鱼皮胶原蛋白对促进慢性创面愈合的研究进展
Research Progress on the Promotion of Chronic Wound Healing by Fish Skin Collagen Protein
DOI: 10.12677/jcpm.2024.33109, PDF, HTML, XML,   
作者: 梁又丹:青海大学临床医学院,青海 西宁;李 毅*:青海大学附属医院烧伤整形外科,青海 西宁
关键词: 慢性创面创面愈合鱼皮胶原蛋白Chronic Wound Wound Healing Fish Skin Collagen Protein
摘要: 慢性创面是全球医疗保健系统的社会负担,也是患者的经济负担,严重影响了他们的生活质量。老年人和糖尿病患者等易感人群的迅速增长,使慢性创面的发生率一直在稳步上升。慢性创面的特点是伤口愈合过程延迟,在标准护理下愈合比急性(即健康)创面需要更长的时间。由于感染的参与和严重程度,慢性创面的愈合一直是令人担忧的问题。生物材料在慢性创面管理中的功能和作用已经得到普遍认可,这种生物材料之一是胶原蛋白,胶原蛋白作为伤口敷料中最常用的材料之一,因为它有助于模仿本地伤口微环境,它被认为是大多数用于创面愈合配方的关键成分。传统的胶原蛋白从陆地动物中提取出来,它存在宗教限制,也存在疾病传播的风险;而鱼皮胶原蛋白从海洋生物中提取出来,因其具有独特的结构和功能特性,使其成为细胞附着、生长和分化的天然基质。鱼皮胶原蛋白不仅可以促进皮肤上皮化、血管化、成纤维细胞迁移,还能整体加快创面愈合的能力,未来将成为一种潜在的更有前途的新型材料分子。本文我们介绍了用于慢性创面愈合的鱼皮胶原蛋白的最新研究进展。旨在为进一步研究提供新的观点。
Abstract: Chronic wounds are a social burden on the global healthcare system and an economic burden on patients, seriously affecting their quality of life. The rapid growth of susceptible populations such as the elderly and diabetes patients has led to a steady increase in the incidence of chronic wounds. The characteristic of chronic wounds is delayed wound healing process, which takes longer to heal under standard care than acute (i.e. healthy) wounds. The healing of chronic wounds has always been a concern due to the involvement and severity of infections. The function and role of biomaterials in chronic wound management have been widely recognized. One of these biomaterials is collagen, which is one of the most commonly used materials in wound dressings because it helps mimic the local wound microenvironment. It is considered a key ingredient in most wound healing formulas. Traditional collagen is extracted from terrestrial animals, which has religious restrictions and the risk of disease transmission; Fish skin collagen is extracted from marine organisms and has unique structural and functional properties, making it a natural matrix for cell attachment, growth, and differentiation. Fish skin collagen can not only promote skin epithelialization, vascularization, and fibroblast migration, but also accelerate the overall ability of wound healing. In the future, it will become a potential and more promising new material molecule. In this article, we introduce the latest research progress on fish skin collagen used for chronic wound healing. Intended to provide new perspectives for further research.
文章引用:梁又丹, 李毅. 鱼皮胶原蛋白对促进慢性创面愈合的研究进展[J]. 临床个性化医学, 2024, 3(3): 757-763. https://doi.org/10.12677/jcpm.2024.33109

1. 引言

慢性创面被定义为无法轻易通过创面愈合的创面,并且在标准护理下三个月内无法愈合。报道称慢性创面对患者和医疗保健系统带来了沉重的负担,由于疼痛、焦虑和幸福感下降,会产生大量成本并影响患者的生活质量[1]。因此对于慢性创面护理,是全球健康经济负担[2]。此外,随着人口和预期寿命的增加,慢性创面管理对全球卫生服务的影响将进一步增加,呼吁开发一种能够减轻患者和医疗保健系统的经济和社会负担的疗法[3]。近年来,鱼皮胶原蛋白以整体观念、辨证论治的治疗理念,在慢性创面的治疗中发挥了独特优势。为进一步指导其在临床中的应用,本文从其对慢性创面愈合方面进行了综述,现报道如下。

2. 慢性创面及创面愈合

2.1. 慢性创面的病理过程

慢性创面被定义为无法轻易通过创面愈合的创面,并且在标准护理下三个月内无法愈合[4]。当患者出现糖尿病、肥胖、免疫系统缺陷、外周血管疾病和心肺疾病等合并症时,通常会出现这种情况[5]。慢性创面包括糖尿病足溃疡(DFUs)、压力性溃疡(PUs)和腿部溃疡(LUs),其中包括静脉性腿部溃疡、动脉性腿部溃疡和混合病因的溃疡[3]。慢性创面是复发性细菌感染、血管生成减少、组织上皮受损和ROS过量。中性粒细胞和M1巨噬细胞的长期存在导致创面出现高度炎症。肥大细胞和CD8+T细胞的活性增强了这一过程。其他炎性T细胞亚型(如Th1、Th17和Th22)的水平也有所增加[6]。由角质细胞分泌各种基质金属蛋白酶(MMPs: matrix metalloproteinase)会导致缺陷上皮化。所以这些病理过程共同促进炎症、组织纤维化和不良血管化[7]。这些创面通常在炎症阶段停滞不前,过度和持续的炎症会造成敌对的创面环境。缓慢或无法愈合的创面感染的风险更大。如果确实发生感染,炎症会进一步加剧[3]

2.2. 创面愈合的过程

创面愈合是一个复杂的过程,涉及多种不同种类细胞、细胞因子、趋化因子、生长因子和细胞外基质(ECM: Extracellular matrix)成分,它们协同工作以实现创面愈合[8]。完成创面愈合过程有四个不同但重叠的阶段,包括止血、炎症、增殖和重塑[9]。各种不同种类细胞、酶、细胞因子、蛋白质和激素参与组织修复过程[10]。具体过程如下在伤口愈合的止血阶段,血小板分泌生长因子和趋化因子,促进炎症细胞的聚集。炎症阶段的特点是早期中性粒细胞反应,随后是单核细胞和巨噬细胞聚集。来自中性粒细胞和纤维蛋白水解系统的MMP清除细胞外基质和纤维蛋白凝块,导致角质细胞迁移和增殖以闭合伤口。来自血小板和巨噬细胞的TGF-β促进肌成纤维细胞的分化和增殖,从而促进伤口收缩和疤痕形成。简而言之,在受伤后,在正常的创面愈合过程中,将触发止血,产生血凝块和血管收缩以限制血流,然后分泌促炎细胞因子和生长因子。由上皮细胞招募的巨噬细胞、中性粒细胞和淋巴细胞反过来刺激炎症生成。然后,生长因子诱导血管生成,由于成纤维细胞和角蛋白细胞的增殖以及再受体化发生。在之后,成纤维细胞将进一步分化为肌成纤维细胞,导致ECM沉积。每个阶段都有自己的功能和作用,使下一阶段顺利进行,没有延迟[11]。根据愈合过程的时间框架,皮肤损伤可以分为急性创面和慢性创面。在急性创面中,皮肤完整性保持不变,会通过正常创面愈合阶段进行愈合。然而,对于慢性创面,由于促炎和抗炎信号之间的不平衡,皮肤反应无法通过创面愈合的正常阶段进行[12]。仅在我国每年慢性难愈合创面的治疗需求在3000万人次左右,而整个创面(包括各种手术切口)的治疗则在一亿人次左右,需求巨大[13]。与正常创面相比,具有持续炎症反应的慢性创面会降低炎症细胞功能,并显著改变细胞因子和生长因子的浓度。这些变化与炎症水平增加、持续伤口感染、缺氧和营养转移不良以及血管化和再上皮化减少有关[14]

3. 胶原蛋白

3.1. 胶原蛋白定义

胶原蛋白(collagen)是一种生物性高分子物质,是一种白色、不透明、无支链的纤维性蛋白质[15]。它可以补充皮肤各层所需的营养,使皮肤中胶原活性增强,有滋润皮肤,延缓衰老、美容、消皱、养发等功效[16]

3.2. 胶原蛋白的结构

胶原蛋白是脊椎动物中最丰富的蛋白质,在维护组织的生物和结构完整性方面发挥主导作用,并有助于维持分子结构、形状和机械特征[17]。评估鱼皮作为生物医学应用生物材料的胶原蛋白潜力[16]。目前,在人体组织中发现了大约28种胶原蛋白。大约一半的人体胶原蛋白存在于皮肤中,主要是I型胶原蛋白[18]

胶原蛋白作为一种结构蛋白,构成了结缔组织中的主要部分,特别是在骨骼、肌腱、关节和皮肤中[19]。胶原蛋白的主要结构由氨基酸组成,主要是甘氨酸(33%)、脯氨酸和羟脯氨酸(22%)。二级结构由氨基酸α链组成,每三个氨基酸被捆绑成一个螺旋,相互扭转,形成紧密的三级结构。基本的胶原结构–四元结构属于超螺旋[20]。到目前为止,已经发现了29种胶原蛋白。胶原蛋白性质的分化是由各种α链、颗粒的异构体和每种胶原蛋白类型的超分子结构存在决定[20]。胶原蛋白种类多样性也是由参与蛋白质生物合成的基因表达的差异引起的[19]。胶原蛋白的主要类型包括:I型胶原蛋白(存在于皮肤、肌腱和骨组织中)、II型(存在于软骨中)和III型(存在于皮肤和血管中) [17]。胶原蛋白具有广泛的应用[19]。由于其高生物相容性、无毒性和生物降解性,它被广泛用于化妆品、制药、医疗和食品行业[21]

3.3. 胶原蛋白的性能

从海洋胶原蛋白来源中得出,鱼类属于最有价值的胶原蛋白来源[17]。主要原因是鱼重量的75%是胶原蛋白,选择鱼皮主要是为了获得I型胶原蛋白[22]。鱼胶原蛋白的主要来源是皮肤、骨骼、头部、鳞片、鳍和内脏[23]。研究表明,与营养良好的鱼相比,饮食严格的鱼会产生更多的胶原蛋白[24]。胶原蛋白的特性取决于生物年龄。因此年长动物的交联剂数量增加,溶解度会随着时间的推移而下降[25]。根据研究,胶原蛋白含量最高的是银鲤鱼、棕背蟾蜍鱼、鳕鱼和罗非鱼[16]。重要的是确定特定胶原蛋白来源的特性,以便选择合适的胶原蛋白[21]。胶原蛋白在创面管理中起着多种作用,包括成纤维细胞的趋化性、伤口收缩、生长因子和细胞因子的诱导、MMPs的激活和抑制。连同其生物相容性、可生物降解和无毒属性,这些优势使胶原蛋白成为治疗顽固性创面且有吸引力的候选材料[26]。许多临床研究强调基于胶原蛋白的敷料对治疗慢性伤口的好处,显示愈合率更快或愈合时间更短,蛋白酶失活以及维持湿润的伤口环境[27]

4. 胶原蛋白对慢性创面的作用

由成纤维细胞分泌的胶原蛋白是ECM中最普遍的蛋白质。并在伤口愈合的每个阶段都起着至关重要的作用,由于其化学作用,它吸引着成纤维细胞和角质细胞等细胞迁移到伤口部位[22]。胶原蛋白成分的动态产生和破坏是急性创面的正常事件,然而,在慢性创面中,新胶原蛋白的沉积被许多因素延迟或阻止。环境因素也导致慢性创面中的胶原蛋白减少,包括MMPs和弹性蛋白酶的水平[28]。其中MMPs参与天然完整胶原蛋白的蛋白降解,且部分降解的胶原蛋白片段在慢性伤口中也会升高[23]。因此,创面敷料中存在胶原蛋白非常有利于通过鼓励巨噬细胞和成纤维细胞迁移到创面来促进创面愈合[19]。此外,胶原蛋白敷料促进新的血管发展和角质细胞的迁移,从而促进创面再上皮化[29]。含有外源性胶原蛋白的敷料将作为底物,吸引弹性酶和MMPs,从而抑制受伤区域形成新的天然胶原蛋白的降解,因此促进创面愈合[30]

5. 传统胶原蛋白与鱼皮胶原蛋白的优缺点

牛作为一种陆地动物,是胶原蛋白的大量来源,牛海绵状脑病(BSE)和传染性海绵状脑病(TSE)会对牛构成风险。这些进行性神经系统疾病会影响牛,可能使人类感染并危及生命。此外,在制药和化妆品行业使用陆地动物的一些宗教限制还有待辩论[31]。这些因素使海洋胶原蛋白来源成为更安全、更容易和更有前途的替代品。鱼类、水母、海绵和其他无脊椎动物等海洋生物是重要的胶原蛋白的来源,并且比陆地动物和其他来源动物具有更多优势[32]。它们具有代谢兼容性,缺乏宗教约束,不含动物病原体。在有效剂量下几乎没有毒性作用。使用海洋胶原蛋白是环保的。鱼皮、骨头和鳞片是胶原蛋白的重要来源,但它们经常被海鲜加工行业丢弃[33]。通过使用海洋胶原蛋白,减少废物,在分离胶原蛋白时不会再有生物受到伤害[33]。此外,胶原蛋白在许多领域都有多种应用,如药物输送、创面愈合、皮肤老化和组织再生[34]。经大量调查研究,海洋生物胶原蛋白也被证明与陆地动物胶原蛋白一样有效。海洋生物胶原蛋白也比陆地动物胶原蛋白更容易水解,这使得它们更适合进一步加工成肽衍生物[31]。此外,胶原蛋白具有结构和功能特性,使其成为细胞附着、生长和分化的天然基质[35]

6. 总结与展望

胶原蛋白作为一种新的组织工程材料,具有良好的物理和机械性能,低免疫原性,良好的生物相容性以及生物降解性[36]。由于炎症反应和细胞毒性作用最小,胶原蛋白具有细胞生长的能力和良好的生物相容性[23]。它具有保湿、再生和成膜的特性。出色的水分结合能力有助于在白天保持皮肤中的适当含水量。皮肤湿润和软化[37]。除了是一种天然保湿剂外,胶原蛋白的成膜性能还可减少经表皮水分流失(TEWL) [36] [37]。胶原蛋白也可以加速伤口愈合,帮助组织再生[38]。因此,胶原蛋白是最有前途的皮肤替代品或创面敷料生物材料[21]。本综述中强调海洋胶原蛋白在创面愈合的生物医学应用。显然,海洋胶原蛋白来源比陆地动物来源更有利[31]。海洋胶原蛋白促进皮肤上皮化、血管化、成纤维细胞迁移和整体更快的创面愈合率的能力已经得到证明[39]

NOTES

*通讯作者。

参考文献

[1] Martin, P. and Nunan, R. (2015) Cellular and Molecular Mechanisms of Repair in Acute and Chronic Wound Healing. British Journal of Dermatology, 173, 370-378.
https://doi.org/10.1111/bjd.13954
[2] Lindholm, C. and Searle, R. (2016) Wound Management for the 21st Century: Combining Effectiveness and Efficiency. International Wound Journal, 13, 5-15.
https://doi.org/10.1111/iwj.12623
[3] Verdolino, D.V., Thomason, H.A., Fotticchia, A. and Cartmell, S. (2021) Wound Dressings: Curbing Inflammation in Chronic Wound Healing. Emerging Topics in Life Sciences, 5, 523-537.
https://doi.org/10.1042/etls20200346
[4] Castillo-Briceño, P., Bihan, D., Nilges, M., Hamaia, S., Meseguer, J., García-Ayala, A., et al. (2011) A Role for Specific Collagen Motifs during Wound Healing and Inflammatory Response of Fibroblasts in the Teleost Fish Gilthead Seabream. Molecular Immunology, 48, 826-834.
https://doi.org/10.1016/j.molimm.2010.12.004
[5] Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., et al. (2021) Chronic Diabetic Wounds and Their Treatment with Skin Substitutes. Cells, 10, Article No. 655.
https://doi.org/10.3390/cells10030655
[6] Wilkinson, H.N. and Hardman, M.J. (2020) Wound Healing: Cellular Mechanisms and Pathological Outcomes. Open Biology, 10, Article ID: 200223.
https://doi.org/10.1098/rsob.200223
[7] Takeo, M., Lee, W. and Ito, M. (2015) Wound Healing and Skin Regeneration. Cold Spring Harbor Perspectives in Medicine, 5, a023267-a023267.
https://doi.org/10.1101/cshperspect.a023267
[8] Cowin, A.J. (2019) New Innovations in Wound Healing and Repair. International Journal of Molecular Sciences, 20, Article No. 1724.
https://doi.org/10.3390/ijms20071724
[9] Chattopadhyay, S. and Raines, R.T. (2014) Collagen‐Based Biomaterials for Wound Healing. Biopolymers, 101, 821-833.
https://doi.org/10.1002/bip.22486
[10] Garraud, O., Hozzein, W.N. and Badr, G. (2017) Wound Healing: Time to Look for Intelligent, “Natural” Immunological Approaches? BMC Immunology, 18, Article No. 23.
https://doi.org/10.1186/s12865-017-0207-y
[11] Deng, X., Gould, M. and Ali, M.A. (2022) A Review of Current Advancements for Wound Healing: Biomaterial Applications and Medical Devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110, 2542-2573.
https://doi.org/10.1002/jbm.b.35086
[12] Blanco, M., Vázquez, J., Pérez-Martín, R. and Sotelo, C. (2017) Hydrolysates of Fish Skin Collagen: An Opportunity for Valorizing Fish Industry Byproducts. Marine Drugs, 15, Article No. 131.
https://doi.org/10.3390/md15050131
[13] Carpio, K.C.R., Bezerra, R.S., Cahú, T.B., Monte, F.T.D.D., Neri, R.C.A., Silva, J.F.d., et al. (2023) Extraction and Characterization of Collagen from the Skin of Amazonian Freshwater Fish Pirarucu. Brazilian Journal of Medical and Biological Research, 56, e12564.
https://doi.org/10.1590/1414-431x2023e12564
[14] Kharaziha, M., Baidya, A. and Annabi, N. (2021) Rational Design of Immunomodulatory Hydrogels for Chronic Wound Healing. Advanced Materials, 33, Article ID: 2100176.
https://doi.org/10.1002/adma.202100176
[15] Chen, H., Wei, X., Zhang, C., et al. (2018) Progress of Fish Collagen as Novel Biomedical Material. Chinese Journal of Reparative and Reconstructive Surgery, 32, 1227-1230.
[16] Carvalho, A.M., Marques, A.P., Silva, T.H. and Reis, R.L. (2018) Evaluation of the Potential of Collagen from Codfish Skin as a Biomaterial for Biomedical Applications. Marine Drugs, 16, Article No. 495.
https://doi.org/10.3390/md16120495
[17] Rahman, M. (2016) An Overview of the Medical Applications of Marine Skeletal Matrix Proteins. Marine Drugs, 14, Article No. 167.
https://doi.org/10.3390/md14090167
[18] Benayahu, D., Sharabi, M., Pomeraniec, L., Awad, L., Haj-Ali, R. and Benayahu, Y. (2018) Unique Collagen Fibers for Biomedical Applications. Marine Drugs, 16, Article No. 102.
https://doi.org/10.3390/md16040102
[19] Tziveleka, L., Ioannou, E., Tsiourvas, D., Berillis, P., Foufa, E. and Roussis, V. (2017) Collagen from the Marine Sponges Axinella Cannabina and Suberites Carnosus: Isolation and Morphological, Biochemical, and Biophysical Characterization. Marine Drugs, 15, Article No. 152.
https://doi.org/10.3390/md15060152
[20] Cluzel, C., Lethias, C., Garrone, R. and Exposito, J. (2004) Distinct Maturations of N-Propeptide Domains in Fibrillar Procollagen Molecules Involved in the Formation of Heterotypic Fibrils in Adult Sea Urchin Collagenous Tissues. Journal of Biological Chemistry, 279, 9811-9817.
https://doi.org/10.1074/jbc.m311803200
[21] Sionkowska, A., Adamiak, K., Musiał, K. and Gadomska, M. (2020) Collagen Based Materials in Cosmetic Applications: A Review. Materials, 13, Article No. 4217.
https://doi.org/10.3390/ma13194217
[22] Silva, T., Moreira-Silva, J., Marques, A., Domingues, A., Bayon, Y. and Reis, R. (2014) Marine Origin Collagens and Its Potential Applications. Marine Drugs, 12, 5881-5901.
https://doi.org/10.3390/md12125881
[23] Chen, J., Gao, K., Liu, S., Wang, S., Elango, J., Bao, B., et al. (2019) Fish Collagen Surgical Compress Repairing Characteristics on Wound Healing Process in Vivo. Marine Drugs, 17, Article No. 33.
https://doi.org/10.3390/md17010033
[24] Coppola, D., Lauritano, C., Palma Esposito, F., Riccio, G., Rizzo, C. and de Pascale, D. (2021) Fish Waste: From Problem to Valuable Resource. Marine Drugs, 19, Article No. 116.
https://doi.org/10.3390/md19020116
[25] Exposito, J., Cluzel, C., Garrone, R. and Lethias, C. (2002) Evolution of Collagens. The Anatomical Record, 268, 302-316.
https://doi.org/10.1002/ar.10162
[26] Macha, I.J. and Ben-Nissan, B. (2018) Marine Skeletons: Towards Hard Tissue Repair and Regeneration. Marine Drugs, 16, Article No. 225.
https://doi.org/10.3390/md16070225
[27] Zhang, X., Wang, J., Zhang, Q., Fan, Y., Zhang, H., Ahmad, K., et al. (2023) Distribution, Typical Structure and Self-Assembly Properties of Collagen from Fish Skin and Bone. Molecules, 28, Article No. 6529.
https://doi.org/10.3390/molecules28186529
[28] Lapi, I., Kolliniati, O., Aspevik, T., Deiktakis, E.E., Axarlis, K., Daskalaki, M.G., et al. (2021) Collagen-Containing Fish Sidestream-Derived Protein Hydrolysates Support Skin Repair via Chemokine Induction. Marine Drugs, 19, Article No. 396.
https://doi.org/10.3390/md19070396
[29] Benedetto, C., Barbaglio, A., Martinello, T., Alongi, V., Fassini, D., Cullorà, E., et al. (2014) Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus Lividus. Marine Drugs, 12, 4912-4933.
https://doi.org/10.3390/md12094912
[30] Afzali, M. and Boateng, J.S. (2022) Composite Fish Collagen-Hyaluronate Based Lyophilized Scaffolds Modified with Sodium Alginate for Potential Treatment of Chronic Wounds. Polymers, 14, Article No. 1550.
https://doi.org/10.3390/polym14081550
[31] Widdowson, J.P., Picton, A.J., Vince, V., Wright, C.J. and Mearns‐Spragg, A. (2017) In Vivo Comparison of Jellyfish and Bovine Collagen Sponges as Prototype Medical Devices. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 1524-1533.
https://doi.org/10.1002/jbm.b.33959
[32] Wang, J., Xu, M., Liang, R., Zhao, M., Zhang, Z. and Li, Y. (2015) Oral Administration of Marine Collagen Peptides Prepared from Chum Salmon (Oncorhynchus keta) Improves Wound Healing Following Cesarean Section in Rats. Food & Nutrition Research, 59, Article No. 26411.
https://doi.org/10.3402/fnr.v59.26411
[33] Caruso, G., Floris, R., Serangeli, C. and Di Paola, L. (2020) Fishery Wastes as a Yet Undiscovered Treasure from the Sea: Biomolecules Sources, Extraction Methods and Valorization. Marine Drugs, 18, Article No. 622.
https://doi.org/10.3390/md18120622
[34] Yamada, S., Yamamoto, K., Ikeda, T., Yanagiguchi, K. and Hayashi, Y. (2014) Potency of Fish Collagen as a Scaffold for Regenerative Medicine. BioMed Research International, 2014, Article ID: 302932.
https://doi.org/10.1155/2014/302932
[35] Geahchan, S., Baharlouei, P. and Rahman, A. (2022) Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Marine Drugs, 20, Article No. 61.
https://doi.org/10.3390/md20010061
[36] Hu, Z., Yang, P., Zhou, C., Li, S. and Hong, P. (2017) Marine Collagen Peptides from the Skin of Nile Tilapia (Oreochromis niloticus): Characterization and Wound Healing Evaluation. Marine Drugs, 15, Article No. 102.
https://doi.org/10.3390/md15040102
[37] Vaiserman, A., Koliada, A., Zayachkivska, A. and Lushchak, O. (2020) Nanodelivery of Natural Antioxidants: An Anti-Aging Perspective. Frontiers in Bioengineering and Biotechnology, 7, Article No. 447.
https://doi.org/10.3389/fbioe.2019.00447
[38] Yamamoto, K., Igawa, K., Sugimoto, K., Yoshizawa, Y., Yanagiguchi, K., Ikeda, T., et al. (2014) Biological Safety of Fish (Tilapia) Collagen. BioMed Research International, 2014, Article ID: 630757.
https://doi.org/10.1155/2014/630757
[39] Farahani, M. and Shafiee, A. (2021) Wound Healing: From Passive to Smart Dressings. Advanced Healthcare Materials, 10, Article ID: 2100477.
https://doi.org/10.1002/adhm.202100477