[1]
|
Bhole, R.P., Chikhale, R.V. and Rathi, K.M. (2024) Current Biomarkers and Treatment Strategies in Alzheimer Disease: An Overview and Future Perspectives. IBRO Neuroscience Reports, 16, 8-42. https://doi.org/10.1016/j.ibneur.2023.11.003
|
[2]
|
Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4
|
[3]
|
Dong, J., Zeng, Z., Huang, Y., Chen, C., Cheng, Z. and Zhu, Q. (2023) Challenges and Opportunities for circRNA Identification and Delivery. Critical Reviews in Biochemistry and Molecular Biology, 58, 19-35. https://doi.org/10.1080/10409238.2023.2185764
|
[4]
|
He, A.T., Liu, J., Li, F. and Yang, B.B. (2021) Targeting Circular RNAs as a Therapeutic Approach: Current Strategies and Challenges. Signal Transduction and Targeted Therapy, 6, Article No. 185. https://doi.org/10.1038/s41392-021-00569-5
|
[5]
|
Huang, J., Su, M. and Wu, D. (2020) Functional Roles of Circular RNAs in Alzheimer’s Disease. Ageing Research Reviews, 60, Article ID: 101058. https://doi.org/10.1016/j.arr.2020.101058
|
[6]
|
Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K. and Gorospe, M. (2015) Circinteractome: A Web Tool for Exploring Circular RNAs and Their Interacting Proteins and microRNAs. RNA Biology, 13, 34-42. https://doi.org/10.1080/15476286.2015.1128065
|
[7]
|
Chen, Y. and Wang, X. (2019) Mirdb: An Online Database for Prediction of Functional microRNA Targets. Nucleic Acids Research, 48, D127-D131. https://doi.org/10.1093/nar/gkz757
|
[8]
|
Li, J., Liu, S., Zhou, H., Qu, L. and Yang, J. (2013) Starbase V2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA Interaction Networks from Large-Scale Clip-Seq Data. Nucleic Acids Research, 42, D92-D97. https://doi.org/10.1093/nar/gkt1248
|
[9]
|
McGeary, S.E., Lin, K.S., Shi, C.Y., Pham, T.M., Bisaria, N., Kelley, G.M., et al. (2019) The Biochemical Basis of microRNA Targeting Efficacy. Science, 366, eaav1741. https://doi.org/10.1126/science.aav1741
|
[10]
|
Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014) STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452. https://doi.org/10.1093/nar/gku1003
|
[11]
|
Mehta, S.L., Dempsey, R.J. and Vemuganti, R. (2020) Role of Circular RNAs in Brain Development and CNS Diseases. Progress in Neurobiology, 186, Article ID: 101746. https://doi.org/10.1016/j.pneurobio.2020.101746
|
[12]
|
Chen, L. and Shan, G. (2021) CircRNA in Cancer: Fundamental Mechanism and Clinical Potential. Cancer Letters, 505, 49-57. https://doi.org/10.1016/j.canlet.2021.02.004
|
[13]
|
Zhang, C., Han, X., Yang, L., Fu, J., Sun, C., Huang, S., et al. (2020) Circular RNA circPPM1F Modulates M1 Macrophage Activation and Pancreatic Islet Inflammation in Type 1 Diabetes Mellitus. Theranostics, 10, 10908-10924. https://doi.org/10.7150/thno.48264
|
[14]
|
Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019) Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration after Myocardial Infarction in Adult Mice. Circulation, 139, 2857-2876. https://doi.org/10.1161/circulationaha.118.038361
|
[15]
|
Ma, N., Zhang, W. and Wan, J. (2020) Research Progress on circRNA in Nervous System Diseases. Current Alzheimer Research, 17, 687-697. https://doi.org/10.2174/1567205017666201111114928
|
[16]
|
Mo, D., Li, X., Raabe, C.A., Rozhdestvensky, T.S., Skryabin, B.V. and Brosius, J. (2020) Circular RNA Encoded Amyloid Beta Peptides—A Novel Putative Player in Alzheimer’s Disease. Cells, 9, Article No. 2196. https://doi.org/10.3390/cells9102196
|
[17]
|
Yang, H., Wang, H., Shang, H., Chen, X., Yang, S., Qu, Y., et al. (2019) Circular RNA Circ_0000950 Promotes Neuron Apoptosis, Suppresses Neurite Outgrowth and Elevates Inflammatory Cytokines Levels via Directly Sponging Mir-103 in Alzheimer’s Disease. Cell Cycle, 18, 2197-2214. https://doi.org/10.1080/15384101.2019.1629773
|
[18]
|
Meng, S., Wang, B. and Li, W. (2022) CircAXL Knockdown Alleviates Aβ1-42-Induced Neurotoxicity in Alzheimer’s Disease via Repressing PDE4A by Releasing miR-1306-5p. Neurochemical Research, 47, 1707-1720. https://doi.org/10.1007/s11064-022-03563-7
|
[19]
|
Wu, L., Du, Q. and Wu, C. (2021) CircLPAR1/miR-212-3p/ZNF217 Feedback Loop Promotes Amyloid Β-Induced Neuronal Injury in Alzheimer’s Disease. Brain Research, 1770, Article ID: 147622. https://doi.org/10.1016/j.brainres.2021.147622
|
[20]
|
Huang, J., Xu, Z., Yang, S., Yu, C., Zhang, F., Qin, M., et al. (2018) Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model. Computational and Structural Biotechnology Journal, 16, 523-531. https://doi.org/10.1016/j.csbj.2018.10.010
|
[21]
|
Huang, Z., Su, R., Qing, C., Peng, Y., Luo, Q. and Li, J. (2018) Plasma Circular RNAs Hsa_circ_0001953 and Hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Frontiers in Microbiology, 9, Article No. 2010. https://doi.org/10.3389/fmicb.2018.02010
|
[22]
|
Yin, Y.D., Cao, D., Shen, H., et al. (2021) Differential circRNA Expression Profiles in Peripheral Blood Mononuclear Cells among Mild and Severe Influenza-Associated Pneumonia Patients. Chinese Medical Journal, 101, 573-578. http://dx.org/10.3760/cma.j.cn112137-20201007-02776
|
[23]
|
Hu, J., Ji, C., Hua, K., Wang, X., Deng, X., Li, J., et al. (2020) Hsa_circ_0091074 Regulates TAZ Expression via microRNA1297 in Triple Negative Breast Cancer Cells. International Journal of Oncology, 56, 1314-1326. https://doi.org/10.3892/ijo.2020.5000
|
[24]
|
Dong, X., Sun, H., Mao, J., et al. (2021) Differential Expression of Circular RNA in Patients with White Matter Hyperintensity and Cognitive Impairment. Journal of Central South University Medical Sciences, 46, 1080-1089. http://dx.org/10.11817/j.issn.1672-7347.2021.200692
|
[25]
|
Mody, P.H., Marvin, K.N., Hynds, D.L. and Hanson, L.K. (2023) Cytomegalovirus Infection Induces Alzheimer’s Disease-Associated Alterations in Tau. Journal of NeuroVirology, 29, 400-415. https://doi.org/10.1007/s13365-022-01109-9
|
[26]
|
Murray, E.R., Kemp, M. and Nguyen, T.T. (2022) The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Archives of Clinical Neuropsychology, 37, 595-607. https://doi.org/10.1093/arclin/acac008
|
[27]
|
Siemen, H., Colas, D., Heller, H.C., Brüstle, O. and Reijo Pera, R.A. (2011) Pumilio-2 Function in the Mouse Nervous System. PLOS ONE, 6, e25932. https://doi.org/10.1371/journal.pone.0025932
|
[28]
|
Vessey, J.P., Amadei, G., Burns, S.E., Kiebler, M.A., Kaplan, D.R. and Miller, F.D. (2012) An Asymmetrically Localized Staufen2-Dependent RNA Complex Regulates Maintenance of Mammalian Neural Stem Cells. Cell Stem Cell, 11, 517-528. https://doi.org/10.1016/j.stem.2012.06.010
|
[29]
|
Zhang, M., Chen, D., Xia, J., Han, W., Cui, X., Neuenkirchen, N., et al. (2017) Post-Transcriptional Regulation of Mouse Neurogenesis by Pumilio Proteins. Genes & Development, 31, 1354-1369. https://doi.org/10.1101/gad.298752.117
|
[30]
|
Schmidt, M.F., Gan, Z.Y., Komander, D. and Dewson, G. (2021) Ubiquitin Signalling in Neurodegeneration: Mechanisms and Therapeutic Opportunities. Cell Death & Differentiation, 28, 570-590. https://doi.org/10.1038/s41418-020-00706-7
|
[31]
|
Zhao, Y., Mudge, M.C., Soll, J.M., Rodrigues, R.B., Byrum, A.K., Schwarzkopf, E.A., et al. (2018) OTUD4 Is a Phospho-Activated K63 Deubiquitinase That Regulates MyD88-Dependent Signaling. Molecular Cell, 69, 505-516.e5. https://doi.org/10.1016/j.molcel.2018.01.009
|
[32]
|
Fodder, K., Murthy, M., Rizzu, P., Toomey, C.E., Hasan, R., Humphrey, J., et al. (2023) Brain DNA Methylomic Analysis of Frontotemporal Lobar Degeneration Reveals OTUD4 in Shared Dysregulated Signatures across Pathological Subtypes. Acta Neuropathologica, 146, 77-95. https://doi.org/10.1007/s00401-023-02583-z
|
[33]
|
Joseph, J., Tan, S., Karpova, T.S., McNally, J.G. and Dasso, M. (2002) SUMO-1 Targets RanGAP1 to Kinetochores and Mitotic Spindles. The Journal of Cell Biology, 156, 595-602. https://doi.org/10.1083/jcb.200110109
|
[34]
|
Desgraupes, S., Etienne, L. and Arhel, N.J. (2023) RANBP2 Evolution and Human Disease. FEBS Letters, 597, 2519-2533. https://doi.org/10.1002/1873-3468.14749
|
[35]
|
Chen, Y., Chen, X., Luo, Z., Kang, X., Ge, Y., Wan, R., et al. (2024) Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. Journal of Advanced Research. https://doi.org/10.1016/j.jare.2024.03.025
|