[1]
|
Cieza, A., Causey, K., Kamenov, K., Hanson, S.W., Chatterji, S. and Vos, T. (2020) Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, 396, 2006-2017. https://doi.org/10.1016/s0140-6736(20)32340-0
|
[2]
|
Murray, C.J.L. and Lopez, A.D. (2013) Measuring the Global Burden of Disease. New England Journal of Medicine, 369, 448-457. https://doi.org/10.1056/nejmra1201534
|
[3]
|
Deyo, R.A. and Weinstein, J.N. (2001) Low Back Pain. New England Journal of Medicine, 344, 363-370. https://doi.org/10.1056/nejm200102013440508
|
[4]
|
Bowles, R.D. and Setton, L.A. (2017) Biomaterials for Intervertebral Disc Regeneration and Repair. Biomaterials, 129, 54-67. https://doi.org/10.1016/j.biomaterials.2017.03.013
|
[5]
|
Sampara, P., Banala, R.R., Vemuri, S.K., Av, G.R. and Gpv, S. (2018) Understanding the Molecular Biology of Intervertebral Disc Degeneration and Potential Gene Therapy Strategies for Regeneration: A Review. Gene Therapy, 25, 67-82. https://doi.org/10.1038/s41434-018-0004-0
|
[6]
|
Xia, C., Zeng, Z., Fang, B., Tao, M., Gu, C., Zheng, L., et al. (2019) Mesenchymal Stem Cell-Derived Exosomes Ameliorate Intervertebral Disc Degeneration via Anti-Oxidant and Anti-Inflammatory Effects. Free Radical Biology and Medicine, 143, 1-15. https://doi.org/10.1016/j.freeradbiomed.2019.07.026
|
[7]
|
Zhu, M., Tan, J., Liu, L., Tian, J., Li, L., Luo, B., et al. (2021) Construction of Biomimetic Artificial Intervertebral Disc Scaffold via 3D Printing and Electrospinning. Materials Science and Engineering: C, 128, Article ID: 112310. https://doi.org/10.1016/j.msec.2021.112310
|
[8]
|
Wang, F., Nan, L., Zhou, S., Liu, Y., Wang, Z., Wang, J., et al. (2019) Injectable Hydrogel Combined with Nucleus Pulposus-Derived Mesenchymal Stem Cells for the Treatment of Degenerative Intervertebral Disc in Rats. Stem Cells International, 2019, Article ID: 8496025. https://doi.org/10.1155/2019/8496025
|
[9]
|
Malandrino, A., Lacroix, D., Hellmich, C., Ito, K., Ferguson, S.J. and Noailly, J. (2014) The Role of Endplate Poromechanical Properties on the Nutrient Availability in the Intervertebral Disc. Osteoarthritis and Cartilage, 22, 1053-1060. https://doi.org/10.1016/j.joca.2014.05.005
|
[10]
|
Rodriguez, A.G., Slichter, C.K., Acosta, F.L., Rodriguez-Soto, A.E., Burghardt, A.J., Majumdar, S., et al. (2011) Human Disc Nucleus Properties and Vertebral Endplate Permeability. Spine, 36, 512-520. https://doi.org/10.1097/brs.0b013e3181f72b94
|
[11]
|
Roughley, P.J. (2004) Biology of Intervertebral Disc Aging and Degeneration: Involvement of the Extracellular Matrix. Spine, 29, 2691-2699. https://doi.org/10.1097/01.brs.0000146101.53784.b1
|
[12]
|
Melrose, J., Ghosh, P. and Taylor, T.K.F. (2001) A Comparative Analysis of the Differential Spatial and Temporal Distributions of the Large (Aggrecan, Versican) and Small (Decorin, Biglycan, Fibromodulin) Proteoglycans of the Intervertebral Disc. Journal of Anatomy, 198, 3-15. https://doi.org/10.1046/j.1469-7580.2001.19810003.x
|
[13]
|
Sztrolovics, R., Alini, M., Mort, J.S. and Roughley, P.J. (1999) Age-Related Changes in Fibromodulin and Lumican in Human Intervertebral Discs. Spine, 24, 1765. https://doi.org/10.1097/00007632-199909010-00003
|
[14]
|
Schultz, A., Andersson, G., Ortengren, R., Haderspeck, K. and Nachemson, A. (1982) Loads on the Lumbar Spine. Validation of a Biomechanical Analysis by Measurements of Intradiscal Pressures and Myoelectric Signals. The Journal of Bone & Joint Surgery, 64, 713-720. https://doi.org/10.2106/00004623-198264050-00008
|
[15]
|
Adams, M.A., McNally, D.S. and Dolan, P. (1996) “Stress” Distributions Inside Intervertebral Discs. The Effects of Age and Degeneration. The Journal of Bone and Joint Surgery, 78, 965-972. https://doi.org/10.1302/0301-620x78b6.1287
|
[16]
|
Chrastil, J. and Patel, A.A. (2012) Complications Associated with Posterior and Transforaminal Lumbar Interbody Fusion. Journal of the American Academy of Orthopaedic Surgeons, 20, 283-291. https://doi.org/10.5435/jaaos-20-05-283
|
[17]
|
Zeng, Y., Chen, C., Liu, W., Fu, Q., Han, Z., Li, Y., et al. (2015) Injectable Microcryogels Reinforced Alginate Encapsulation of Mesenchymal Stromal Cells for Leak-Proof Delivery and Alleviation of Canine Disc Degeneration. Biomaterials, 59, 53-65. https://doi.org/10.1016/j.biomaterials.2015.04.029
|
[18]
|
Aderibigbe, B. and Buyana, B. (2018) Alginate in Wound Dressings. Pharmaceutics, 10, Article No. 42. https://doi.org/10.3390/pharmaceutics10020042
|
[19]
|
Liang, Y., Zhao, X., Hu, T., Han, Y. and Guo, B. (2019) Mussel-Inspired, Antibacterial, Conductive, Antioxidant, Injectable Composite Hydrogel Wound Dressing to Promote the Regeneration of Infected Skin. Journal of Colloid and Interface Science, 556, 514-528. https://doi.org/10.1016/j.jcis.2019.08.083
|
[20]
|
Mekhail, M., Daoud, J., Almazan, G. and Tabrizian, M. (2013) Rapid, Guanosine 5’‐Diphosphate‐Induced, Gelation of Chitosan Sponges as Novel Injectable Scaffolds for Soft Tissue Engineering and Drug Delivery Applications. Advanced Healthcare Materials, 2, 1126-1130. https://doi.org/10.1002/adhm.201200371
|
[21]
|
Alexander, A., Ajazuddin, Khan, J., Saraf, S. and Saraf, S. (2014) Polyethylene Glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) Based Thermosensitive Injectable Hydrogels for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 88, 575-585. https://doi.org/10.1016/j.ejpb.2014.07.005
|
[22]
|
Chen, P., Ning, L., Qiu, P., Mo, J., Mei, S., Xia, C., et al. (2019) Photo‐Crosslinked Gelatin‐Hyaluronic Acid Methacrylate Hydrogel‐Committed Nucleus Pulposus‐Like Differentiation of Adipose Stromal Cells for Intervertebral Disc Repair. Journal of Tissue Engineering and Regenerative Medicine, 13, 682-693. https://doi.org/10.1002/term.2841
|
[23]
|
Alimirzaei, F., Vasheghani-Farahani, E., Ghiaseddin, A., et al. (2017) pH-Sensitive Chitosan Hydrogel with Instant Gelation for Myocardial Regeneration. Journal of Tissue Science & Engineering, 8, Article ID: 1000212. https://doi.org/10.4172/2157-7552.1000212
|
[24]
|
Chen, W., Chen, H., Zheng, D., Zhang, H., Deng, L., Cui, W., et al. (2019) Gene‐Hydrogel Microenvironment Regulates Extracellular Matrix Metabolism Balance in Nucleus Pulposus. Advanced Science, 7, Article ID: 1902099. https://doi.org/10.1002/advs.201902099
|
[25]
|
Hu, J., Chen, B., Guo, F., Du, J., Gu, P., Lin, X., et al. (2012) Injectable Silk Fibroin/Polyurethane Composite Hydrogel for Nucleus Pulposus Replacement. Journal of Materials Science: Materials in Medicine, 23, 711-722. https://doi.org/10.1007/s10856-011-4533-y
|
[26]
|
Sivan, S.S., Roberts, S., Urban, J.P.G., Menage, J., Bramhill, J., Campbell, D., et al. (2014) Injectable Hydrogels with High Fixed Charge Density and Swelling Pressure for Nucleus Pulposus Repair: Biomimetic Glycosaminoglycan Analogues. Acta Biomaterialia, 10, 1124-1133. https://doi.org/10.1016/j.actbio.2013.11.010
|
[27]
|
Gan, Y., Li, P., Wang, L., Mo, X., Song, L., Xu, Y., et al. (2017) An Interpenetrating Network-Strengthened and Toughened Hydrogel That Supports Cell-Based Nucleus Pulposus Regeneration. Biomaterials, 136, 12-28. https://doi.org/10.1016/j.biomaterials.2017.05.017
|
[28]
|
Maroudas, A., Stockwell, R.A., Nachemson, A., et al. (1975) Factors Involved in the Nutrition of the Human Lumbar Intervertebral Disc: Cellularity and Diffusion of Glucose in Vitro. Journal of Anatomy, 120, 113-130.
|
[29]
|
Boubriak, O.A., Watson, N., Sivan, S.S., Stubbens, N. and Urban, J.P.G. (2013) Factors Regulating Viable Cell Density in the Intervertebral Disc: Blood Supply in Relation to Disc Height. Journal of Anatomy, 222, 341-348. https://doi.org/10.1111/joa.12022
|
[30]
|
del Rosario, C., Rodríguez-Évora, M., Reyes, R., Delgado, A. and Évora, C. (2015) BMP-2, PDGF-BB, and Bone Marrow Mesenchymal Cells in a Macroporous β-TCP Scaffold for Critical-Size Bone Defect Repair in Rats. Biomedical Materials, 10, Article ID: 045008. https://doi.org/10.1088/1748-6041/10/4/045008
|
[31]
|
Cui, P., Pan, P., Qin, L., Wang, X., Chen, X., Deng, Y., et al. (2023) Nanoengineered Hydrogels as 3D Biomimetic Extracellular Matrix with Injectable and Sustained Delivery Capability for Cartilage Regeneration. Bioactive Materials, 19, 487-498. https://doi.org/10.1016/j.bioactmat.2022.03.032
|
[32]
|
Growney, E.A., Linder, H.R., Garg, K., Bledsoe, J.G. and Sell, S.A. (2019) Bio‐Conjugation of Platelet‐Rich Plasma and Alginate through Carbodiimide Chemistry for Injectable Hydrogel Therapies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 1972-1984. https://doi.org/10.1002/jbm.b.34538
|
[33]
|
Pan, Z., Sun, H., Xie, B., Xia, D., Zhang, X., Yu, D., et al. (2018) Therapeutic Effects of Gefitinib-Encapsulated Thermosensitive Injectable Hydrogel in Intervertebral Disc Degeneration. Biomaterials, 160, 56-68. https://doi.org/10.1016/j.biomaterials.2018.01.016
|