|
[1]
|
Bozkurt, B., Coats, A.J.S., Tsutsui, H., et al. (2021) Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Journal of Cardiac Failure, 27, 387-413.
|
|
[2]
|
James, S.L., Abate, D., Abate, K.H., Abay, S.M., Abbafati, C., Abbasi, N., et al. (2018) Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789-1858. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Saddik, M. and Lopaschuk, G.D. (1991) Myocardial Triglyceride Turnover and Contribution to Energy Substrate Utilization in Isolated Working Rat Hearts. Journal of Biological Chemistry, 266, 8162-8170. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wisneski, J.A., Stanley, W.C., Neese, R.A. and Gertz, E.W. (1990) Effects of Acute Hyperglycemia on Myocardial Glycolytic Activity in Humans. Journal of Clinical Investigation, 85, 1648-1656. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Karwi, Q.G., Uddin, G.M., Ho, K.L. and Lopaschuk, G.D. (2018) Loss of Metabolic Flexibility in the Failing Heart. Frontiers in Cardiovascular Medicine, 5, Article 68. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Murashige, D., Jang, C., Neinast, M., Edwards, J.J., Cowan, A., Hyman, M.C., et al. (2020) Comprehensive Quantification of Fuel Use by the Failing and Nonfailing Human Heart. Science, 370, 364-368. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
邱泽平, 王芝嫣, 金玮. 从心肌能量代谢角度浅谈心力衰竭药物治疗进展[J]. 中华心力衰竭和心肌病杂志(中英文), 2021, 5(1): 74-78.
|
|
[8]
|
Zhao, X.L. and Yang, J.F. (2022) Research Progress on the Relationship between Myocardial Energetic Metabolism and Heart Failure. Chinese Journal of Cardiovascular Diseases, 50, 404-409.
|
|
[9]
|
Wang, H., Wang, J., Cui, H., Fan, C., Xue, Y., Liu, H., et al. (2024) Inhibition of Fatty Acid Uptake by TGR5 Prevents Diabetic Cardiomyopathy. Nature Metabolism, 6, 1161-1177. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bertero, E. and Maack, C. (2018) Metabolic Remodelling in Heart Failure. Nature Reviews Cardiology, 15, 457-470. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lopaschuk, G.D., Ussher, J.R., Folmes, C.D.L., Jaswal, J.S. and Stanley, W.C. (2010) Myocardial Fatty Acid Metabolism in Health and Disease. Physiological Reviews, 90, 207-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, Z., Jin, Z., Cai, J., Li, R., Deng, K., Ji, Y., et al. (2022) Energy Substrate Metabolism and Oxidative Stress in Metabolic Cardiomyopathy. Journal of Molecular Medicine, 100, 1721-1739. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Øie, E., Ueland, T., Dahl, C.P., Bohov, P., Berge, C., Yndestad, A., et al. (2011) Fatty Acid Composition in Chronic Heart Failure: Low Circulating Levels of Eicosatetraenoic Acid and High Levels of Vaccenic Acid Are Associated with Disease Severity and Mortality. Journal of Internal Medicine, 270, 263-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Glatz, J.C. and Luiken, J.F.P. (2018) Dynamic Role of the Transmembrane Glycoprotein CD36 (SR-B2) in Cellular Fatty Acid Uptake and Utilization. Journal of Lipid Research, 59, 1084-1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Goldenberg, J.R., Wang, X. and Lewandowski, E.D. (2016) Acyl Coa Synthetase-1 Links Facilitated Long Chain Fatty Acid Uptake to Intracellular Metabolic Trafficking Differently in Hearts of Male versus Female Mice. Journal of Molecular and Cellular Cardiology, 94, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Schlaepfer, I.R. and Joshi, M. (2020) Cpt1a-mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology, 161, bqz046. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Marin, W., Marin, D., Ao, X. and Liu, Y. (2020) Mitochondria as a Therapeutic Target for Cardiac Ischemia-Eperfusion Injury (Review). International Journal of Molecular Medicine, 47, 485-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Northam, C. and LeMoine, C.M.R. (2019) Metabolic Regulation by the PGC-1α and PGC-1β Coactivators in Larval Zebrafish (Danio Rerio). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 234, 60-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Montaigne, D., Butruille, L. and Staels, B. (2021) PPAR Control of Metabolism and Cardiovascular Functions. Nature Reviews Cardiology, 18, 809-823. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hinds, T.D., Kipp, Z.A., Xu, M., Yiannikouris, F.B., Morris, A.J., Stec, D.F., et al. (2021) Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells, 11, Article 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, X., Zhu, X., Jiao, S., Qi, D., Yu, B., Xie, G., et al. (2021) Cardiomyocyte Peroxisome Proliferator-Activated Receptor α Is Essential for Energy Metabolism and Extracellular Matrix Homeostasis during Pressure Overload-Induced Cardiac Remodeling. Acta Pharmacologica Sinica, 43, 1231-1242. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Softic, S., Meyer, J.G., Wang, G., Gupta, M.K., Batista, T.M., Lauritzen, H.P.M.M., et al. (2019) Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-Translational Modifications of Mitochondrial Proteins. Cell Metabolism, 30, 735-753.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Snipelisky, D., Chaudhry, S. and Stewart, G.C. (2019) The Many Faces of Heart Failure. Cardiac Electrophysiology Clinics, 11, 11-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
van Riet, E.E.S., Hoes, A.W., Wagenaar, K.P., Limburg, A., Landman, M.A.J. and Rutten, F.H. (2016) Epidemiology of Heart Failure: The Prevalence of Heart Failure and Ventricular Dysfunction in Older Adults over Time. A Systematic Review. European Journal of Heart Failure, 18, 242-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lopaschuk, G.D., Karwi, Q.G., Tian, R., Wende, A.R. and Abel, E.D. (2021) Cardiac Energy Metabolism in Heart Failure. Circulation Research, 128, 1487-1513. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Capone, F., Sotomayor-Flores, C., Bode, D., Wang, R., Rodolico, D., Strocchi, S., et al. (2022) Cardiac Metabolism in HFpEF: From Fuel to Signalling. Cardiovascular Research, 118, 3556-3575. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sidney, S., Go, A.S., Jaffe, M.G., Solomon, M.D., Ambrosy, A.P. and Rana, J.S. (2019) Association between Aging of the US Population and Heart Disease Mortality from 2011 to 2017. JAMA Cardiology, 4, 1280-1286. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Flegal, K.M., Kruszon-Moran, D., Carroll, M.D., Fryar, C.D. and Ogden, C.L. (2016) Trends in Obesity among Adults in the United States, 2005 to 2014. JAMA, 315, 2284-2291. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mills, K.T., Stefanescu, A. and He, J. (2020) The Global Epidemiology of Hypertension. Nature Reviews Nephrology, 16, 223-237. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Dunlay, S.M., Roger, V.L. and Redfield, M.M. (2017) Epidemiology of Heart Failure with Preserved Ejection Fraction. Nature Reviews Cardiology, 14, 591-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sax, D.R., Rana, J.S., Mark, D.G., Huang, J., Collins, S.P., Liu, D., et al. (2021) Outcomes among Acute Heart Failure Emergency Department Patients by Preserved vs. Reduced Ejection Fraction. ESC Heart Failure, 8, 2889-2898. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lam, C.S.P., Gamble, G.D., Ling, L.H., Sim, D., Leong, K.T.G., Yeo, P.S.D., et al. (2018) Mortality Associated with Heart Failure with Preserved vs. Reduced Ejection Fraction in a Prospective International Multi-Ethnic Cohort Study. European Heart Journal, 39, 1770-1780. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, R., Capone, F., Capone, F., Luo, L., L, L., Keller, D., et al. (2024) Ketone-based Metabolism and Signalling in Heart Failure with Preserved Ejection Fraction (HFpEF). Cardiovascular Research, 120, cvae088.096. [Google Scholar] [CrossRef]
|
|
[34]
|
Anker, S.D., Butler, J., Filippatos, G., Ferreira, J.P., Bocchi, E., Böhm, M., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. New England Journal of Medicine, 385, 1451-1461. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, W., Zhang, L., Battiprolu, P.K., Fukushima, A., Nguyen, K., Milner, K., et al. (2019) Malonyl CoA Decarboxylase Inhibition Improves Cardiac Function Post-Myocardial Infarction. JACC: Basic to Translational Science, 4, 385-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Knottnerus, S.J.G., Mengarelli, I., Wüst, R.C.I., Baartscheer, A., Bleeker, J.C., Coronel, R., et al. (2020) Electrophysiological Abnormalities in VLCAD Deficient hiPSC-Cardiomyocytes Can Be Improved by Lowering Accumulation of Fatty Acid Oxidation Intermediates. International Journal of Molecular Sciences, 21, Article 2589. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Beadle, R.M., Williams, L.K., Kuehl, M., Bowater, S., Abozguia, K., Leyva, F., et al. (2015) Improvement in Cardiac Energetics by Perhexiline in Heart Failure Due to Dilated Cardiomyopathy. JACC: Heart Failure, 3, 202-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Palm, C.L., Nijholt, K.T., Bakker, B.M. and Westenbrink, B.D. (2022) Short-Chain Fatty Acids in the Metabolism of Heart Failure—Rethinking the Fat Stigma. Frontiers in Cardiovascular Medicine, 9, Article 915102. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Khuchua, Z., Glukhov, A.I., Strauss, A.W. and Javadov, S. (2018) Elucidating the Beneficial Role of PPAR Agonists in Cardiac Diseases. International Journal of Molecular Sciences, 19, Article 3464. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kim, N.H. and Kim, S.G. (2020) Fibrates Revisited: Potential Role in Cardiovascular Risk Reduction. Diabetes & Metabolism Journal, 44, 213-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Yang, C., Li, Q., Lin, Y., Wang, Y., Shi, H., Huang, L., et al. (2023) MCD Inhibits Lipid Deposition in Goat Intramuscular Preadipocytes. Genes, 14, Article 440. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Santos-Gallego, C.G., Requena-Ibanez, J.A., San Antonio, R., Ishikawa, K., Watanabe, S., Picatoste, B., et al. (2019) Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. Journal of the American College of Cardiology, 73, 1931-1944. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Verma, S., Rawat, S., Ho, K.L., Wagg, C.S., Zhang, L., Teoh, H., et al. (2018) Empagliflozin Increases Cardiac Energy Production in Diabetes: Novel Translational Insights into the Heart Failure Benefits of SGLT2 Inhibitors. JACC: Basic to Translational Science, 3, 575-587. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, S., Coronel, R., Hollmann, M.W., Weber, N.C. and Zuurbier, C.J. (2022) Direct Cardiac Effects of SGLT2 Inhibitors. Cardiovascular Diabetology, 21, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Umbarawan, Y., Syamsunarno, M.R.A.A., Koitabashi, N., Obinata, H., Yamaguchi, A., Hanaoka, H., et al. (2018) Myocardial Fatty Acid Uptake through CD36 Is Indispensable for Sufficient Bioenergetic Metabolism to Prevent Progression of Pressure Overload-Induced Heart Failure. Scientific Reports, 8, Article No. 12035. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Nabben, M., Luiken, J.J.F.P. and Glatz, J.F.C. (2018) Metabolic Remodelling in Heart Failure Revisited. Nature Reviews Cardiology, 15, 780-780. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Shao, D., Kolwicz, S.C., Wang, P., Roe, N.D., Villet, O., Nishi, K., et al. (2020) Increasing Fatty Acid Oxidation Prevents High-Fat Diet-Induced Cardiomyopathy through Regulating Parkin-Mediated Mitophagy. Circulation, 142, 983-997. [Google Scholar] [CrossRef] [PubMed]
|