[1]
|
中华医学会肿瘤学分会早诊早治学组. 中国食管癌早诊早治专家共识[J]. 中华肿瘤杂志, 2022, 44(10): 1066-1075.
|
[2]
|
Lagergren, J. and Lagergren, P. (2010) Oesophageal Cancer. British Medical Journal, 341, c6280. https://doi.org/10.1136/bmj.c6280
|
[3]
|
Chen, W., Zheng, R., Zhang, S., Zeng, H., Xia, C., Zuo, T., et al. (2017) Cancer Incidence and Mortality in China, 2013. Cancer Letters, 401, 63-71. https://doi.org/10.1016/j.canlet.2017.04.024
|
[4]
|
Yoshii, S., Mabe, K., Watano, K., Ohno, M., Matsumoto, M., Ono, S., et al. (2019) Validity of Endoscopic Features for the Diagnosis of Helicobacter pylori Infection Status Based on the Kyoto Classification of Gastritis. Digestive Endoscopy, 32, 74-83. https://doi.org/10.1111/den.13486
|
[5]
|
Jayatilake, S.M.D.A.C. and Ganegoda, G.U. (2021) Involvement of Machine Learning Tools in Healthcare Decision Making. Journal of Healthcare Engineering, 2021, 1-20. https://doi.org/10.1155/2021/6679512
|
[6]
|
张佳, 孙凯. 人工智能深度学习在心血管影像诊断中的研究进展[J]. 中国医学装备, 2020, 17(4): 183-186.
|
[7]
|
de Souza, L.A., Palm, C., Mendel, R., Hook, C., Ebigbo, A., Probst, A., et al. (2018) A Survey on Barrett’s Esophagus Analysis Using Machine Learning. Computers in Biology and Medicine, 96, 203-213. https://doi.org/10.1016/j.compbiomed.2018.03.014
|
[8]
|
Horie, Y., Yoshio, T., Aoyama, K., Yoshimizu, S., Horiuchi, Y., Ishiyama, A., et al. (2019) Diagnostic Outcomes of Esophageal Cancer by Artificial Intelligence Using Convolutional Neural Networks. Gastrointestinal Endoscopy, 89, 25-32. https://doi.org/10.1016/j.gie.2018.07.037
|
[9]
|
鲍瀛, 李瑞瑶, 何明远, 等. 基于深度学习的图像识别技术在食管癌早期筛查中的应用研究[J]. 中国数字医学, 2021, 16(9): 90-93.
|
[10]
|
Li, B., Cai, S., Tan, W., Li, J., Yalikong, A., Feng, X., et al. (2021) Comparative Study on Artificial Intelligence Systems for Detecting Early Esophageal Squamous Cell Carcinoma between Narrow-Band and White-Light Imaging. World Journal of Gastroenterology, 27, 281-293. https://doi.org/10.3748/wjg.v27.i3.281
|
[11]
|
Yang, X., Li, Z., Shao, X., Ji, R., Qu, J., Zheng, M., et al. (2021) Real-Time Artificial Intelligence for Endoscopic Diagnosis of Early Esophageal Squamous Cell Cancer (with Video). Digestive Endoscopy, 33, 1075-1084. https://doi.org/10.1111/den.13908
|
[12]
|
Iwagami, H., Ishihara, R., Aoyama, K., Fukuda, H., Shimamoto, Y., Kono, M., et al. (2020) Artificial Intelligence for the Detection of Esophageal and Esophagogastric Junctional Adenocarcinoma. Journal of Gastroenterology and Hepatology, 36, 131-136. https://doi.org/10.1111/jgh.15136
|
[13]
|
Hashimoto, R., Requa, J., Dao, T., Ninh, A., Tran, E., Mai, D., et al. (2020) Artificial Intelligence Using Convolutional Neural Networks for Real-Time Detection of Early Esophageal Neoplasia in Barrett’s Esophagus (with Video). Gastrointestinal Endoscopy, 91, 1264-1271.e1. https://doi.org/10.1016/j.gie.2019.12.049
|
[14]
|
Yuan, X., Guo, L., Liu, W., Zeng, X., Mou, Y., Bai, S., et al. (2021) Artificial Intelligence for Detecting Superficial Esophageal Squamous Cell Carcinoma under Multiple Endoscopic Imaging Modalities: A Multicenter Study. Journal of Gastroenterology and Hepatology, 37, 169-178. https://doi.org/10.1111/jgh.15689
|
[15]
|
Waki, K., Ishihara, R., Kato, Y., Shoji, A., Inoue, T., Matsueda, K., et al. (2021) Usefulness of an Artificial Intelligence System for the Detection of Esophageal Squamous Cell Carcinoma Evaluated with Videos Simulating Overlooking Situation. Digestive Endoscopy, 33, 1101-1109. https://doi.org/10.1111/den.13934
|
[16]
|
中华人民共和国国家卫生健康委员会医政医管局. 食管癌诊疗指南(2022年版) [J]. 中华消化外科杂志, 2022, 21(10): 1247-1268.
|
[17]
|
Tokai, Y., Yoshio, T., Aoyama, K., Horie, Y., Yoshimizu, S., Horiuchi, Y., et al. (2020) Application of Artificial Intelligence Using Convolutional Neural Networks in Determining the Invasion Depth of Esophageal Squamous Cell Carcinoma. Esophagus, 17, 250-256. https://doi.org/10.1007/s10388-020-00716-x
|
[18]
|
Nakagawa, K., Ishihara, R., Aoyama, K., Ohmori, M., Nakahira, H., Matsuura, N., et al. (2019) Classification for Invasion Depth of Esophageal Squamous Cell Carcinoma Using a Deep Neural Network Compared with Experienced Endoscopists. Gastrointestinal Endoscopy, 90, 407-414. https://doi.org/10.1016/j.gie.2019.04.245
|
[19]
|
Shimamoto, Y., Ishihara, R., Kato, Y., Shoji, A., Inoue, T., Matsueda, K., et al. (2020) Real-Time Assessment of Video Images for Esophageal Squamous Cell Carcinoma Invasion Depth Using Artificial Intelligence. Journal of Gastroenterology, 55, 1037-1045. https://doi.org/10.1007/s00535-020-01716-5
|
[20]
|
Liu, W., Yuan, X., Guo, L., Pan, F., Wu, C., Sun, Z., et al. (2022) Artificial Intelligence for Detecting and Delineating Margins of Early ESCC under WLI Endoscopy. Clinical and Translational Gastroenterology, 13, e00433. https://doi.org/10.14309/ctg.0000000000000433
|
[21]
|
Yuan, X., Zeng, X., He, L., Ye, L., Liu, W., Hu, Y., et al. (2022) Artificial Intelligence for Detecting and Delineating a Small Flat-Type Early Esophageal Squamous Cell Carcinoma under Multimodal Imaging. Endoscopy, 55, E141-E142. https://doi.org/10.1055/a-1956-0569
|
[22]
|
Oyama, T., Inoue, H., Arima, M., Momma, K., Omori, T., Ishihara, R., et al. (2016) Prediction of the Invasion Depth of Superficial Squamous Cell Carcinoma Based on Microvessel Morphology: Magnifying Endoscopic Classification of the Japan Esophageal Society. Esophagus, 14, 105-112. https://doi.org/10.1007/s10388-016-0527-7
|
[23]
|
Zhao, Y., Xue, D., Wang, Y., Zhang, R., Sun, B., Cai, Y., et al. (2018) Computer-Assisted Diagnosis of Early Esophageal Squamous Cell Carcinoma Using Narrow-Band Imaging Magnifying Endoscopy. Endoscopy, 51, 333-341. https://doi.org/10.1055/a-0756-8754
|
[24]
|
Everson, M., Herrera, L., Li, W., Luengo, I.M., Ahmad, O., Banks, M., et al. (2019) Artificial Intelligence for the Real-Time Classification of Intrapapillary Capillary Loop Patterns in the Endoscopic Diagnosis of Early Oesophageal Squamous Cell Carcinoma: A Proof-of-Concept Study. United European Gastroenterology Journal, 7, 297-306. https://doi.org/10.1177/2050640618821800
|
[25]
|
Yuan, X., Liu, W., Liu, Y., Zeng, X., Mou, Y., Wu, C., et al. (2022) Artificial Intelligence for Diagnosing Microvessels of Precancerous Lesions and Superficial Esophageal Squamous Cell Carcinomas: A Multicenter Study. Surgical Endoscopy, 36, 8651-8662. https://doi.org/10.1007/s00464-022-09353-0
|
[26]
|
中国医院协会介入医学中心分会. 人工智能应用于食管癌临床诊疗的专家共识[J]. 中华介入放射学电子杂志, 2021, 9(3): 235-246.
|
[27]
|
Gao, Y., Xin, L., Feng, Y., Yao, B., Lin, H., Sun, C., et al. (2021) Feasibility and Accuracy of Artificial Intelligence-Assisted Sponge Cytology for Community-Based Esophageal Squamous Cell Carcinoma Screening in China. American Journal of Gastroenterology, 116, 2207-2215. https://doi.org/10.14309/ajg.0000000000001499
|
[28]
|
Gao, Y., Xin, L., Lin, H., Yao, B., Zhang, T., Zhou, A., et al. (2023) Machine Learning-Based Automated Sponge Cytology for Screening of Oesophageal Squamous Cell Carcinoma and Adenocarcinoma of the Oesophagogastric Junction: A Nationwide, Multicohort, Prospective Study. The Lancet Gastroenterology & Hepatology, 8, 432-445. https://doi.org/10.1016/s2468-1253(23)00004-3
|
[29]
|
沈雨雯, 石逸秋, 解添淞, 等. 人工智能在胰腺癌影像诊断和评价中的研究进展[J]. 临床放射学杂志, 2023, 42(9): 1527-1530.
|
[30]
|
Chen, H., Zhou, X., Tang, X., Li, S. and Zhang, G. (2020) Prediction of Lymph Node Metastasis in Superficial Esophageal Cancer Using a Pattern Recognition Neural Network. Cancer Management and Research, 12, 12249-12258. https://doi.org/10.2147/cmar.s270316
|