阿尔茨海默病circRNA的差异表达及生物信息学分析
Differential Expression and Bioinformatics Analysis of circRNA in Alzheimer’s Disease
DOI: 10.12677/acm.2024.1492524, PDF, HTML, XML,   
作者: 张 鑫, 闫林娜, 王梓炫*:青岛大学附属医院老年医学科,山东 青岛
关键词: 生物信息学阿尔茨海默病circRNABioinformatics Alzheimer’s Disease circRNA
摘要: 目的:通过生物信息学方法,探讨阿尔茨海默病(AD)患者外周血中差异表达的环状RNA (circRNA)的生物学功能。方法:通过基因表达综合数据库(GEO)获取AD相关的数据集GSE186929,筛选AD患者外周血中差异表达的circRNAs,应用Circinteractome和miRDB数据库来预测circRNA靶向的miRNA,应用Starbase、miWalk、TargetScan8.0在线靶基因预测网站预测靶基因,利用jvenn获得靶基因合集,对差异表达的靶基因进行分析。运用David工具进行基因本体论(GO)和分析和京都基因与基因组百科全书(KEGG)通路分析。通过String在线网站构建蛋白互作(PPI)网络,应用Cytoscape筛选出3个关键基因。结果:共筛选出47个差异表达的circRNAs,其中13个下调,34个上调,选取最具有显著性差异的has_circRNA_0001928进一步预测miRNA,选取数据库中预测效果都较好的miR-142-5p进行靶基因预测,获得63个靶基因。GO和KEGG富集分析显示靶基因参与RNA转录、细胞分裂、基因表达调控等功能以及调节干细胞多能性的信号通路、脂质和动脉粥样硬化信号通路、人类巨细胞病毒感染等信号通路。3个关键基因为PUM2、OTUD4、RANBP2。结论:circRNA及其靶基因可能在AD的发病机制中发挥重要作用,circRNA可能是AD潜在的生物标志物和治疗靶点。
Abstract: Objective: To investigate the biological functions of differentially expressed circular RNAs (circRNAs) in the peripheral blood of Alzheimer’s disease (AD) patients by bioinformatics methods. Methods: AD-related dataset GSE186929 was obtained from Gene Expression Omnibus (GEO), screening for differentially expressed circRNAs in the peripheral blood of AD patients, applying Circinteractome and miRDB databases to predict circRNA-targeted miRNAs, and applying Starbase, miWalk, TargetScan8.0 online target gene prediction website to predict target genes, and used jvenn to obtain target gene ensembles to analyze differentially expressed target genes. Gene ontology (GO) and analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed using David tools. Protein Interaction (PPI) network was constructed through String online website and Cytoscape was applied to screen three key genes. Results: A total of 47 differentially expressed circRNAs were screened, of which 13 were down-regulated and 34 were up-regulated. The most significantly different has_circRNA_0001928 was selected for further miRNA prediction, and the miR-142-5p, which had good prediction results in the database, was selected for target gene prediction, resulting in 63 target genes. GO and KEGG enrichment analyses showed that the target genes were involved in the functions of RNA transcription, cell division, and regulation of gene expression as well as the signaling pathways regulating stem cell pluripotency, lipid and atherosclerosis signaling pathways, and human cytomegalovirus infection, etc. The three key genes were PUM2, OTUD4, and RANBP2. Conclusions: CircRNAs and their target genes may play an important role in the pathogenesis of AD, and circRNAs may be potential biomarkers and therapeutic targets for AD.
文章引用:张鑫, 闫林娜, 王梓炫. 阿尔茨海默病circRNA的差异表达及生物信息学分析[J]. 临床医学进展, 2024, 14(9): 735-744. https://doi.org/10.12677/acm.2024.1492524

1. 引言

阿尔茨海默病(Alzheimer’s disease, AD)是一种中枢神经系统的退行性疾病,临床表现以不可逆性的记忆和认知功能减退,以及人格、行为改变为特征[1],主要病理表现为β淀粉样蛋白沉积形成神经炎性斑以及过度磷酸化的tau蛋白异常聚集形成的神经纤维缠结(NFTs) [2],是老年期痴呆的最常见病因。尽管全球AD患者的数量在不断增加,但目前针对AD尚无有效的治疗方法。

circRNA是一类特殊的内源性环状非编码RNA分子,因不具有5’帽和3’尾,使其耐受于核糖核酸酶,而表现出高稳定性[3]。circRNA具有调节转录、RNA结合蛋白(RNA-binding protein, RBP)作用、miRNA海绵的功能以及翻译蛋白质的作用[4],进而参与调控各类疾病的发生、发展。研究表明,circRNA参与氧化应激以及自噬、神经元炎症损伤、Aβ代谢、tau蛋白过度磷酸化等AD相关发病机制[5]。因此,进一步研究circRNA在基因调控中的作用有利于寻找潜在的治疗靶点,为AD诊断和治疗提供新策略。

本研究通过生物信息学方法,分析AD患者外周血circRNA的差异表达谱,探讨circRNA差异表达在AD发病机制中的潜在作用,为AD的分子机制研究提供新线索。

2. 材料和方法

2.1. 数据采集

我们在GEO数据库中检索与AD和circRNA相关的数据集,检索关键词为“Alzheimer’s disease (All Fields) AND circRNA (All Fields)”,物种为人类“(Homo sapiens)”,检索出高通量测序的非编码RNA谱GSE186929,其中包含3名AD患者和4名对照组血液样本的circRNA信息。

2.2. 差异表达的circRNA的筛选和数据处理

使用GEO2R进行差异表达分析。以|log2Fold Chang| ≥ 1和P adj < 0.05为筛选条件得到差异表达的circRNA,采用ggplot2包绘制数据集的差异表达的circRNAs的火山图。

2.3. circRNA预测miRNA

我们使用Circinteractome [6] (http://circinteractome.nia.nih.gov)和miRDB [7] (https://mirdb.org/)数据库来预测circRNA靶向的miRNA。我们选取在两个数据库中预测效果都较好的miR-142-5p进行进一步分析。

2.4. miRNA的靶基因预测

应用Starbase [8] (http://rnasysu.com/encori/)、miRWalk (mirwalk.umm.uni-heidelberg.de)、TargetScan8.0 [9] (https://www.targetscan.org/vert_80/)在线靶基因预测网站,物种选择为人类,输入miR-142-5p分别预测miRNA的靶基因并导出。利用韦恩图绘制工具jvenn (https://jvenn.toulouse.inra.fr/app/index.html)对3个网站预测的靶基因进行交集,获得靶基因合集。

2.5. 差异表达的circRNA的生物信息学分析

使用David工具(https://david.ncifcrf.gov)对差异表达的circRNA靶基因进行基因本体论(GO)分析和京都基因与基因组百科全书(KEGG)通路分析。GO富集分析是对基因和蛋白质功能进行限定和描述,由生物过程(biological process, BP)、细胞组成(cellular component, CC)和分子功能(molecular function, MF)三部分组成。KEGG是将差异表达基因或蛋白质与已知的代谢通路和功能关联。选择GO三部分中每个部分富集最显著(p-value)的10个GO功能及KEGG中10条pathway进行可视化。

2.6. 蛋白质相互作用(PPI)网络的建立及关键基因筛选

利用STRING数据库[10] (http://cn.string-db.org)可以检索已知蛋白质与预测蛋白质之间的关联,并用于预测蛋白质–蛋白质相互作用信息。将差异circRNA调控的靶基因导入STRING数据库,获得靶基因相互作用的数据。通过Cytoscape软件cytoHubb插件,筛选出3个关键基因,作为miR-142-5p关键靶基因。

3. 结果

3.1. 差异表达的circRNA的筛选

根据|log2Fold Chang| ≥ 1和P adj < 0.05筛选AD组和健康对照组差异表达的circRNAs,与对照组相比,AD组共筛出47个差异表达的circRNAs,其中13个circRNAs下调,34个circRNAs上调,见图1火山图,选取最具有显著性差异的has_circRNA_0001928。

3.2. 预测miRNA

通过Circinteractome和miRDB数据库来预测circRNA靶向的miRNA,分别检索出246个和587个miRNA,取交集后选取在两个数据库中预测效果都较好的miR-142-5p进行进一步分析。

Figure 1. circRNAs differentially expressed in AD and control blood Volcano plot. Horizontal axis represents normalized differences, vertical axis represents normalized p-values, blue represents significantly down-regulated circRNAs, red represents significantly up-regulated circRNAs, and grey represents circRNAs with no significant difference

1. AD和对照组血液差异表达的circRNA火山图。横轴代表标准化差异,纵轴代表标准化p值,蓝色代表显著下调的circRNAs,红色代表显著上调的circRNAs,灰色代表无显著差异的circRNAs

3.3. miRNA的靶基因预测

应用Starbase、miWalk、TargetScan8.0在线靶基因预测网站分别检索出2079、1004、950个miR-142-5p的靶基因。利用韦恩图绘制工具jvenn对3个网站预测的靶基因取交集,得到63个靶基因(图2)。

3.4. 靶基因的富集分析

对筛选后的靶基因进行GO功能和KEGG通路富集分析。GO结果显示(图3),靶基因主要参与RNA聚合酶II启动子的转录、蛋白质多泛素化、有丝分裂细胞周期的G1/S转变、染色质重塑、基因表达调控等生物过程;参与细胞核、细胞质、染色质、转录因子复合体、特异性颗粒膜、大分子复合体等细胞组成;参与序列特异性双链DNA结合、转录因子活性、金属离子结合、蛋白质结合等分子功能。KEGG结果显示(图4),与cAMP信号通路、调节干细胞多能性的信号通路、内质网中的蛋白质加工通路、人类巨细胞病毒感染、脂质和动脉粥样硬化信号通路、志贺氏杆菌病、神经营养素信号途径等通路有关。

Figure 2. miR-142-5p predicted Wayne plots of target genes

2. miR-142-5p预测靶基因的韦恩图

3.5. 靶基因相互作用网络分析

通过Cytoscape软件cytoHubb插件分析构建PPI网络,筛选3个关键基因(图5),包括RAN结合蛋白2 (RANBP2)、OTU去泛素化酶4 (OTUD4)、pumilio RNA结合家族成员2 (PUM2)。

Figure 3. GO enrichment analysis of miR-142-5p target genes. The horizontal coordinate is the GO entry and the vertical coordinate is the number of genes enriched in that GO

3. miR-142-5p靶基因的GO富集分析。横坐标为GO条目,纵坐标为富集在该GO的基因数

Figure 4. KEGG pathway enrichment analysis of miR-142-5p target genes. Horizontal coordinate is the proportion of genes, vertical coordinate is the Pathway pathway, the circle represents the number of genes, the larger indicates that the number of genes enriched to the pathway is more, the more orange the color is, it means that the genes are enriched to a higher degree in the pathway

4. miR-142-5p靶基因的KEGG通路富集分析。横坐标为基因比例,纵坐标为Pathway通路,圆圈代表基因数,越大表示富集到该通路的基因数越多,颜色越橙,代表基因在该通路的富集程度越高

Figure 5. 3 key target genes of miR-142-5p

5. miR-142-5p的3个关键靶基因

4. 讨论

AD是一种与中枢神经退行性疾病,主要症状包括学习能力下降和记忆力减退[1]。AD的发生发展涉及多种因素,其病理机制尚不完全清楚。目前没有有效的治疗手段来阻止痴呆病程的进展。因此,AD的早期诊断已成为AD防治工作的重点。

circRNA的异常表达参与神经系统疾病[11]、肿瘤[12]、糖尿病[13]、心血管疾病[14]等多种疾病的病理过程,目前circRNA已经成为疾病早期诊断、预后预测和靶向治疗研究的新热点。脑组织中存在大量表达的circRNA,它们的存在与突触活动、神经递质功能、神经元成熟、大脑发育等密切相关,通过影响血管生成,神经元可塑性,自噬,细胞凋亡和炎症的机制,参与多种急性和慢性中枢神经系统疾病的发生发展过程,如AD、神经性疼痛等[11] [15]。越来越多的研究提出circRNA与AD发生发展关系密切,如circRNA在Aβ的产生、沉积以及降解中发挥着重要作用,参与AD的发病过程[16],circAβ-a在人脑中转化为一种新的含有Aβ的Aβ175多肽从而促进Aβ生成;circHDAC9与miR-138结合,而miR-138可抑制ADAM10的表达,促进Aβ的产生;ciRS-7在AD患者海马组织中表达下调,分别通过miR-7和核转录因子κB信号通路,导致Aβ异常聚集。还有一些circRNA调控神经元的炎症和功能障碍而影响AD的发展,如circ_0000950 [17]、circAXL [18]、circLPAR1 [19]。还有研究表明mmu_circRNA_012180和mmu_circRNA_013636与AD氧化应激损伤相关[20]

为进一步探究circRNA在AD中潜在作用,本研究共筛出47个差异表达的circRNAs,其中,hsa_circ_0008297的血浆水平与结核病严重程度相关,hsa_circ_0009024可能作为活动性结核病诊断的新型血浆生物标志物[21];hsa_circ_0091073在流感病毒性肺炎患者中的表达差异显著[22];hsa_circ_0091074可能成为乳腺癌细胞的潜在治疗靶点[23];hsa_circ_0092222通过Janus激酶2 (JAK2)/信号转导和转录激活因子(STAT3)信号通路和Wnt信号通路导致脑白质损伤[24]等。选取其中最具有显著性差异的has_circRNA_0001928用于后续研究。通过在线网站预测靶基因,最终对63个差异表达的靶基因进行功能富集分析。GO分析显示靶基因可能通过RNA转录、细胞分裂、染色质重塑、基因表达调控等生物学功能参与AD疾病。KEGG通路分析显示靶基因可能通过调节干细胞多能性的信号通路、内质网中的蛋白质加工通路、脂质和动脉粥样硬化信号通路、人类巨细胞病毒感染、志贺氏杆菌病影响AD的发生和发展。有研究表明,巨细胞病毒感染会增加 tau 蛋白的水平和磷酸化,可能会影响AD的发生发展[25];还有一项研究表明,AD患者中产生毒素的变形菌,包括大肠杆菌/志贺氏菌,往往会多于正常人[26]

应用STRING数据库及Cytoscape软件筛选出3个关键靶基因(PUM2, OTUD4, RANBP2)。PUM2是PUF家族成员中一种RNA结合蛋白,在脑组织中呈高表达且主要存在于神经元,通过对其靶蛋白mRNA的转录调控而发挥生物学功能。研究发现,PUM2在神经元功能中发挥多种作用,不仅影响神经元树突形态,同时还参与中枢神经系统突触重塑[27],并且促进自我更新并防止神经元过早分化[28]。同时,PUM2对海马神经发生和功能至关重要,影响AD的发生发展[29]。OTUD4是OUT家族的成员,是一种去泛素化酶,参与多种蛋白质的去泛素化。泛素信号传导被很好地描述为与神经退行性疾病病理学过程相关[30]。在正常大脑(人类和小鼠)中,OTUD4在海马锥体细胞层、颗粒细胞层和谷氨酸能神经元中皆存在,在调节炎症信号和烷基化损伤中发挥作用[31]。又有研究发现,OTUD4突变与编码泛素连接酶的RNF216突变的组合被发现会导致痴呆症[32]。RANBP2是一种核孔蛋白,是核孔复合物的关键成分,通过核质运输的调节等多种功能和亚细胞定位参与许多细胞过程[33]。RANBP2失调或突变会导致多种疾病,如神经退行性疾病、急性坏死性脑病、癌症、病毒感染等。一项研究指出,AD患者大脑中Ran表达减少,这可能间接影响RANBP2表达[34]。又有研究表明,RANBP2与AD进展相关,通过抑制IGF1R-RanBP2-SUMO1复合物的形成,可以防止AD的神经元死亡和炎性改变[35]。目前,虽已有研究表明PUM2、OTUD4、RANBP基因与神经退行性疾病相关,但其在神经退行性疾病中的作用尚不完全清楚,需要进一步探索。

5. 结论

综上所述,本研究通过生物信息学方法,筛选出外周血中差异表达的circRNAs,对具有显著差异的circRNA进行深入分析。通过对靶基因进行GO功能及KEGG通路富集分析,初步探讨其在AD中可能参与的生物学功能及信号通路。同时,通过分析3个关键靶基因,进一步探索circRNA在AD中的潜在作用。据此,我们推测circRNA可能是AD潜在的治疗靶点及诊断标志物。然而,circRNA在AD中的分子机制及临床意义仍需进一步研究。

NOTES

*通讯作者。

参考文献

[1] Bhole, R.P., Chikhale, R.V. and Rathi, K.M. (2024) Current Biomarkers and Treatment Strategies in Alzheimer Disease: An Overview and Future Perspectives. IBRO Neuroscience Reports, 16, 8-42.
https://doi.org/10.1016/j.ibneur.2023.11.003
[2] Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C.E., et al. (2021) Alzheimer’s Disease. The Lancet, 397, 1577-1590.
https://doi.org/10.1016/s0140-6736(20)32205-4
[3] Dong, J., Zeng, Z., Huang, Y., Chen, C., Cheng, Z. and Zhu, Q. (2023) Challenges and Opportunities for circRNA Identification and Delivery. Critical Reviews in Biochemistry and Molecular Biology, 58, 19-35.
https://doi.org/10.1080/10409238.2023.2185764
[4] He, A.T., Liu, J., Li, F. and Yang, B.B. (2021) Targeting Circular RNAs as a Therapeutic Approach: Current Strategies and Challenges. Signal Transduction and Targeted Therapy, 6, Article No. 185.
https://doi.org/10.1038/s41392-021-00569-5
[5] Huang, J., Su, M. and Wu, D. (2020) Functional Roles of Circular RNAs in Alzheimer’s Disease. Ageing Research Reviews, 60, Article ID: 101058.
https://doi.org/10.1016/j.arr.2020.101058
[6] Dudekula, D.B., Panda, A.C., Grammatikakis, I., De, S., Abdelmohsen, K. and Gorospe, M. (2015) Circinteractome: A Web Tool for Exploring Circular RNAs and Their Interacting Proteins and microRNAs. RNA Biology, 13, 34-42.
https://doi.org/10.1080/15476286.2015.1128065
[7] Chen, Y. and Wang, X. (2019) Mirdb: An Online Database for Prediction of Functional microRNA Targets. Nucleic Acids Research, 48, D127-D131.
https://doi.org/10.1093/nar/gkz757
[8] Li, J., Liu, S., Zhou, H., Qu, L. and Yang, J. (2013) Starbase V2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA Interaction Networks from Large-Scale Clip-Seq Data. Nucleic Acids Research, 42, D92-D97.
https://doi.org/10.1093/nar/gkt1248
[9] McGeary, S.E., Lin, K.S., Shi, C.Y., Pham, T.M., Bisaria, N., Kelley, G.M., et al. (2019) The Biochemical Basis of microRNA Targeting Efficacy. Science, 366, eaav1741.
https://doi.org/10.1126/science.aav1741
[10] Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., et al. (2014) STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Research, 43, D447-D452.
https://doi.org/10.1093/nar/gku1003
[11] Mehta, S.L., Dempsey, R.J. and Vemuganti, R. (2020) Role of Circular RNAs in Brain Development and CNS Diseases. Progress in Neurobiology, 186, Article ID: 101746.
https://doi.org/10.1016/j.pneurobio.2020.101746
[12] Chen, L. and Shan, G. (2021) CircRNA in Cancer: Fundamental Mechanism and Clinical Potential. Cancer Letters, 505, 49-57.
https://doi.org/10.1016/j.canlet.2021.02.004
[13] Zhang, C., Han, X., Yang, L., Fu, J., Sun, C., Huang, S., et al. (2020) Circular RNA circPPM1F Modulates M1 Macrophage Activation and Pancreatic Islet Inflammation in Type 1 Diabetes Mellitus. Theranostics, 10, 10908-10924.
https://doi.org/10.7150/thno.48264
[14] Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019) Loss of Super-Enhancer-Regulated circRNA Nfix Induces Cardiac Regeneration after Myocardial Infarction in Adult Mice. Circulation, 139, 2857-2876.
https://doi.org/10.1161/circulationaha.118.038361
[15] Ma, N., Zhang, W. and Wan, J. (2020) Research Progress on circRNA in Nervous System Diseases. Current Alzheimer Research, 17, 687-697.
https://doi.org/10.2174/1567205017666201111114928
[16] Mo, D., Li, X., Raabe, C.A., Rozhdestvensky, T.S., Skryabin, B.V. and Brosius, J. (2020) Circular RNA Encoded Amyloid Beta Peptides—A Novel Putative Player in Alzheimer’s Disease. Cells, 9, Article No. 2196.
https://doi.org/10.3390/cells9102196
[17] Yang, H., Wang, H., Shang, H., Chen, X., Yang, S., Qu, Y., et al. (2019) Circular RNA Circ_0000950 Promotes Neuron Apoptosis, Suppresses Neurite Outgrowth and Elevates Inflammatory Cytokines Levels via Directly Sponging Mir-103 in Alzheimer’s Disease. Cell Cycle, 18, 2197-2214.
https://doi.org/10.1080/15384101.2019.1629773
[18] Meng, S., Wang, B. and Li, W. (2022) CircAXL Knockdown Alleviates Aβ1-42-Induced Neurotoxicity in Alzheimer’s Disease via Repressing PDE4A by Releasing miR-1306-5p. Neurochemical Research, 47, 1707-1720.
https://doi.org/10.1007/s11064-022-03563-7
[19] Wu, L., Du, Q. and Wu, C. (2021) CircLPAR1/miR-212-3p/ZNF217 Feedback Loop Promotes Amyloid Β-Induced Neuronal Injury in Alzheimer’s Disease. Brain Research, 1770, Article ID: 147622.
https://doi.org/10.1016/j.brainres.2021.147622
[20] Huang, J., Xu, Z., Yang, S., Yu, C., Zhang, F., Qin, M., et al. (2018) Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model. Computational and Structural Biotechnology Journal, 16, 523-531.
https://doi.org/10.1016/j.csbj.2018.10.010
[21] Huang, Z., Su, R., Qing, C., Peng, Y., Luo, Q. and Li, J. (2018) Plasma Circular RNAs Hsa_circ_0001953 and Hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Frontiers in Microbiology, 9, Article No. 2010.
https://doi.org/10.3389/fmicb.2018.02010
[22] Yin, Y.D., Cao, D., Shen, H., et al. (2021) Differential circRNA Expression Profiles in Peripheral Blood Mononuclear Cells among Mild and Severe Influenza-Associated Pneumonia Patients. Chinese Medical Journal, 101, 573-578.
http://dx.org/10.3760/cma.j.cn112137-20201007-02776
[23] Hu, J., Ji, C., Hua, K., Wang, X., Deng, X., Li, J., et al. (2020) Hsa_circ_0091074 Regulates TAZ Expression via microRNA1297 in Triple Negative Breast Cancer Cells. International Journal of Oncology, 56, 1314-1326.
https://doi.org/10.3892/ijo.2020.5000
[24] Dong, X., Sun, H., Mao, J., et al. (2021) Differential Expression of Circular RNA in Patients with White Matter Hyperintensity and Cognitive Impairment. Journal of Central South University Medical Sciences, 46, 1080-1089.
http://dx.org/10.11817/j.issn.1672-7347.2021.200692
[25] Mody, P.H., Marvin, K.N., Hynds, D.L. and Hanson, L.K. (2023) Cytomegalovirus Infection Induces Alzheimer’s Disease-Associated Alterations in Tau. Journal of NeuroVirology, 29, 400-415.
https://doi.org/10.1007/s13365-022-01109-9
[26] Murray, E.R., Kemp, M. and Nguyen, T.T. (2022) The Microbiota-Gut-Brain Axis in Alzheimer’s Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Archives of Clinical Neuropsychology, 37, 595-607.
https://doi.org/10.1093/arclin/acac008
[27] Siemen, H., Colas, D., Heller, H.C., Brüstle, O. and Reijo Pera, R.A. (2011) Pumilio-2 Function in the Mouse Nervous System. PLOS ONE, 6, e25932.
https://doi.org/10.1371/journal.pone.0025932
[28] Vessey, J.P., Amadei, G., Burns, S.E., Kiebler, M.A., Kaplan, D.R. and Miller, F.D. (2012) An Asymmetrically Localized Staufen2-Dependent RNA Complex Regulates Maintenance of Mammalian Neural Stem Cells. Cell Stem Cell, 11, 517-528.
https://doi.org/10.1016/j.stem.2012.06.010
[29] Zhang, M., Chen, D., Xia, J., Han, W., Cui, X., Neuenkirchen, N., et al. (2017) Post-Transcriptional Regulation of Mouse Neurogenesis by Pumilio Proteins. Genes & Development, 31, 1354-1369.
https://doi.org/10.1101/gad.298752.117
[30] Schmidt, M.F., Gan, Z.Y., Komander, D. and Dewson, G. (2021) Ubiquitin Signalling in Neurodegeneration: Mechanisms and Therapeutic Opportunities. Cell Death & Differentiation, 28, 570-590.
https://doi.org/10.1038/s41418-020-00706-7
[31] Zhao, Y., Mudge, M.C., Soll, J.M., Rodrigues, R.B., Byrum, A.K., Schwarzkopf, E.A., et al. (2018) OTUD4 Is a Phospho-Activated K63 Deubiquitinase That Regulates MyD88-Dependent Signaling. Molecular Cell, 69, 505-516.e5.
https://doi.org/10.1016/j.molcel.2018.01.009
[32] Fodder, K., Murthy, M., Rizzu, P., Toomey, C.E., Hasan, R., Humphrey, J., et al. (2023) Brain DNA Methylomic Analysis of Frontotemporal Lobar Degeneration Reveals OTUD4 in Shared Dysregulated Signatures across Pathological Subtypes. Acta Neuropathologica, 146, 77-95.
https://doi.org/10.1007/s00401-023-02583-z
[33] Joseph, J., Tan, S., Karpova, T.S., McNally, J.G. and Dasso, M. (2002) SUMO-1 Targets RanGAP1 to Kinetochores and Mitotic Spindles. The Journal of Cell Biology, 156, 595-602.
https://doi.org/10.1083/jcb.200110109
[34] Desgraupes, S., Etienne, L. and Arhel, N.J. (2023) RANBP2 Evolution and Human Disease. FEBS Letters, 597, 2519-2533.
https://doi.org/10.1002/1873-3468.14749
[35] Chen, Y., Chen, X., Luo, Z., Kang, X., Ge, Y., Wan, R., et al. (2024) Exercise-Induced Reduction of IGF1R Sumoylation Attenuates Neuroinflammation in APP/PS1 Transgenic Mice. Journal of Advanced Research.
https://doi.org/10.1016/j.jare.2024.03.025