免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)的广泛应用为恶性肿瘤患者带来了新的治疗前景,极大地改善了预后,具有划时代意义[1]。目前已批准了三类针对不同靶点的检查点抑制剂——细胞程序性死亡受体(programmed cell death protein-1, PD-1)抑制剂、细胞程序性死亡受体–配体1 (programmed cell death ligand-1, PD-L1)抑制剂和细胞毒性T淋巴细胞相关抗原4 (cytotoxic T lymphocyte-associated antigen 4, CTLA-4)抑制剂[2]。ICIs为肿瘤治疗带来了革命性转变,但另一方面,基于“分子模拟”机制,异常激活的免疫系统在消灭肿瘤的同时也会攻击正常自身宿主细胞,产生肿瘤反应和自身免疫毒性两种效应[3],从而导致免疫相关不良反应(immune-related adverse events, irAEs),影响患者预后,严重者甚至危及生命,引起专家学者们的广泛关注。irAEs可发生在任何器官系统,如皮肤、肌肉骨骼、肺、眼、心血管、神经系统、消化道及内分泌系统等[4]。以肌肉骨骼表现为主的风湿性irAEs在临床实践中常有报道,依据累及部位分为常见的肌肉骨骼性风湿性irAEs (如炎性关节炎、风湿性多肌痛、肌炎)和相对少见的非肌肉骨骼性风湿性irAEs (如血管炎、干燥综合征、结节病、系统性红斑狼疮、硬化症等) [5]。然而,目前对此类不良事件的描述主要来源于病例报告和系列,临床试验中少有报道,很大程度上是因为患者的肌肉骨骼症状极易被忽视,因此仍缺乏最佳的诊断及管理证据。本文就ICIs所致风湿性不良反应的临床特点、诊断及鉴别诊断、管理及潜在预测性标志物加以综述,希望临床医师在诊疗过程中注意对此类病人的监测与管理。

2. 临床特点

通常,irAEs发生在治疗早期(几周~几月),且不同的癌症类型及免疫治疗方案之间不良反应谱不同[6],少数迟发性患者在接受ICIs治疗1年后才出现相关表现,而部分患者即使在停止治疗后很长时间不良反应仍持续存在,发展为慢性irAEs [7] [8]。因ICIs非特异性地激活免疫系统,其诱导产生的不良反应发病机制与传统风湿免疫病相似,因此可模拟大部分风湿免疫性疾病,但两者在临床特点上并不完全相同,前者可能是一个新的独立的临床实体,尚不能一概而论。

2.1. 肌肉骨骼性风湿性irAEs

关节痛和肌痛是最常见的风湿性irAEs表现,估计患病率范围分别为1%~43%和2%~21% [9]。肌肉骨骼性irAEs多为轻中度(1/2级) [评分标准参考2017年国家癌症研究所发布的5.0版常见不良事件评价标准(Common Terminology Criteria for Adverse Events, CTCAE),但近年来部分肿瘤病学家经过临床实践,认为此标准在评价肌肉骨骼性irAEs时存在局限性,基于专家共识,他们整理了新的参考通用算法[10]。此类病人大多经类固醇治疗后症状可达到缓解或消失,且可以继续ICIs治疗,但在危及生命的情况下,如并发心肌炎的严重肌炎,可能需要永久停用ICIs。与不出现此类表现的患者相比,发生骨骼肌肉受累的病人往往存在良好的肿瘤反应[11]

2.1.1. 炎性关节炎(Inflammatory Arthritis, IA)

IA是最常见的风湿性irAEs之一,发生率约1%~7% [12]。从开始ICIs治疗到出现关节炎症状的中位时间为3个月左右,但在一些病例中可迟至ICIs治疗开始后1~2年出现。主要表现为关节痛和关节肿胀,可伴有晨僵、腱鞘炎、附着点炎或银屑病相关表现。IA的临床表型多样,主要包括分型明确的类风湿性关节炎、血清阴性脊柱关节炎、反应性关节炎和其他的如缓解性血清阴性对称性滑膜炎伴凹陷性水肿,以及未分化的单关节炎、寡关节炎和多关节炎等。主要累及掌指关节、腕关节和一些较大的关节,与类风湿关节炎类似。血清特异性抗体阴性者多见,仅少数患者报道检测出类风湿因子(RF)、抗环瓜氨酸多肽(CCP)抗体等,在具有大关节表型的脊柱关节炎亚型中,患者也多为HLA-B27阴性[5] [12]。X线、CT、超声和MRI等均可用于关节炎的检测,有助于诊断,MRI和超声下可见滑膜炎、腱鞘炎、肌筋膜炎、附着点炎、关节积液甚至骨侵蚀(提示预后较差)等[13]。治疗多不需暂时或永久性停用ICIs,症状较轻者可使用非甾体类抗炎药(NSAIDs),大多数患者经全身糖皮质激素治疗后症状可明显改善,局限性大关节受累者可接受关节腔内激素注射,多反应良好。在已报道的ICIs诱导的关节炎患者中,约20%接受了传统合成改善病情抗风湿药(csDMARDs),其中甲氨蝶呤最常见,其次是羟氯喹和柳氮磺吡啶。少数症状严重者,需要使用生物类改善病情抗风湿药(bDMARDs),常用的如肿瘤坏死因子(TNF)抑制剂及白介素-6 (IL-6)受体拮抗剂。通常,在关节炎情况得到控制后可重新引入ICIs治疗[14] [15]

2.1.2. 风湿性多肌痛(Polymyalgia Rheumatica, PMR)

PMR也是常见的风湿性irAE,发生于ICIs治疗后3个月左右,多见于50岁以上者[5],主要表现为近端肌肉关节疼痛伴晨僵,典型受累部位为颈部、肩胛带及骨盆带肌肉,发作持续时间一般超过45分钟。实验室检查通常可见炎性标志物升高,红细胞沉降率(ESR) > 100 mm/h和C反应蛋白(CRP)高度升高有助于诊断,但血清特异抗体多为阴性[16] [17]。然而,有部分病例也可发生于一些非典型部位,如膝和手关节,或出现炎性标志物不升高的情况,换句话说,若急性时相反应物正常,也不能排除PMR的诊断,而此类不典型患者往往也对常规治疗反应不佳[17] [18]。由于PMR与颞动脉炎属同一疾病谱且常同时存在,因此,积极寻找提示颞动脉炎的证据(如颞侧头痛、下颌运动障碍和视力障碍等)对PMR的诊断是很重要的。此外,有研究显示,ICIs相关PMR患者的外周关节炎患病率较高[19]。超声检查可见肩关节和髋关节周围滑囊炎,FDG-PET/CT可见双侧髋关节或关节周围葡萄糖代谢信号异常[20]。此类患者在治疗时也多不需要停止ICIs,且大多数对小/中剂量类固醇反应良好[16],有学者建议,相比于特发性PMR临床指南推荐的糖皮质激素用量(泼尼松龙12.5~25 mg/d),对ICIs相关PMR患者使用较低剂量的泼尼松龙(5~7.5 mg/d) [21]

2.1.3. 肌炎(Myositis)

肌炎是严重的风湿性irAE,发生时间更早,中位时间通常为开始ICIs治疗后1个月内[22] [23]。发生率约0.4%~6%,但病死率可高达24%,这种高死亡率部分归因于其常并发的心肌炎和(或)重症肌无力(ICIs-induced myositis with myocarditis and/or myasthenia gravis overlap syndrome, IM3OS),其死亡率甚至更高(分别为56.7%和27.9%) [24]-[26]。ICIs相关肌炎主要表现为对称性肌肉疼痛伴进行性肌无力,多发生在近端肢体,可出现发热、构音障碍、吞咽困难、呼吸衰竭、复视、上睑下垂及肌红蛋白尿等,相关的心肌炎则多表现为心律失常。与特发性炎性肌病(面部及眼外肌几乎不受累,典型表现为皮肤受累所形成的皮疹)不同,ICIs相关肌炎常有眼外肌受累,出现动眼症状,但通常没有皮肤病变,仅在少数病例中有报道[22] [27]。大多数患者可出现肌酸激酶、肌钙蛋白及其他肌肉损伤标志物(如乳酸脱氢酶、转氨酶)的升高,而肌炎相关自身抗体多为阴性,部分并发重症肌无力的患者可检测出抗乙酰胆碱受体(AChR)抗体或抗横纹肌抗体等。肌肉活检可见多灶性肌纤维坏死、CD4+/CD8+T细胞和CD68+巨噬细胞浸润及肌内膜炎症。肌电图通常表现为典型的肌病模式。心脏MRI、超声、PET-CT等影像学检查可用于寻找心肌炎症的证据,评估心肌受累情况[5] [28] [29]。约90%的肌炎病例需要至少暂时的但大部分都是永久的终止ICIs治疗,除大剂量糖皮质激素和DMARDs外,严重肌炎患者可考虑静脉输注免疫球蛋白(IVIG)和/或血浆置换[30]。因为存在拮抗检查点抑制剂抗肿瘤效应的假设风险,“阿巴西普”(CTLA-4的细胞外结构域和IgG的Fc部分的融合蛋白)通常避免用于irAEs,然而有相关报道阿巴西普成功治疗重度糖皮质激素难治性心肌炎的案例[31],提示在这种危及生命的情况下,可以考虑使用它。由于并发心肌炎是ICIs相关肌炎病死率高的重要原因,医师们应该增强意识积极进行相关辅助检查,例如心肌损伤标志物及心电图,尤其是在ICIs治疗开始后的一个月内,必要时可行心脏MRI,以监测病情进展,对于任何肌炎或疑似肌炎的患者,必须进行系统的心脏评估。

2.2. 非肌肉骨骼性风湿性irAEs

此类风湿性不良反应相对少见,其中最常见的形式为血管炎、结节病和干燥综合征(sjögren syndrome, SS)。血管炎也属于潜在的致死性irAE,可发生于任何大小的血管,但最常见于大血管,其中以颞(巨细胞)动脉炎最具代表性。颞动脉活检是诊断颞动脉炎的金标准,表现为CD4+T细胞及巨噬细胞浸润的肉芽肿性动脉炎,血管彩色多普勒超声可作为一种无创的替代检查方法,血管造影、MRI、CT等都可作为辅助诊断的手段。约80%的血管炎患者需要停用ICIs,由于其潜在存在的致失明风险,明确诊断后应立即开始免疫抑制治疗[32]。结节病样反应多发生于接受抗CTLA-4或抗PD-1治疗的黑色素瘤患者中,女性多见,发生时间在ICIs治疗后3周到近2年不等,最常受累的器官为皮肤和肺,也可有淋巴结、眼及神经受累。皮肤症状往往是患者就医的主要原因,病变的范围可以从局部皮疹或结节至全身性皮肤表现。患者的血管紧张素转化酶可升高或正常,组织活检可见局灶性浸润的非干酪性上皮样和巨细胞肉芽肿,并可融合成微小结节。同时,组织病理学检查也可帮助鉴别是因恶性肿瘤进展的转移性结节还是因免疫介导的不良反应性结节病样反应[33]。ICIs相关SS与特发性SS有所不同,患者中男性占明显优势且平均年龄更高,口干症状比眼干更为突出,夜间或运动后加重,唾液腺活检有助于诊断,表现为涎腺炎和腺体损伤,具有淋巴细胞浸润、腺泡及导管损伤的特征。除使用糖皮质激素等治疗外,对症治疗(如唾液和泪液替代物)或使用促分泌的毛果芸香碱治疗也对部分病人有效[34] [35]。ICIs相关的系统性结缔组织病包括系统性红斑狼疮(systemic lupus erythematosus, SLE)和系统性硬化症(systemic sclerosis, SSc)则更为罕见。在报告的ICIs相关SLE病例中,老年女性多见,但相较于特发性SLE (F:M = 9:1),女性占比优势并不明显(F:M = 1.6:1) [36]。狼疮性肾炎患者肾脏穿刺病理活检可见系膜区免疫复合物及补体沉积,免疫相关检测可见抗dsDNA抗体滴度升高,血清补体水平正常或降低,暂停ICIs并给予激素治疗可缓解症状。ICIs相关SSc则表现为皮肤增厚、雷诺现象或肺间质病变,肺部受累时胸部CT可见异常,大多数患者使用糖皮质激素后症状可得到有效缓解[37]。上述irAEs中特异性自身抗体阳性者少见,且并非所有病例都符合其相应特发性自身免疫病的诊断标准,这表明ICIs诱发的风湿性irAEs可能是一种新的临床实体。暂停ICIs和使用激素有助于病情改善,严重者则需终止ICIs并行进一步治疗[13] [15]

3. 诊断与鉴别诊断

任何在开始ICIs治疗后新发的风湿免疫病表现,如关节肿痛、肌肉痛、乏力、口干、眼干等,都应考虑到风湿性irAEs可能,尤其在治疗后1~3个月左右。由于不良反应在ICIs治疗停止后仍可能出现,因此对于过去1~2年内接受过ICIs治疗的患者,出现疑似症状时也应警惕。诊断应基于病史和临床特征,须注意的是,此类疾病检出特异性自身抗体阳性的频率较低,实验室检查如炎性标志物(CRP和ESR等)的升高、影像学及活组织病理检查可协助诊断。及时识别和早期处理肌炎是当务之急,应检查是否存在危及生命的表现,包括呼吸困难、心悸、胸痛或晕厥等,这提示可能并发心肌炎,应尽早实施干预。但并非所有在ICIs治疗开始后表现为肌肉骨骼或全身性不良反应的病例都是irAEs,部分病人可能本身就存在着原发的肌肉骨骼相关病症,因此需要与ICIs无关的风湿性疾病相鉴别,且此类症状往往无特异性,临床诊疗过程中常会忽略。此外,还应与副瘤综合征、肿瘤转移、放化疗副作用、机会性感染、代谢异常等能引起相似表现的其他病因相鉴别。

4. 管理

目前可以有效控制症状而不抑制肿瘤免疫反应的最佳管理策略仍不明确,所以应实现个体化管理。暂停或继续ICIs治疗应基于风湿性irAEs的严重程度及后续肿瘤治疗计划,由肿瘤病学家、风湿病学家及病人共同决定。irAEs的管理主要依据不良反应的严重程度结合患者的实际临床情况来进行指导。症状较轻者(1级),可仅对症治疗,如NSAIDs。全身性糖皮质激素是风湿性irAEs的主要治疗,根据病情调整剂量,症状持续>1周的中度(2级)irAEs可尝试给予泼尼松0.5~1 mg/(Kg·d)或等效药物治疗,3/4级irAEs者,应给予大剂量糖皮质激素治疗,如泼尼松1~2 mg/(Kg·d)或等效药物,待症状减轻至≤1级时逐渐减量。总之,激素应逐渐减量至能控制症状的最低有效剂量,因为高剂量的糖皮质激素有潜在限制ICIs治疗疗效的风险[38] [39]。基线免疫抑制似乎对ICIs抗肿瘤反应有负面影响,一项小细胞肺癌患者基线类固醇对PD-1和PD-L1抑制剂疗效影响的研究显示,ICIs治疗开始时≥10 mg/d的泼尼松当量与显著较差的抗肿瘤应答相关,这也支持了激素减量[40]。对激素反应不佳及激素减量失败症状复发或加重者(泼尼松不能低于10 mg/d),应考虑加用csDMARDs,如羟氯喹、甲氨蝶呤、柳氮磺吡啶及吗替麦考酚酯等。对于发生重度(≥3级) irAEs或对csDMARDs应答不足的患者,可考虑加用bDMARDs,如TNF拮抗剂、IL-6拮抗剂等。严重肌炎和血管炎可危及生命,一旦确诊,往往需要终止ICIs并给予大剂量糖皮质激素,必要时可行IVIG和血浆置换等治疗。重要的一个问题仍然是使用这些免疫抑制剂是否会影响肿瘤结局,一项早期的研究似乎给了我们信心,Braaten等人的一项包含了60例风湿性irAEs患者的队列研究表明,免疫调节治疗后肿瘤进展风险的增加无统计学显著性[41]。最后,关于终止ICIs治疗后能否和何时再挑战问题尚无明确标准,也需要由肿瘤病学家、风湿病学家充分评估病情后,与病人共同决定。一般当症状和体征得到控制时,便可考虑重新开始ICIs治疗,仅在发生4级(危及生命)不良反应后才禁忌再次暴露于ICIs [15]

由于报告的不一致性,irAEs的患病率很有可能被我们低估。既存自身免疫性疾病的肿瘤患者可能因接受ICIs治疗导致重新发作或原有病情恶化,但这些症状通常可以管理,因此不应排除肿瘤免疫治疗的使用,但应提前告知患者可能出现的既存病情复发或新发风湿免疫病可能,取得患者知情同意,一旦此类患者接受ICIs治疗,则必须接受更严密的监测[30] [42]。irAEs导致停药后再次使用ICIs引起半数患者再次出现相同或新的不良反应,所以曾出现irAEs的患者再次接受ICIs治疗时也应密切监测[43]

寻找irAEs的精准预测因素一直是研究的热点和难点问题[44]。通过对ICIs相关IA患者外周血及受累关节滑液的T细胞及其亚群分析,结果表明产生IFNγ的Th1/Tc1细胞以及通过CXCL9/10/11和CXCL16募集的SF CXCR3hi CXCR6hi/lo效应CD8+T细胞可能参与关节炎的发病机制[45]。一项前瞻性多中心研究显示出类似的结果,ICIs治疗开始后1~2周患者血清中CXCL9/10/11和IFN-γ的早期升高以及Ki-67+调节性T细胞和Ki-67+CD8+T细胞的早期扩增可能与irAEs风险增加相关。此外,一些HLA等位基因也被认为是有可能的风险因素[46]。这提示我们可以早期监测相关血清蛋白和免疫细胞以尽早识别irAEs的发生。总之,这些潜在预测性生物标志物可以帮助我们预测哪些病人可能会从ICIs治疗中获益,而哪些病人需要密切监视不良事件的发生。然而目前对预测性标志物的研究仍集中在免疫治疗应答方面,之后还需要更多的研究来寻找更为精确的免疫毒性预测标志物。

5. 小结

对风湿性irAEs的早期识别和干预是改善肿瘤患者整体预后和生活质量的重要手段,因此,在ICIs治疗前就对患者肌肉骨骼情况进行评估是很有必要的。与其他irAEs不同,风湿性irAEs即使在停止ICIs治疗后也可持续很长时间,成为主要的慢性irAEs,且临床表现各异,需要仔细鉴别和长期管理。随着ICIs的应用越来越广泛,免疫相关不良反应谱会逐渐扩大,发生irAEs的患者数量也会不断增加,鼓励肿瘤病学家在使用免疫治疗后发现疑似风湿性肌肉骨骼或全身的症状体征时及时咨询风湿病学家进行评估,风湿病学家也应积极协助肿瘤病学家进行鉴别诊断,并将症状缓解至可接受的水平,使患者能够维持有效的肿瘤免疫治疗。最后,我们仍需要更多的临床研究以进一步了解风湿性/全身性irAEs,优化此类疾病的监测与管理。

NOTES

*通讯作者。

参考文献

[1] Kruger, S., Ilmer, M., Kobold, S., Cadilha, B.L., Endres, S., Ormanns, S., et al. (2019) Advances in Cancer Immunotherapy 2019—Latest Trends. Journal of Experimental & Clinical Cancer Research, 38, Article No. 268.
https://doi.org/10.1186/s13046-019-1266-0
[2] Shiravand, Y., Khodadadi, F., Kashani, S.M.A., Hosseini-Fard, S.R., Hosseini, S., Sadeghirad, H., et al. (2022) Immune Checkpoint Inhibitors in Cancer Therapy. Current Oncology, 29, 3044-3060.
https://doi.org/10.3390/curroncol29050247
[3] Das, S. and Johnson, D.B. (2019) Immune-Related Adverse Events and Anti-Tumor Efficacy of Immune Checkpoint Inhibitors. Journal for ImmunoTherapy of Cancer, 7, 306.
https://doi.org/10.1186/s40425-019-0805-8
[4] Ramos-Casals, M., Brahmer, J.R., Callahan, M.K., Flores-Chávez, A., Keegan, N., Khamashta, M.A., et al. (2020) Immune-Related Adverse Events of Checkpoint Inhibitors. Nature Reviews Disease Primers, 6, Article No. 38.
https://doi.org/10.1038/s41572-020-0160-6
[5] Melissaropoulos, K., Klavdianou, K., Filippopoulou, A., Kalofonou, F., Kalofonos, H. and Daoussis, D. (2020) Rheumatic Manifestations in Patients Treated with Immune Checkpoint Inhibitors. International Journal of Molecular Sciences, 21, Article 3389.
https://doi.org/10.3390/ijms21093389
[6] Wu, Z., Chen, Q., Qu, L., Li, M., Wang, L., Mir, M.C., et al. (2022) Adverse Events of Immune Checkpoint Inhibitors Therapy for Urologic Cancer Patients in Clinical Trials: A Collaborative Systematic Review and Meta-Analysis. European Urology, 81, 414-425.
https://doi.org/10.1016/j.eururo.2022.01.028
[7] Johnson, D.B., Nebhan, C.A., Moslehi, J.J. and Balko, J.M. (2022) Immune-checkpoint Inhibitors: Long-Term Implications of Toxicity. Nature Reviews Clinical Oncology, 19, 254-267.
https://doi.org/10.1038/s41571-022-00600-w
[8] Carlino, M.S., Larkin, J. and Long, G.V. (2021) Immune Checkpoint Inhibitors in Melanoma. The Lancet, 398, 1002-1014.
https://doi.org/10.1016/s0140-6736(21)01206-x
[9] Abdel-Wahab, N. and Suarez-Almazor, M.E. (2019) Frequency and Distribution of Various Rheumatic Disorders Associated with Checkpoint Inhibitor Therapy. Rheumatology, 58, vii40-vii48.
https://doi.org/10.1093/rheumatology/kez297
[10] Cappelli, L.C. and Bingham, C.O. (2021) Expert Perspective: Immune Checkpoint Inhibitors and Rheumatologic Complications. Arthritis & Rheumatology, 73, 553-565.
https://doi.org/10.1002/art.41587
[11] Zhong, L., Wu, Q., Chen, F., Liu, J. and Xie, X. (2021) Immune-Related Adverse Events: Promising Predictors for Efficacy of Immune Checkpoint Inhibitors. Cancer Immunology, Immunotherapy, 70, 2559-2576.
https://doi.org/10.1007/s00262-020-02803-5
[12] Pundole, X., Abdel-Wahab, N. and Suarez-Almazor, M.E. (2019) Arthritis Risk with Immune Checkpoint Inhibitor Therapy for Cancer. Current Opinion in Rheumatology, 31, 293-299.
https://doi.org/10.1097/bor.0000000000000601
[13] Shen, P., Deng, X., Hu, Z., Chen, Z., Huang, Y., Wang, K., et al. (2021) Rheumatic Manifestations and Diseases from Immune Checkpoint Inhibitors in Cancer Immunotherapy. Frontiers in Medicine, 8, Article 762247.
https://doi.org/10.3389/fmed.2021.762247
[14] Jeurling, S. and Cappelli, L.C. (2020) Treatment of Immune Checkpoint Inhibitor-Induced Inflammatory Arthritis. Current Opinion in Rheumatology, 32, 315-320.
https://doi.org/10.1097/bor.0000000000000701
[15] Leipe, J. and Mariette, X. (2019) Management of Rheumatic Complications of ICI Therapy: A Rheumatology Viewpoint. Rheumatology, 58, vii49-vii58.
https://doi.org/10.1093/rheumatology/kez360
[16] Iskandar, A., Hwang, A. and Dasanu, C.A. (2018) Polymyalgia Rheumatica Due to Pembrolizumab Therapy. Journal of Oncology Pharmacy Practice, 25, 1282-1284.
https://doi.org/10.1177/1078155218800386
[17] Manzo, C., Isetta, M., Natale, M. and Castagna, A. (2020) Identification and Classification of Polymyalgia Rheumatica (PMR) and PMR-Like Syndromes Following Immune Checkpoint Inhibitors (ICIs) Therapy: Discussion Points and Grey Areas Emerging from a Systematic Review of Published Literature. Medicines, 7, Article 68.
https://doi.org/10.3390/medicines7110068
[18] Calabrese, C., Cappelli, L.C., Kostine, M., Kirchner, E., Braaten, T. and Calabrese, L. (2019) Polymyalgia Rheumatica-Like Syndrome from Checkpoint Inhibitor Therapy: Case Series and Systematic Review of the Literature. RMD Open, 5, e000906.
https://doi.org/10.1136/rmdopen-2019-000906
[19] Martin de Fremont, G., Belkhir, R., Henry, J., Voisin, A.L., Lambotte, O., Besson, F.L., et al. (2020) Features of Polymyalgia Rheumatica-Like Syndrome after Immune Checkpoint Inhibitor Therapy. Annals of the Rheumatic Diseases, 81, e52.
https://doi.org/10.1136/annrheumdis-2020-217225
[20] van der Geest, K.S.M., Sandovici, M., Rutgers, A., Hiltermann, T.J.N., Oosting, S.F., Slart, R.H.J.A., et al. (2020) Imaging in Immune Checkpoint Inhibitor-Induced Polymyalgia Rheumatica. Annals of the Rheumatic Diseases, 81, e210.
https://doi.org/10.1136/annrheumdis-2020-217381
[21] van der Geest, K.S.M., Sandovici, M., Rutgers, A., Hiltermann, T.J.N., Oosting, S.F., Slart, R.H.J.A., et al. (2020) Management of Immune Checkpoint Inhibitor-Induced Polymyalgia Rheumatica. Annals of the Rheumatic Diseases, 81, e263.
https://doi.org/10.1136/annrheumdis-2020-218276
[22] Touat, M., Maisonobe, T., Knauss, S., Ben Hadj Salem, O., Hervier, B., Auré, K., et al. (2018) Immune Checkpoint Inhibitor-Related Myositis and Myocarditis in Patients with Cancer. Neurology, 91, e985-e994.
https://doi.org/10.1212/wnl.0000000000006124
[23] Anquetil, C., Salem, J., Lebrun-Vignes, B., Johnson, D.B., Mammen, A.L., Stenzel, W., et al. (2018) Immune Checkpoint Inhibitor-Associated Myositiss: Expanding the Spectrum of Cardiac Complications of the Immunotherapy Revolution. Circulation, 138, 743-745.
https://doi.org/10.1161/circulationaha.118.035898
[24] Wang, D.Y., Salem, J., Cohen, J.V., Chandra, S., Menzer, C., Ye, F., et al. (2018) Fatal Toxic Effects Associated with Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. JAMA Oncology, 4, 1721-1728.
https://doi.org/10.1001/jamaoncol.2018.3923
[25] Gremese, E., Alivernini, S., Ferraccioli, E.S. and Ferraccioli, G. (2020) Checkpoint Inhibitors (CPI) and Autoimmune Chronic Inflammatory Diseases (acids): Tolerance and Loss of Tolerance in the Occurrence of Immuno-Rheumatologic Manifestations. Clinical Immunology, 214, Article ID: 108395.
https://doi.org/10.1016/j.clim.2020.108395
[26] Cappelli, L.C. and Bingham, C.O. (2020) Spectrum and Impact of Checkpoint Inhibitor-Induced irAEs. Nature Reviews Rheumatology, 17, 69-70.
https://doi.org/10.1038/s41584-020-00546-2
[27] 中国抗癌协会肿瘤支持治疗专业委员会, 中国抗癌协会肿瘤临床化疗专业委员会. 免疫检查点抑制剂相关神经不良反应诊治中国专家共识(2022版) [J]. 中华肿瘤杂志, 2022, 44(9): 935-941.
[28] Pathak, R., Katel, A., Massarelli, E., Villaflor, V.M., Sun, V. and Salgia, R. (2021) Immune Checkpoint Inhibitor-Induced Myocarditis with Myositis/myasthenia Gravis Overlap Syndrome: A Systematic Review of Cases. The Oncologist, 26, 1052-1061.
https://doi.org/10.1002/onco.13931
[29] Solimando, A.G., Crudele, L., Leone, P., Argentiero, A., Guarascio, M., Silvestris, N., et al. (2020) Immune Checkpoint Inhibitor-Related Myositis: From Biology to Bedside. International Journal of Molecular Sciences, 21, Article 3054.
https://doi.org/10.3390/ijms21093054
[30] Kostine, M., Finckh, A., Bingham, C.O., Visser, K., Leipe, J., Schulze-Koops, H., et al. (2020) EULAR Points to Consider for the Diagnosis and Management of Rheumatic Immune-Related Adverse Events Due to Cancer Immunotherapy with Checkpoint Inhibitors. Annals of the Rheumatic Diseases, 80, 36-48.
https://doi.org/10.1136/annrheumdis-2020-217139
[31] Salem, J., Allenbach, Y., Vozy, A., Brechot, N., Johnson, D.B., Moslehi, J.J., et al. (2019) Abatacept for Severe Immune Checkpoint Inhibitor-Associated Myocarditis. New England Journal of Medicine, 380, 2377-2379.
https://doi.org/10.1056/nejmc1901677
[32] Hu, J., Florido, R., Lipson, E.J., Naidoo, J., Ardehali, R., Tocchetti, C.G., et al. (2019) Cardiovascular Toxicities Associated with Immune Checkpoint Inhibitors. Cardiovascular Research, 115, 854-868.
https://doi.org/10.1093/cvr/cvz026
[33] Gkiozos, I., Kopitopoulou, A., Kalkanis, A., Vamvakaris, I.N., Judson, M.A. and Syrigos, K.N. (2018) Sarcoidosis-Like Reactions Induced by Checkpoint Inhibitors. Journal of Thoracic Oncology, 13, 1076-1082.
https://doi.org/10.1016/j.jtho.2018.04.031
[34] Warner, B.M., Baer, A.N., Lipson, E.J., Allen, C., Hinrichs, C., Rajan, A., et al. (2019) Sicca Syndrome Associated with Immune Checkpoint Inhibitor Therapy. The Oncologist, 24, 1259-1269.
https://doi.org/10.1634/theoncologist.2018-0823
[35] Ramos-Casals, M., Maria, A., Suarez-Almazor, M.E., et al. (2019) Sicca/Sjogren’s Syndrome Triggered by PD-1/PD-L1 Checkpoint Inhibitors. Data from the International ImmunoCancer Registry (ICIR). Clinical and Experimental Rheumatology, 118, 114-122.
[36] Raschi, E., Antonazzo, I.C., Poluzzi, E. and De Ponti, F. (2019) Drug-Induced Systemic Lupus Erythematosus: Should Immune Checkpoint Inhibitors Be Added to the Evolving List? Annals of the Rheumatic Diseases, 80, e120.
https://doi.org/10.1136/annrheumdis-2019-215819
[37] Hamaguchi, Y. (2022) Drug-induced Scleroderma-Like Lesion. Allergology International, 71, 163-168.
https://doi.org/10.1016/j.alit.2021.08.005
[38] Draghi, A., Borch, T.H., Radic, H.D., Chamberlain, C.A., Gokuldass, A., Svane, I.M., et al. (2019) Differential Effects of Corticosteroids and Anti‐TNF on Tumor‐Specific Immune Responses: Implications for the Management of Iraes. International Journal of Cancer, 145, 1408-1413.
https://doi.org/10.1002/ijc.32080
[39] Mitchell, E.L., Lau, P.K.H., Khoo, C., Liew, D., Leung, J., Liu, B., et al. (2018) Rheumatic Immune-Related Adverse Events Secondary to Anti-Programmed Death-1 Antibodies and Preliminary Analysis on the Impact of Corticosteroids on Anti-Tumour Response: A Case Series. European Journal of Cancer, 105, 88-102.
https://doi.org/10.1016/j.ejca.2018.09.027
[40] Arbour, K.C., Mezquita, L., Long, N., Rizvi, H., Auclin, E., Ni, A., et al. (2018) Impact of Baseline Steroids on Efficacy of Programmed Cell Death-1 and Programmed Death-Ligand 1 Blockade in Patients with Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 36, 2872-2878.
https://doi.org/10.1200/jco.2018.79.0006
[41] Braaten, T.J., Brahmer, J.R., Forde, P.M., Le, D., Lipson, E.J., Naidoo, J., et al. (2019) Immune Checkpoint Inhibitor-Induced Inflammatory Arthritis Persists after Immunotherapy Cessation. Annals of the Rheumatic Diseases, 79, 332-338.
https://doi.org/10.1136/annrheumdis-2019-216109
[42] Hoa, S., Laaouad, L., Roberts, J., Ennis, D., Ye, C., Al Jumaily, K., et al. (2021) Preexisting Autoimmune Disease and Immune-Related Adverse Events Associated with Anti-Pd-1 Cancer Immunotherapy: A National Case Series from the Canadian Research Group of Rheumatology in Immuno-Oncology. Cancer Immunology, Immunotherapy, 70, 2197-2207.
https://doi.org/10.1007/s00262-021-02851-5
[43] Dolladille, C., Ederhy, S., Sassier, M., Cautela, J., Thuny, F., Cohen, A.A., et al. (2020) Immune Checkpoint Inhibitor Rechallenge after Immune-Related Adverse Events in Patients with Cancer. JAMA Oncology, 6, 865-871.
https://doi.org/10.1001/jamaoncol.2020.0726
[44] Kim, S.T., Chu, Y., Misoi, M., Suarez-Almazor, M.E., Tayar, J.H., Lu, H., et al. (2022) Distinct Molecular and Immune Hallmarks of Inflammatory Arthritis Induced by Immune Checkpoint Inhibitors for Cancer Therapy. Nature Communications, 13, Article No. 1970.
https://doi.org/10.1038/s41467-022-29539-3
[45] Nuñez, N.G., Berner, F., Friebel, E., Unger, S., Wyss, N., Gomez, J.M., et al. (2023) Immune Signatures Predict Development of Autoimmune Toxicity in Patients with Cancer Treated with Immune Checkpoint Inhibitors. Med, 4, 113-129.E7.
https://doi.org/10.1016/j.medj.2022.12.007
[46] Berner, F. and Flatz, L. (2023) Autoimmunity in Immune Checkpoint Inhibitor‐Induced Immune‐Related Adverse Events: A Focus on Autoimmune Skin Toxicity and Pneumonitis. Immunological Reviews, 318, 37-50.
https://doi.org/10.1111/imr.13258