[1]
|
Wang, Y., Ge, P. and Zhu, Y. (2013) TLR2 and TLR4 in the Brain Injury Caused by Cerebral Ischemia and Reperfusion. Mediators of Inflammation, 2013, Article 124614. https://doi.org/10.1155/2013/124614
|
[2]
|
Kumar, V. (2019) Toll-Like Receptors in the Pathogenesis of Neuroinflammation. Journal of Neuroimmunology, 332, 16-30. https://doi.org/10.1016/j.jneuroim.2019.03.012
|
[3]
|
Heidari, A., Yazdanpanah, N. and Rezaei, N. (2022) The Role of Toll-Like Receptors and Neuroinflammation in Parkinson’s Disease. Journal of Neuroinflammation, 19, Article No. 135. https://doi.org/10.1186/s12974-022-02496-w
|
[4]
|
Deng, S., Chen, X., Lei, Q. and Lu, W. (2022) AQP2 Promotes Astrocyte Activation by Modulating the TLR4/NfκB-p65 Pathway Following Intracerebral Hemorrhage. Frontiers in Immunology, 13, Article 847360. https://doi.org/10.3389/fimmu.2022.847360
|
[5]
|
Adhikarla, S.V., Jha, N.K., Goswami, V.K., Sharma, A., Bhardwaj, A., Dey, A., et al. (2021) TLR-Mediated Signal Transduction and Neurodegenerative Disorders. Brain Sciences, 11, Article 1373. https://doi.org/10.3390/brainsci11111373
|
[6]
|
Anderson, K.V., Bokla, L. and Nüsslein-Volhard, C. (1985) Establishment of Dorsal-Ventral Polarity in the Drosophila Embryo: The Induction of Polarity by the Toll Gene Product. Cell, 42, 791-798. https://doi.org/10.1016/0092-8674(85)90275-2
|
[7]
|
Medzhitov, R., Preston-Hurlburt, P. and Janeway, C.A. (1997) A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity. Nature, 388, 394-397. https://doi.org/10.1038/41131
|
[8]
|
Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-Like Receptors and the Control of Immunity. Cell, 180, 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041
|
[9]
|
Kawai, T. and Akira, S. (2010) The Role of Pattern-Recognition Receptors in Innate Immunity: Update on Toll-Like Receptors. Nature Immunology, 11, 373-384. https://doi.org/10.1038/ni.1863
|
[10]
|
中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 缺血性卒中基层诊疗指南(2021年) [J]. 中华全科医师杂志, 2021, 20(9): 927-946.
|
[11]
|
Feigin, V.L., Stark, B.A., Johnson, C.O., Roth, G.A., Bisignano, C., Abady, G.G., et al. (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820. https://doi.org/10.1016/s1474-4422(21)00252-0
|
[12]
|
Feigin, V.L., Owolabi, M.O., Feigin, V.L., Abd-Allah, F., Akinyemi, R.O., Bhattacharjee, N.V., et al. (2023) Pragmatic Solutions to Reduce the Global Burden of Stroke: A World Stroke Organization-Lancet Neurology Commission. The Lancet Neurology, 22, 1160-1206. https://doi.org/10.1016/s1474-4422(23)00277-6
|
[13]
|
中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性卒中诊治指南2023 [J]. 中华神经科杂志, 2024, 57(6): 523-559.
|
[14]
|
Pascual, M., Calvo‐Rodriguez, M., Núñez, L., Villalobos, C., Ureña, J. and Guerri, C. (2021) Toll‐Like Receptors in Neuroinflammation, Neurodegeneration, and Alcohol‐Induced Brain Damage. IUBMB Life, 73, 900-915. https://doi.org/10.1002/iub.2510
|
[15]
|
Amini, H., Knepp, B., Rodriguez, F., Jickling, G.C., Hull, H., Carmona-Mora, P., et al. (2023) Early Peripheral Blood Gene Expression Associated with Good and Poor 90-Day Ischemic Stroke Outcomes. Journal of Neuroinflammation, 20, Article No. 13. https://doi.org/10.1186/s12974-022-02680-y
|
[16]
|
Jiang, H., Sun, Z., Zhu, X., Li, F. and Chen, Q. (2023) Essential Genes Ptgs2, Tlr4, and Ccr2 Regulate Neuro-Inflammation during the Acute Phase of Cerebral Ischemic in Mice. Scientific Reports, 13, Article No. 13021. https://doi.org/10.1038/s41598-023-40255-w
|
[17]
|
Yao, X., Liu, S., Ding, W., Yue, P., Jiang, Q., Zhao, M., et al. (2017) TLR4 Signal Ablation Attenuated Neurological Deficits by Regulating Microglial M1/M2 Phenotype after Traumatic Brain Injury in Mice. Journal of Neuroimmunology, 310, 38-45. https://doi.org/10.1016/j.jneuroim.2017.06.006
|
[18]
|
黄红丽, 陈建, 王化强, 等. 急性脑梗死患者血浆高迁移率族蛋白B1/Toll样受体4变化及其与脑梗死体积、神经功能缺损及预后的关系[J]. 国际神经病学神经外科学杂志, 2022, 49(2): 15-19.
|
[19]
|
Fernández, G., Moraga, A., Cuartero, M.I., García-Culebras, A., Peña-Martínez, C., Pradillo, J.M., et al. (2018) TLR4-Binding DNA Aptamers Show a Protective Effect against Acute Stroke in Animal Models. Molecular Therapy, 26, 2047-2059. https://doi.org/10.1016/j.ymthe.2018.05.019
|
[20]
|
Hernández-Jiménez, M., Abad-Santos, F., Cotgreave, I., Gallego, J., Jilma, B., Flores, A., et al. (2023) Safety and Efficacy of ApTOLL in Patients with Ischemic Stroke Undergoing Endovascular Treatment. JAMA Neurology, 80, 779-788. https://doi.org/10.1001/jamaneurol.2023.1660
|
[21]
|
Sansing, L.H., Harris, T.H., Welsh, F.A., Kasner, S.E., Hunter, C.A. and Kariko, K. (2011) Toll‐Like Receptor 4 Contributes to Poor Outcome after Intracerebral Hemorrhage. Annals of Neurology, 70, 646-656. https://doi.org/10.1002/ana.22528
|
[22]
|
Fei, X., He, Y., Chen, J., Man, W., Chen, C., Sun, K., et al. (2019) The Role of Toll-Like Receptor 4 in Apoptosis of Brain Tissue after Induction of Intracerebral Hemorrhage. Journal of Neuroinflammation, 16, Article No. 234. https://doi.org/10.1186/s12974-019-1634-x
|
[23]
|
Longa, E.Z., Weinstein, P.R., Carlson, S. and Cummins, R. (1989) Reversible Middle Cerebral Artery Occlusion without Craniectomy in Rats. Stroke, 20, 84-91. https://doi.org/10.1161/01.str.20.1.84
|
[24]
|
Mitsui, K., Ikedo, T., Kamio, Y., Furukawa, H., Lawton, M.T. and Hashimoto, T. (2020) TLR4 (Toll-Like Receptor 4) Mediates the Development of Intracranial Aneurysm Rupture. Hypertension, 75, 468-476. https://doi.org/10.1161/hypertensionaha.118.12595
|
[25]
|
Okada, T., Kawakita, F., Nishikawa, H., Nakano, F., Liu, L. and Suzuki, H. (2018) Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage in Mice. Molecular Neurobiology, 56, 976-985. https://doi.org/10.1007/s12035-018-1145-2
|
[26]
|
Ma, C., Zhou, W., Yan, Z., Qu, M. and Bu, X. (2015) Toll-Like Receptor 4 (TLR4) Is Correlated with Delayed Cerebral Ischemia (DCI) and Poor Prognosis in Aneurysmal Subarachnoid Hemorrhage. Journal of the Neurological Sciences, 359, 67-71. https://doi.org/10.1016/j.jns.2015.10.018
|
[27]
|
中华医学会神经病学分会帕金森病及运动障碍学组, 中国医师协会神经内科医师分会帕金森病及运动障碍学组. 中国帕金森病治疗指南(第四版) [J]. 中华神经科杂志, 2020, 53(12): 973-986.
|
[28]
|
Zeng, X., Geng, W., Jia, J., Chen, L. and Zhang, P. (2018) Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease. Frontiers in Aging Neuroscience, 10, Article 109. https://doi.org/10.3389/fnagi.2018.00109
|
[29]
|
Tolosa, E., Garrido, A., Scholz, S.W. and Poewe, W. (2021) Challenges in the Diagnosis of Parkinson’s Disease. The Lancet Neurology, 20, 385-397. https://doi.org/10.1016/s1474-4422(21)00030-2
|
[30]
|
Zheng, Z., Zhu, Z., Zhou, C., Cao, L. and Zhao, G. (2022) Burden of Parkinson Disease in China, 1990-2019: Findings from the 2019 Global Burden of Disease Study. Neuroepidemiology, 57, 51-64. https://doi.org/10.1159/000527372
|
[31]
|
Kouli, A., Horne, C.B. and Williams-Gray, C.H. (2019) Toll-Like Receptors and Their Therapeutic Potential in Parkinson’s Disease and α-Synucleinopathies. Brain, Behavior, and Immunity, 81, 41-51. https://doi.org/10.1016/j.bbi.2019.06.042
|
[32]
|
Kin, K., Yasuhara, T., Kameda, M. and Date, I. (2019) Animal Models for Parkinson’s Disease Research: Trends in the 2000s. International Journal of Molecular Sciences, 20, Article 5402. https://doi.org/10.3390/ijms20215402
|
[33]
|
He, Y., Zhao, J., Dong, H., Zhang, X., Duan, Y., Ma, Y., et al. (2023) TLR2 Deficiency Is Beneficial at the Late Phase in MPTP-Induced Parkinson’ Disease Mice. Life Sciences, 333, Article 122171. https://doi.org/10.1016/j.lfs.2023.122171
|
[34]
|
Zhang, Z., Liu, Z., Lv, A. and Fan, C. (2023) How Toll-Like Receptors Influence Parkinson’s Disease in the Microbiome-Gut-Brain Axis. Frontiers in Immunology, 14, Article 1154626. https://doi.org/10.3389/fimmu.2023.1154626
|
[35]
|
Zhao, Z., Ning, J., Bao, X., Shang, M., Ma, J., Li, G., et al. (2021) Fecal Microbiota Transplantation Protects Rotenone-Induced Parkinson’s Disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway through the Microbiota-Gut-Brain Axis. Microbiome, 9, Article No. 226. https://doi.org/10.1186/s40168-021-01107-9
|
[36]
|
郭清华, 郭彦杰, 宋净洋, 等. 帕金森病患者血清中Toll样受体4及下游炎症因子的高表达与临床分期及分型的关系研究[J]. 国际神经病学神经外科学杂志, 2022, 49(3): 41-45.
|
[37]
|
Dzamko, N., Gysbers, A., Perera, G., Bahar, A., Shankar, A., Gao, J., et al. (2016) Toll-Like Receptor 2 Is Increased in Neurons in Parkinson’s Disease Brain and May Contribute to Alpha-Synuclein Pathology. Acta Neuropathologica, 133, 303-319. https://doi.org/10.1007/s00401-016-1648-8
|
[38]
|
中华医学会神经病学分会神经免疫学组. 多发性硬化诊断与治疗中国指南(2023版) [J]. 中华神经科杂志, 2024, 57(1): 10-23.
|
[39]
|
Tian, D., Zhang, C., Yuan, M., Yang, X., Gu, H., Li, Z., et al. (2020) Incidence of Multiple Sclerosis in China: A Nationwide Hospital-Based Study. The Lancet Regional Health-Western Pacific, 1, Article 100010. https://doi.org/10.1016/j.lanwpc.2020.100010
|
[40]
|
赵培源, 陈少昀, 刘喜红, 等. 多发性硬化实验动物模型的研究与应用进展[J]. 中国实验动物学报, 2020, 28(3): 405-409.
|
[41]
|
韩晶晶, 张英, 姚瑞芹, 等. 敲除Toll样受体4基因对小鼠实验性自身免疫性脑脊髓炎的影响[J]. 神经解剖学杂志, 2022, 38(3): 287-292.
|
[42]
|
Shao, W., Huang, Y., Wang, L., Li, P., Jia, Y. and Zhang, J. (2023) Expression of Fibrinogen-Like Protein 2 (Fgl2) on Toll-Like Receptor 9 (TLR9) Expression in Autoimmune Myelitis. International Immunopharmacology, 114, Article 109539. https://doi.org/10.1016/j.intimp.2022.109539
|
[43]
|
Mustafa, A.M., Shaheen, A.M., Zaki, H.F. and Rabie, M.A. (2024) Nicorandil and Carvedilol Mitigates Motor Deficits in Experimental Autoimmune Encephalomyelitis-Induced Multiple Sclerosis: Role of TLR4/TRAF6/MAPK/NF-κB Signalling Cascade. International Immunopharmacology, 127, Article 111387. https://doi.org/10.1016/j.intimp.2023.111387
|
[44]
|
Hossain, M.J., Morandi, E., Tanasescu, R., Frakich, N., Caldano, M., Onion, D., et al. (2018) The Soluble Form of Toll-Like Receptor 2 Is Elevated in Serum of Multiple Sclerosis Patients: A Novel Potential Disease Biomarker. Frontiers in Immunology, 9, Article 457. https://doi.org/10.3389/fimmu.2018.00457
|