脂肪因子Apelin与妊娠期糖尿病发病机制的研究进展
Advances in the Study of Adipokine Apelin and Pathogenesis of Gestational Diabetes Mellitus
摘要: 妊娠期糖尿病(GDM)是最常见的围产期并发症之一,其发病机制尚未明确,可能是由肥胖、胰岛素抵抗(IR)及炎症反应等多因素共同作用的结果。Apelin作为新型脂肪因子,与肥胖、胰岛素抵抗及炎症反应关系密切,可能参与GDM的病理生理机制中。研究表明,Apelin具有降糖、改善胰岛素敏感性等作用,有望成为GDM治疗的新靶点。
Abstract: Gestational diabetes mellitus (GDM) is one of the most common perinatal complications. However, its pathogenesis is not clear, which may be the result of multiple factors such as obesity, insulin resistance (IR) and inflammatory response. As a novel adipokine, Apelin is closely related to obesity, insulin resistance and inflammation, and may be involved in the pathophysiology of GDM. Studies have shown that Apelin has the effects of reducing blood sugar and improving insulin sensitivity, and is expected to become a new target for GDM treatment.
文章引用:叶玉婷, 周俊. 脂肪因子Apelin与妊娠期糖尿病发病机制的研究进展[J]. 临床医学进展, 2024, 14(9): 613-620. https://doi.org/10.12677/acm.2024.1492506

1. 引言

妊娠期糖尿病(Gestation diabetes mellitus, GDM),是指妊娠期发生或首次发现以不同程度的糖耐量异常为特征的代谢性疾病,是最常见的围产期并发症之一,其发病率在我国大陆地区高达为14.8% (95% CI: 12.8%~16.7%) [1]。GDM若不及时诊断并控制血糖,将严重影响孕产妇健康,导致巨大儿、胎儿生长受限、妊娠期高血压、子痫前期、子痫、新生儿低血糖等不良妊娠结局[2]。目前GDM的发病机制尚无定论,可能与胰岛素抵抗(Insulin resistance, IR)、胰岛β细胞功能受损、脂肪因子、炎症因子等多种因素有关,也可能多种因素共同作用导致GDM。其中胰岛素抵抗是GDM发生发展中重要的病理基础之一。妊娠早期为适应母体与胎儿的需求量,母体的胰岛素敏感性增加。随着妊娠进展,胎盘分泌的胎盘分泌皮质醇、孕酮、雌激素和胎盘催乳素等拮抗胰岛素因子也随之增加,胰岛素分泌代偿性增加,若出现胰岛素抵抗过度、β细胞代偿不足或β细胞功能下降,将进一步导致GDM [3]。脂肪组织分泌的脂肪因子可参与胰岛素敏感性、胰岛素分泌、脂肪分布以及炎症等生理过程[4],直接或者间接影响糖脂代谢,破坏妊娠期母体糖脂代谢的稳态,进一步导致GDM的发生。Apelin作为一种新型脂肪因子,因其与糖脂代谢有着密切联系而备受关注,本文旨在阐述其与GDM发展过程中的影响。

2. Apelin

2.1. Apelin的概述

Apelin是一种调节肽,是G蛋白偶联受体APJ (也称为AGTRL1或APLNR)的内源性配体,通过Apelin/APJ系统参与体内各种生理功能[5]。Apelin的前体蛋白含有77个氨基酸,在细胞内经过翻译加工后最终产生几种不同的分子亚型,如Apelin-13、Apelin-17和Apelin-36 [6] [7]

2.2. Apelin与肥胖

Apelin在血管内皮细胞中大量表达,在血管生成过程中,血管内皮细胞通过分泌Apein调控新生血管的生成,引导新生血管芽形成血管网络[8],而Apelin作为一种新型脂肪因子[9],同时也在脂肪细胞大量表达,脂肪细胞分泌的Apelin可能刺激血管生长,导致脂肪细胞肥大,进一步导致肥胖。一项动物实验指出[10],Apelin和生理盐水各治疗14天后,Apelin治疗组小鼠的胰岛素(Insulin, IN)、甘油三脂(Triglyceride, TG)以及白色脂肪组织的重量有所降低,但食物的摄入却不受影响,同时也降低了高脂饮食的肥胖小鼠胰岛素和甘油三脂在血清中的水平,Apelin可能参与了脂质代谢。此外,Patrick Yue [11]等人研究发现,Apelin基因敲除小鼠的TG、游离脂肪酸(Free fatty acid, FFA)以及腹部脂肪量比对照组高,且外源性Apelin治疗后有所改善,可能是通过Gq-AMPK和Gi-PKA介导的去磷酸化负向调控脂质降解,从而降低FFA血清水平。在儿童中也发现Apelin与肥胖之间具有相关性,而且其与胰岛素及胰岛素抵抗指数(Insulin resistance index, HOMA-IR)呈正相关,表明Apelin可以调节胰岛素敏感性[12]

2.3. Apelin与炎症反应

有关研究发现,T2DM患者的HOMA-IR和血清C反应蛋白水平(CRP)显著高于正常组,而胰腺β细胞功能(HOMA-β)较正常组低,两组HOMA-IR、HOMA-β及CRP均与体质指数(Body mass index, BMI)、体脂、腰围呈正相关,由此可知,CRP与胰岛素分泌、胰岛素敏感性及肥胖具有一定的相关性[13]。另外,肿瘤坏死因子-α (Tumor necrosis factor-α, TNF-α)和白细胞介素-6 (Interleukin-6, IL-6)与肥胖和糖脂代谢疾病(Glucolipid Metabolic Disease, GLMD)有关。在肥胖儿童、青少年中,TNF-α升高组的低密度脂蛋白胆固醇(LDL-C)高于TNF-α正常组,并且TNF-α和LDL-C呈正相关;IL-6升高组的HOMA-IR和空腹胰岛素(FINS)均较高,但IL-6正常组的高密度脂蛋白胆固醇(HDL-C)则高于血清IL-6水平升高组,而且IL-6与FINS、餐后2 h胰岛素(2hINF)、HOMA-IR及TG呈正相关,与HDL-C呈负相关,表明肥胖人群中存在慢性炎症,并且与GLMD发生发展密切相关[14]。这可能是因为炎症因子影响胰岛素信号传导通路,降低胰岛素敏感性,最终导致IR。有实验指出,在T2DM患者中Apelin和TNF-α水平较正常组高,并且随着Apelin水平的升高TNF-α水平也随之升高[15],Apelin可能在T2DM的发生发展中发挥着促炎作用。相反地,在小鼠和细胞实验中发现,Apelin-13处理后的小鼠TNF-α和IL-6的mRNA和蛋白表达水平较对照组显著降低,这可能是因为Apelin-13降低了TNF-α和IL-6启动子中H3K9ac分布进而减缓炎症反应,进而起到保护作用[16] [17]

2.4. Apelin与2型糖尿病(Type 2 Diabetes, T2DM)

T2DM又称为非胰岛素依赖型糖尿病,主要是由于IR、胰岛素进行性分泌物不足引起的持续高血糖的一种代谢紊乱疾病。在一项长达9年的前瞻性队列研究中,既往Apelin水平偏低的人群在未来发展成为T2DM的风险较高,此项研究说明Apelin水平与T2DM存在明显相关性[18]。但在一篇Meta分析(1102例T2DM,1078例对照组)中,T2DM组的Apelin水平比对照组的Apelin水平高2.136,且程度具有统计学意义[19]。有相关实验指出,T2DM患者血清中Apelin和HOMA-IR较对照组显著升高,在降糖治疗6个月后,其水平较治疗前明显降低,并且Apelin水平与HOMA-IR呈正相关,表明Apelin与IR存在一定的相关性,二甲双胍降低BMI较明显,吡格列酮可进一步缓解糖尿病引起的炎症反应[15]。一项病例对照研究中也同样说明了T2DM患者Apelin水平高于对照组,在肥胖T2DM患者中Apelin水平升高更加显著,而且Apelin、BMI及HOMA-IR两两之间呈正相关,说明Apelin与肥胖和IR存在相关性[20]。T2DM患者Apelin水平升高可能是由于胰岛素敏感性降低,机体分泌更多的Apelin进行代偿所导致,也可能Apelin诱导脂肪组织大量增加,导致肥胖和IR,进一步发展成T2DM,其因果关系需要进一步探究。

3. Apelin与GDM

3.1. Apelin参与GDM的可能机制

GDM是多因素共同作用的结果,Apelin是肥胖、炎症反应及IR之间的介质,三者之间相互作用共同促成GDM。超重或肥胖(BMI ≥ 25 kg/m2)是GDM发生重要的危险因素[21]。研究表明,单纯性肥胖、中心型肥胖及内脏脂肪型肥胖均进一步使GDM发生风险增加,并且内脏脂肪型肥胖比单纯性肥胖、中心型肥胖具有更大的危险系数[22]。而Apelin与超重和肥胖有一定相关性,Apelin可能是通过使脂肪细胞过度肥大或功能障碍,导致机体进一步发展成肥胖[8] [20]。一篇关于Apelin与GDM的Meta分析中指出,与对照组相比,GDM患者Apelin水平(SMD = 0.64; 95% CI: 0.03, 1.25)、孕前BMI (MD = 0.93 kg/m2, 95% CI: 0.56, 1.30)、孕期BMI (MD = 0.58 kg/m2, 95% CI: 0.21, 0.96)及HOMA-IR (MD = 2.25; 95% CI: 1.51, 2.98)更大,Apelin作为脂肪因子,与脂肪组织和IR有着千丝万缕的联系,可能是由于GDM患者体内存在IR和脂肪细胞过度肥大,让机体分泌更多的Apelin进行协调,防止GDM进一步发展,是机体的一种保护机制[23]。GDM患者处于慢性轻度炎症状态。炎症因子参与GDM发生发展的病理生理机制,主要通过以下两条通路实现:核因子kappa B (Nuclear factor kappa B, NF-κB)信号通路及信号转导和转录激活因子(Signal transducers and activators of transcription, STAT)信号通路[24]。IκB蛋白和IκB激酶形成磷酸复合物,被蛋白酶复合物降解,导致NF-κB可从细胞质转移至细胞核中,激活IR有关的炎症级联反应的转录基因。酪氨酸705 (Tyr705)和酪氨酸727 (Tyr727)的磷酸化激活STAT3,参与脂肪因子、促炎细胞因子和生长因子的表达。其中,IL-6可激活STAT3,被认为是IR与炎症反应的桥梁。Yi-Xiao Li等人[25]研究发现,GDM孕妇和脐动脉血清中IL-6和IL-8的浓度均较正常组升高,并且GDM孕妇胎盘的NF-κB表达也升高,表明IL-6通过NF-κB信号通路在胎盘上促发炎症反应,使孕妇产生IR,机体血糖水平升高,最终发展成GDM。在小鼠实验中发现,Apelin-13治疗后的小鼠可以降低Jak2/STAT3的表达,可能是通过降低IL-6水平调节炎症和氧化应激进而对机体起到保护作用[26]。除了IL-6,Apelin与TNF-α也有一定的相关性,通过调节TNF-α的水平参与机体的糖脂代谢,进而影响血糖和血脂的水平,进而导致肥胖或糖尿病[15]-[17]。GDM与T2DM的发病机制相似,IR是GDM发生发展重要的病理生理机制。研究发现,经过Apelin处理后,葡萄糖-6-磷酸酶(G6pc)、IL-6及TNF-α的表达减少,而丝氨酸/苏氨酸激酶AKT磷酸化表达增加,增强了脂肪细胞对胰岛素的敏感性,加强了脂肪细胞对葡萄糖的利用,从而降低血糖水平[27]。高脂饮食诱导的肥胖和IR小鼠 ,经过Apelin (0.1 mmol/kg/天)治疗4周后发现,血糖、脂肪组织及TG显著降低,并且极大地改善了IR,这可能是Apelin治疗加强了IR小鼠肌肉的完全脂肪酸氧化、线粒体复合物的合成及氧化磷酸化,尤其是增强了复合物II的氧化能力,刺激葡萄糖摄取来增强胰岛素敏感性[28] [29]。APJ受体在肝脏细胞几乎检测不到,在肥胖和胰岛素抵抗的小鼠肝脏中,APJ受体也未发现显著增加,但发现肝脏的TG含量比对照组显著降低,可能是因为Apelin增强了脂质的利用,减弱了脂质的存积[29]。但是一篇小鼠实验指出,正常小鼠在注射Apelin (200 pmol/kg)后,血糖显著降低,225分钟内,从1.18 ± 0.04 g/L降低至0.89 ± 0.05 g/L,减少了25%,但胰岛素水平并未受影响,表明Apelin与胰岛素分泌无关,可能通过促进糖酵解和糖原合成增强葡萄糖的利用率,达到降糖的效果,并且实验发现内皮型一氧化氮合酶(eNOS)基因缺失小鼠,Apelin并不能起到降糖的作用,Apelin可能通过eNOS途径调节血糖[30]。一项横断面研究表明,GDM组妊娠晚期Apelin水平较妊娠中期升高,但对照组Apelin水平在妊娠晚期显著升高,对照组和GDM组相比,Apelin仅在妊娠中期具有差异性,并且与TG、TC水平呈显著的负相关,Apelin可能通过调节TG、TC来调节GDM患者血脂水平,这是其调节脂质代谢的潜在作用[31]。相关研究发现,GDM孕妇Apelin水平较高,并且血糖水平高组Apelin较血糖水平低组高,Apelin值与血糖水平相关,Apelin的水平与HOMA-β呈负相关,与HOMA-IR呈正相关,有可能Apelin参与协调胰岛素分泌的生理病理机制[32] [33]

3.2. Apelin与母婴

M Oncul等[34]人发现GDM孕妇血清Apelin值与对照组无明显差异,但发现GDM组脐带血中Apelin浓度较对照组低,GDM可能影响胎儿Apelin的代谢,但对胎儿和新生儿是否造成远期影响仍有待进一步探究。另外有关研究则发现脐带血中Apelin-36水平与母体血清水平呈强正相关,与脐血血糖及胰岛素则无相关性,并且GDM组胎儿出生体重明显较重,并脐带血Apelin-36呈负相关,表明Apelin可能通过胎盘运输至胎儿体内中,调控胎儿代谢水平,影响胎儿体重,但不影响胰岛素分泌[35]。与传统彩超测量子宫动脉血流阻力及胎儿径线大小不同,Apelin有望成为预测胎儿生长受限和巨大胎儿的新型生物标志物[36]。Ferhat Cekmez等人[37]发现,大于胎龄儿(Large for gestational age, LGA)的婴儿中,Apein水平、HOMA-IR及定量胰岛素敏感性检测指数(Quantitative insulin sensitivity check index, QUICKI)较适于胎龄儿(Appropriate for gestational age, AGA)升高,并且GDM孕妇所生的LGA的Apelin水平、HOMA-IR及QUICKI比正常组所生的LGA更高,表明GDM对后代糖代谢存在一定的影响,而Apelin可能参与其中。在小鼠实验中发现,Apelin和APJ mRNA胎盘、肺、心脏、脑、肌肉等组织中高表达,妊娠小鼠予注射Apelin治疗后可加强胎盘对葡萄糖的转运,并增强胎儿骨骼肌和肺组织对葡萄糖的摄取,进一步调节胎儿血糖水平[38]。另外,Apelin可刺激视网膜血管形成及内皮细胞的增殖和迁移,进而对视网膜起到保护作用,与早产儿视网膜病变(Retinopathy of prematurity, ROP)相关,并且。有研究发现,新生儿脐带血中Apelin水平较低,并且与胰岛素样生长因子(insulin-like growth factor-1, IGF-1)呈正相关,而IGF-1对调节胎儿生长发育有调节作用[39]。研究表明,正常组孕产妇(BMI 18~25 kg/m2)脐带血清Apelin浓度较肥胖组(BMI ≥ 30 kg/m2)低,但胎盘中Apelin和APJ的表达无明显差异,这说明胎儿Apelin水平的差异与胎盘无关,与孕妇血清Apelin水平及体重相关,受母体机能状态影响[40]。Suleyman Aydin [41]对哺乳期妇女的初乳和成熟乳进行Apelin浓度检测发现GDM组较正常组低,Apelin可能随着母体循环转移至母乳中,被新生儿消化吸收后进入血液中,对新生儿的生长发育、新陈代谢发挥一定作用。

4. 治疗新靶点

Apelin作为脂肪因子之一,是一种生物活性肽,Apelin/APJ系统参与了许多代谢及心血管等生理过程[42],也可作为治疗糖尿病并发症的治疗新靶点,可改善糖尿病引起的肾病、心肌肥厚及视网膜病变[43]。研究表明,输注Apelin转导的华通氏胶间充质干细胞(WJ-MSCs)的T2DM小鼠,血清Apelin水平显著升高,促进胰腺β细胞的增殖,增加胰岛素和C肽水平,改善胰岛素敏感性,增强胰岛素分泌功能,起到降低血糖作用。同时也发现,T2DM小鼠体内TNF-α和IL-6水平显著降低,Apelin同时也起到抗炎作用[44]。另一小鼠实验表明,肥胖型T2MD小鼠予注射Apelin-13后,其摄入量减少,餐后胰岛素水平升高,餐后血糖降低,并发现Apelin治疗可降低TG和LDL,并提高HDL,表明Apelin可参与调节糖脂代谢过程中,具有作为治疗GLMD的潜力[45]。Apelin治疗T2DM及其并发症仅处于临床前研究阶段,暂未进入临床试验阶段,但Apelin治疗效果表现出强大的潜力。虽然有关Apelin治疗GDM的研究较少,但GDM与T2DM发病机制具有相似性,Apelin也有望成为治疗GDM的新型靶点,为GDM治疗提供新思路。

5. 结论与展望

GDM的发病机制虽未完全阐述清楚,但与肥胖、炎症反应及IR密切相关,是多因素共同作用的结果。而且血清Apelin水平作为新型脂肪因子,也是生物活性肽,在糖脂代谢、胰岛素敏感性及炎症反应等起着至关重要的作用,与GDM发生发展相关联,但具体机制有待探讨。若GDM孕妇持续高血糖,将会严重危害母婴健康,甚至影响新生儿后期发育以及分娩后母体机能代谢。GDM孕妇管理重点是早发现、早诊断和早治疗,临床上不仅需要及早筛查出糖耐量异常孕妇,还需要多方面管理GDM孕妇,如加强血糖监测、养成良好饮食习惯、积极参与运动锻炼或药物控制血糖水平等,尽可能预防GDM相关并发症。血清Apelin水平虽然与血糖及妊娠结局相关,但仍需要更多的前瞻性研究验证Apelin是否能成为早期预测GDM和妊娠结局的新型生物标志物。另外,在小鼠实验中,Apelin血糖控制能力表现惊人,但Apelin应用仍处于临床前研究,能否进入临床实验,甚至应用于孕妇这种特需人群仍需要长期研究。

NOTES

*通讯作者。

参考文献

[1] Gao, C., Sun, X., Lu, L., Liu, F. and Yuan, J. (2018) Prevalence of Gestational Diabetes Mellitus in Mainland China: A Systematic Review and Meta‐Analysis. Journal of Diabetes Investigation, 10, 154-162.
https://doi.org/10.1111/jdi.12854
[2] Ye, W., Luo, C., Huang, J., Li, C., Liu, Z. and Liu, F. (2022) Gestational Diabetes Mellitus and Adverse Pregnancy Outcomes: Systematic Review and Meta-Analysis. BMJ, 377, e067946.
https://doi.org/10.1136/bmj-2021-067946
[3] Wang, Y., Wu, H., Ding, H., Li, Y., Wang, Z., Li, F., et al. (2012) Changes of Insulin Resistance and β‐Cell Function in Women with Gestational Diabetes Mellitus and Normal Pregnant Women during Mid‐ and Late Pregnant Period: A Case-Control Study. Journal of Obstetrics and Gynaecology Research, 39, 647-652.
https://doi.org/10.1111/j.1447-0756.2012.02009.x
[4] Fasshauer, M. and Blüher, M. (2015) Adipokines in Health and Disease. Trends in Pharmacological Sciences, 36, 461-470.
https://doi.org/10.1016/j.tips.2015.04.014
[5] Tatemoto, K., Hosoya, M., Habata, Y., Fujii, R., Kakegawa, T., Zou, M., et al. (1998) Isolation and Characterization of a Novel Endogenous Peptide Ligand for the Human APJ Receptor. Biochemical and Biophysical Research Communications, 251, 471-476.
https://doi.org/10.1006/bbrc.1998.9489
[6] Lee, D.K., Cheng, R., Nguyen, T., Fan, T., Kariyawasam, A.P., Liu, Y., et al. (2000) Characterization of Apelin, the Ligand for the APJ Receptor. Journal of Neurochemistry, 74, 34-41.
https://doi.org/10.1046/j.1471-4159.2000.0740034.x
[7] Carpéné, C., Dray, C., Attané, C., Valet, P., Portillo, M.P., Churruca, I., et al. (2007) Expanding Role for the Apelin/APJ System in Physiopathology. Journal of Physiology and Biochemistry, 63, 358-373.
https://doi.org/10.1007/bf03165767
[8] Malchow, J., Eberlein, J., Li, W., Hogan, B.M., Okuda, K.S. and Helker, C.S.M. (2024) Neural Progenitor-Derived Apelin Controls Tip Cell Behavior and Vascular Patterning. Science Advances, 10, eadk1174.
https://doi.org/10.1126/sciadv.adk1174
[9] Fasshauer, M., Blüher, M. and Stumvoll, M. (2014) Adipokines in Gestational Diabetes. The Lancet Diabetes & Endocrinology, 2, 488-499.
https://doi.org/10.1016/s2213-8587(13)70176-1
[10] Higuchi, K., Masaki, T., Gotoh, K., Chiba, S., Katsuragi, I., Tanaka, K., et al. (2007) Apelin, an APJ Receptor Ligand, Regulates Body Adiposity and Favors the Messenger Ribonucleic Acid Expression of Uncoupling Proteins in Mice. Endocrinology, 148, 2690-2697.
https://doi.org/10.1210/en.2006-1270
[11] Yue, P., Jin, H., Xu, S., Aillaud, M., Deng, A.C., Azuma, J., et al. (2011) Apelin Decreases Lipolysis via Gq, Gi, and AMPK-Dependent Mechanisms. Endocrinology, 152, 59-68.
https://doi.org/10.1210/en.2010-0576
[12] El Wakeel, M.A., El-Kassas, G.M., Kamhawy, A.H., Galal, E.M., Nassar, M.S., Hammad, E.M., et al. (2018) Serum Apelin and Obesity-Related Complications in Egyptian Children. Open Access Macedonian Journal of Medical Sciences, 6, 1354-1358.
https://doi.org/10.3889/oamjms.2018.312
[13] Yalçın, T., Oğuz, S.H., Bayraktar, M. and Rakıcıoğlu, N. (2021) Anthropometric Measurements and Serum TNF-α, IL-6 and Adiponectin in Type 2 Diabetes. Diabetology International, 13, 396-406.
https://doi.org/10.1007/s13340-021-00553-y
[14] Zhao, X., Niu, Y., Zhao, X., Ruan, H., Xiang, Y., Wang, L., et al. (2023) Associations between Serum TNF-α, IL-6, hs-CRP and GLMD in Obese Children and Adolescents: A Cross-Sectional Study. Diabetes, Metabolic Syndrome and Obesity, 16, 3915-3923.
https://doi.org/10.2147/dmso.s434482
[15] Yu, S., Zhang, Y., Li, M.Z., et al. (2012) Chemerin and Apelin Are Positively Correlated with Inflammation in Obese Type 2 Diabetic Patients. Chinese Medical Journal, 125, 3440-3444.
[16] Peng, Q., Zhou, J., Xu, Z., Zhao, Q., Li, Z. and Zhao, Q. (2022) Apelin-13 Ameliorates LPS-Induced BV-2 Microglia Inflammatory Response through Promoting Autophagy and Inhibiting H3K9ac Enrichment of TNF-α and IL-6 Promoter. Acta Neurobiologiae Experimentalis, 82, 65-76.
https://doi.org/10.55782/ane-2022-006
[17] Wei, Y.F., Yin, P., Liu, L., et al. (2019) Effects of APELIN-13 on the Expression of IL-6, TNF-α, and IFN-γ in Rats with Experimental Autoimmune Neuritis. Journal of Biological Regulators and Homeostatic Agents, 33, 1369-1376.
[18] Castan-Laurell, I., El Boustany, R., Pereira, O., Potier, L., Marre, M., Fumeron, F., et al. (2019) Plasma Apelin and Risk of Type 2 Diabetes in a Cohort from the Community. Diabetes Care, 43, e15-e16.
https://doi.org/10.2337/dc19-1865
[19] Noori-Zadeh, A., Bakhtiyari, S., Khanjari, S., Haghani, K. and Darabi, S. (2019) Elevated Blood Apelin Levels in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Diabetes Research and Clinical Practice, 148, 43-53.
https://doi.org/10.1016/j.diabres.2018.12.012
[20] Mund, C., Kellellu, C.K., Rattan, R., Mahapatra, S., Lamare, A.A. and Jena, S. (2023) Study of Serum Apelin and Insulin Resistance in Type 2 Diabetes Mellitus Patients with or without Obesity. Cureus, 15, e43401.
https://doi.org/10.7759/cureus.43401
[21] McIntyre, H.D., Catalano, P., Zhang, C., Desoye, G., Mathiesen, E.R. and Damm, P. (2019) Gestational Diabetes Mellitus. Nature Reviews Disease Primers, 5, Article No. 47.
https://doi.org/10.1038/s41572-019-0098-8
[22] Alwash, S.M., McIntyre, H.D. and Mamun, A. (2021) The Association of General Obesity, Central Obesity and Visceral Body Fat with the Risk of Gestational Diabetes Mellitus: Evidence from a Systematic Review and Meta-Analysis. Obesity Research & Clinical Practice, 15, 425-430.
https://doi.org/10.1016/j.orcp.2021.07.005
[23] Pérez-López, F.R., Wu, J., Yao, L., López-Baena, M.T., Pérez-Roncero, G.R. and Varikasuvu, S.R. (2022) Apelin Levels in Pregnant Women with and without Gestational Diabetes Mellitus: A Collaborative Systematic Review and Meta-Analysis. Gynecological Endocrinology, 38, 803-812.
https://doi.org/10.1080/09513590.2022.2114450
[24] de Mendonça, E.L.S.S., Fragoso, M.B.T., de Oliveira, J.M., Xavier, J.A., Goulart, M.O.F. and de Oliveira, A.C.M. (2022) Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants, 11, Article 129.
https://doi.org/10.3390/antiox11010129
[25] Li, Y., Long, D., Liu, J., Qiu, D., Wang, J., Cheng, X., et al. (2020) Gestational Diabetes Mellitus in Women Increased the Risk of Neonatal Infection via Inflammation and Autophagy in the Placenta. Medicine, 99, e22152.
https://doi.org/10.1097/md.0000000000022152
[26] Arani Hessari, F., Sharifi, M., Yousefifard, M., Gholamzadeh, R., Nazarinia, D. and Aboutaleb, N. (2022) Apelin-13 Attenuates Cerebral Ischemia/Reperfusion Injury through Regulating Inflammation and Targeting the JAK2/STAT3 Signaling Pathway. Journal of Chemical Neuroanatomy, 126, Article 102171.
https://doi.org/10.1016/j.jchemneu.2022.102171
[27] He, X., Liu, C., Peng, J., Li, Z., Li, F., Wang, J., et al. (2021) COVID-19 Induces New-Onset Insulin Resistance and Lipid Metabolic Dysregulation via Regulation of Secreted Metabolic Factors. Signal Transduction and Targeted Therapy, 6, Article No. 427.
https://doi.org/10.1038/s41392-021-00822-x
[28] Attané, C., Foussal, C., Le Gonidec, S., Benani, A., Daviaud, D., Wanecq, E., et al. (2012) Apelin Treatment Increases Complete Fatty Acid Oxidation, Mitochondrial Oxidative Capacity, and Biogenesis in Muscle of Insulin-Resistant Mice. Diabetes, 61, 310-320.
https://doi.org/10.2337/db11-0100
[29] Bertrand, C., Pradère, J., Geoffre, N., Deleruyelle, S., Masri, B., Personnaz, J., et al. (2018) Chronic Apelin Treatment Improves Hepatic Lipid Metabolism in Obese and Insulin-Resistant Mice by an Indirect Mechanism. Endocrine, 60, 112-121.
https://doi.org/10.1007/s12020-018-1536-1
[30] Dray, C., Knauf, C., Daviaud, D., Waget, A., Boucher, J., Buléon, M., et al. (2008) Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice. Cell Metabolism, 8, 437-445.
https://doi.org/10.1016/j.cmet.2008.10.003
[31] Guo, Y., Li, T., Liu, H., Tang, L., Li, Y., Hu, H., et al. (2020) Circulating Levels of Elabela and Apelin in the Second and Third Trimesters of Pregnancies with Gestational Diabetes Mellitus. Gynecological Endocrinology, 36, 890-894.
https://doi.org/10.1080/09513590.2020.1739264
[32] 孔玉玲, 石国素, 刘慧丽, 等. 妊娠期糖尿病孕妇血清脂肪因子Apelin水平与糖脂代谢相关性[J]. 中国计划生育学杂志, 2021, 29(12): 2650-2654.
[33] 杨金霞, 李玮芳, 马登琴, 等. 妊娠期糖尿病患者空腹血清FGF21、Nesfatin-1及Apelin-36水平变化与胰岛素抵抗和胰岛素细胞功能的相关性分析[J]. 中国妇产科临床杂志, 2023, 24(3): 303-304.
[34] Oncul, M., Tuten, A., Erman, H., et al. (2013) Maternal and Cord Blood Apelin, Resistin and Visfatin Levels in Gestational Diabetes Mellitus. Minerva Medica, 104, 527-535.
[35] Aslan, M., Celik, O., Celik, N., Turkcuoglu, I., Yilmaz, E., Karaer, A., et al. (2011) Cord Blood Nesfatin-1 and Apelin-36 Levels in Gestational Diabetes Mellitus. Endocrine, 41, 424-429.
https://doi.org/10.1007/s12020-011-9577-8
[36] Dessì, A., Pravettoni, C., Cesare Marincola, F., Schirru, A. and Fanos, V. (2015) The Biomarkers of Fetal Growth in Intrauterine Growth Retardation and Large for Gestational Age Cases: From Adipocytokines to a Metabolomic All-in-One Tool. Expert Review of Proteomics, 12, 309-316.
https://doi.org/10.1586/14789450.2015.1034694
[37] Cekmez, F., Canpolat, F.E., Pirgon, O., Çetinkaya, M., Aydinoz, S., Suleymanoglu, S., et al. (2011) Apelin, Vaspin, Visfatin and Adiponectin in Large for Gestational Age Infants with Insulin Resistance. Cytokine, 56, 387-391.
https://doi.org/10.1016/j.cyto.2011.06.007
[38] Mayeur, S., Wattez, J., Lukaszewski, M., Lecoutre, S., Butruille, L., Drougard, A., et al. (2015) Apelin Controls Fetal and Neonatal Glucose Homeostasis and Is Altered by Maternal Undernutrition. Diabetes, 65, 554-560.
https://doi.org/10.2337/db15-0228
[39] Cekmez, F., Pirgon, O., Aydemir, G., Dundar, B., Çekmez, Y., Karaoglu, A., et al. (2012) Correlation between Cord Blood Apelin and IGF-1 Levels in Retinopathy of Prematurity. Biomarkers in Medicine, 6, 821-825.
https://doi.org/10.2217/bmm.12.82
[40] Hanssens, S., Marousez, L., Pécheux, O., Besengez, C., Storme, L., Deruelle, P., et al. (2022) Maternal Obesity Reduces Apelin Level in Cord Blood without Altering the Placental Apelin/Elabela-APJ System. Placenta, 128, 112-115.
https://doi.org/10.1016/j.placenta.2022.09.011
[41] Aydin, S. (2010) The Presence of the Peptides Apelin, Ghrelin and Nesfatin-1 in the Human Breast Milk, and the Lowering of Their Levels in Patients with Gestational Diabetes Mellitus. Peptides, 31, 2236-2240.
https://doi.org/10.1016/j.peptides.2010.08.021
[42] Gutaj, P., Sibiak, R., Jankowski, M., Awdi, K., Bryl, R., Mozdziak, P., et al. (2020) The Role of the Adipokines in the Most Common Gestational Complications. International Journal of Molecular Sciences, 21, Article 9408.
https://doi.org/10.3390/ijms21249408
[43] Hu, H., He, L., Li, L. and Chen, L. (2016) Apelin/APJ System as a Therapeutic Target in Diabetes and Its Complications. Molecular Genetics and Metabolism, 119, 20-27.
https://doi.org/10.1016/j.ymgme.2016.07.012
[44] Gao, L.R., Zhang, N.K., Zhang, Y., Chen, Y., Wang, L., Zhu, Y., et al. (2018) Overexpression of Apelin in Wharton’ Jelly Mesenchymal Stem Cell Reverses Insulin Resistance and Promotes Pancreatic β Cell Proliferation in Type 2 Diabetic Rats. Stem Cell Research & Therapy, 9, Article No. 339.
https://doi.org/10.1186/s13287-018-1084-x
[45] O’Harte, F.P.M., Parthsarathy, V., Hogg, C. and Flatt, P.R. (2018) Long-Term Treatment with Acylated Analogues of Apelin-13 Amide Ameliorates Diabetes and Improves Lipid Profile of High-Fat Fed Mice. PLOS ONE, 13, e0202350.
https://doi.org/10.1371/journal.pone.0202350