|
[1]
|
Qiao, M., Ying, G., Singer, A.C. and Zhu, Y. (2018) Review of Antibiotic Resistance in China and Its Environment. Environment International, 110, 160-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Brown-Jaque, M., Calero-Cáceres, W. and Muniesa, M. (2015) Transfer of Antibiotic-Resistance Genes via Phage-Related Mobile Elements. Plasmid, 79, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Eisenreich, W., Rudel, T., Heesemann, J. and Goebel, W. (2022) Link between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Frontiers in Cellular and Infection Microbiology, 12, Article ID: 900848. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Uddin, T.M., Chakraborty, A.J., Khusro, A., Zidan, B.R.M., Mitra, S., Emran, T.B., et al. (2021) Antibiotic Resistance in Microbes: History, Mechanisms, Therapeutic Strategies and Future Prospects. Journal of Infection and Public Health, 14, 1750-1766. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., et al. (2021) Antibiotic Resistance Genes in Bacteria: Occurrence, Spread, and Control. Journal of Basic Microbiology, 61, 1049-1070. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
王磊, 曹巍. 全球抗生素耐药性现状分析及对策建议[J]. 军事医学, 2017, 41(5): 329-333.
|
|
[7]
|
Cassini, A., Högberg, L.D., Plachouras, D., Quattrocchi, A., Hoxha, A., Simonsen, G.S., et al. (2019) Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. The Lancet Infectious Diseases, 19, 56-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Stewardson, A.J., Marimuthu, K., Sengupta, S., Allignol, A., El-Bouseary, M., Carvalho, M.J., et al. (2019) Effect of Carbapenem Resistance on Outcomes of Bloodstream Infection Caused by Enterobacteriaceae in Low-Income and Middle-Income Countries (PANORAMA): A Multinational Prospective Cohort Study. The Lancet Infectious Diseases, 19, 601-610. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lim, C., Takahashi, E., Hongsuwan, M., Wuthiekanun, V., Thamlikitkul, V., Hinjoy, S., et al. (2016) Epidemiology and Burden of Multidrug-Resistant Bacterial Infection in a Developing Country. eLife, 5, e18082. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Gandra, S., Tseng, K.K., Arora, A., Bhowmik, B., Robinson, M.L., Panigrahi, B., et al. (2018) The Mortality Burden of Multidrug-Resistant Pathogens in India: A Retrospective, Observational Study. Clinical Infectious Diseases, 69, 563-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
O’Neill, J. (2016) Review on Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations.
|
|
[12]
|
Singer, A.C., Shaw, H., Rhodes, V. and Hart, A. (2016) Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Frontiers in Microbiology, 7, Article No. 1728. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, Q., Ying, G., Pan, C., Liu, Y. and Zhao, J. (2015) Comprehensive Evaluation of Antibiotics Emission and Fate in the River Basins of China: Source Analysis, Multimedia Modeling, and Linkage to Bacterial Resistance. Environmental Science & Technology, 49, 6772-6782. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Baquero, F. (2021) Threats of Antibiotic Resistance: An Obliged Reappraisal. International Microbiology, 24, 499-506. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhao, W., Guo, Y., Lu, S., Yan, P. and Sui, Q. (2016) Recent Advances in Pharmaceuticals and Personal Care Products in the Surface Water and Sediments in China. Frontiers of Environmental Science & Engineering, 10, Article No. 2. [Google Scholar] [CrossRef]
|
|
[16]
|
Hou, L., Yin, G., Liu, M., Zhou, J., Zheng, Y., Gao, J., et al. (2014) Effects of Sulfamethazine on Denitrification and the Associated N2O Release in Estuarine and Coastal Sediments. Environmental Science & Technology, 49, 326-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Leonard, A.F.C., Zhang, L., Balfour, A.J., Garside, R. and Gaze, W.H. (2015) Human Recreational Exposure to Antibiotic Resistant Bacteria in Coastal Bathing Waters. Environment International, 82, 92-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhao, Y., Liu, H., Wang, Q. and Li, B. (2019) The Influence of Three Antibiotics on the Growth, Intestinal Enzyme Activities, and Immune Response of the Juvenile Sea Cucumber Apostichopus japonicus Selenka. Fish & Shellfish Immunology, 84, 434-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bertolla, F., Kay, E. and Simonet, P. (2000) Potential Dissemination of Antibiotic Resistance Genes from Transgenic Plants to Microorganisms. Infection Control & Hospital Epidemiology, 21, 390-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Dantas, G., Sommer, M.O.A., Oluwasegun, R.D. and Church, G.M. (2008) Bacteria Subsisting on Antibiotics. Science, 320, 100-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gu, Y., Shen, S., Han, B., Tian, X., Yang, F. and Zhang, K. (2020) Family Livestock Waste: An Ignored Pollutant Resource of Antibiotic Resistance Genes. Ecotoxicology and Environmental Safety, 197, Article ID: 110567. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Lang, A.S., Westbye, A.B. and Beatty, J.T. (2017) The Distribution, Evolution, and Roles of Gene Transfer Agents in Prokaryotic Genetic Exchange. Annual Review of Virology, 4, 87-104. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Brown-Jaque, M., Calero-Cáceres, W. and Muniesa, M. (2015) Transfer of Antibiotic-Resistance Genes via Phage-Related Mobile Elements. Plasmid, 79, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lang, A.S., Zhaxybayeva, O. and Beatty, J.T. (2012) Gene Transfer Agents: Phage-Like Elements of Genetic Exchange. Nature Reviews Microbiology, 10, 472-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Perry, J.A. and Wright, G.D. (2013) The Antibiotic Resistance “Mobilome”: Searching for the Link between Environment and Clinic. Frontiers in Microbiology, 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bhullar, K., Waglechner, N., Pawlowski, A., Koteva, K., Banks, E.D., Johnston, M.D., et al. (2012) Antibiotic Resistance Is Prevalent in an Isolated Cave Microbiome. PLOS ONE, 7, e34953. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
D’Costa, V.M., King, C.E., Kalan, L., Morar, M., Sung, W.W.L., Schwarz, C., et al. (2011) Antibiotic Resistance Is Ancient. Nature, 477, 457-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nikaido, H. (2009) Multidrug Resistance in Bacteria. Annual Review of Biochemistry, 78, 119-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Warner, D.M., Shafer, W.M. and Jerse, A.E. (2008) Clinically Relevant Mutations That Cause Derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux Pump System Confer Different Levels of Antimicrobial Resistance and in Vivo Fitness. Molecular Microbiology, 70, 462-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Webber, M.A., Talukder, A. and Piddock, L.J.V. (2005) Contribution of Mutation at Amino Acid 45 of AcrR to acrB Expression and Ciprofloxacin Resistance in Clinical and Veterinary Escherichia coli Isolates. Antimicrobial Agents and Chemotherapy, 49, 4390-4392. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Olliver, A., Vallé, M., Chaslus-Dancla, E. and Cloeckaert, A. (2004) Role of an acrR Mutation in Multidrug Resistance of in Vitro-Selected Fluoroquinolone-Resistant Mutants of salmonella enterica Serovar Typhimurium. FEMS Microbiology Letters, 238, 267-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lin, J., Nishino, K., Roberts, M.C., Tolmasky, M., Aminov, R.I. and Zhang, L. (2015) Mechanisms of Antibiotic Resistance. Frontiers in Microbiology, 6, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, Y. (2014) China’s Misuse of Antibiotics Should Be Curbed. BMJ, 348, g1083. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Currie, J., Lin, W. and Meng, J. (2014) Addressing Antibiotic Abuse in China: An Experimental Audit Study. Journal of Development Economics, 110, 39-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, J., Wang, P., Wang, X., Zheng, Y. and Xiao, Y. (2014) Use and Prescription of Antibiotics in Primary Health Care Settings in China. JAMA Internal Medicine, 174, 1914-1920. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bao, L., Peng, R., Wang, Y., Ma, R., Ren, X., Meng, W., et al. (2015) Significant Reduction of Antibiotic Consumption and Patients’ Costs after an Action Plan in China, 2010-2014. PLOS ONE, 10, e0118868. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Holman, D.B. and Chénier, M.R. (2015) Antimicrobial Use in Swine Production and Its Effect on the Swine Gut Microbiota and Antimicrobial Resistance. Canadian Journal of Microbiology, 61, 785-798. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, H., Qiu, L., Chen, B., Wang, H., Liu, H., Long, Y., et al. (2022) Vertical Distribution of Antibiotics and Antibiotic Resistance Genes in a Representative Municipal Solid Waste Landfill, China. Ecotoxicology and Environmental Safety, 242, Article ID: 113919. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, S., Wang, J., Feng, H., Shen, D., He, S. and Xu, Y. (2020) Quantitative Study on the Fate of Antibiotic Emissions in China. Environmental Geochemistry and Health, 42, 3471-3479. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhao, R., Feng, J., Liu, J., Fu, W., Li, X. and Li, B. (2019) Deciphering of Microbial Community and Antibiotic Resistance Genes in Activated Sludge Reactors under High Selective Pressure of Different Antibiotics. Water Research, 151, 388-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Breijyeh, Z., Jubeh, B. and Karaman, R. (2020) Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 25, Article No. 1340. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yao, L., Li, Y., Li, Z., Shen, D., Feng, H., Zhou, H., et al. (2020) Prevalence of Fluoroquinolone, Macrolide and Sulfonamide-Related Resistance Genes in Landfills from East China, Mainly Driven by MGES. Ecotoxicology and Environmental Safety, 190, Article ID: 110131. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bhardwaj, S., Mehra, P., Dhanjal, D.S., Sharma, P., Sharma, V., Singh, R., et al. (2022) Antibiotics and Antibiotic Resistance-Flipsides of the Same Coin. Current Pharmaceutical Design, 28, 2312-2329. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Boeck, L. (2023) Antibiotic Tolerance: Targeting Bacterial Survival. Current Opinion in Microbiology, 74, Article ID: 102328. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Bengtsson-Palme, J., Kristiansson, E. and Larsson, D.G.J. (2017) Environmental Factors Influencing the Development and Spread of Antibiotic Resistance. FEMS Microbiology Reviews, 42, fux053. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Andersson, D.I., Balaban, N.Q., Baquero, F., Courvalin, P., Glaser, P., Gophna, U., et al. (2020) Antibiotic Resistance: Turning Evolutionary Principles into Clinical Reality. FEMS Microbiology Reviews, 44, 171-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
de la Fuente-Nunez, C., Cesaro, A. and Hancock, R.E.W. (2023) Antibiotic Failure: Beyond Antimicrobial Resistance. Drug Resistance Updates, 71, Article ID: 101012. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Fishbein, S.R.S., Mahmud, B. and Dantas, G. (2023) Antibiotic Perturbations to the Gut Microbiome. Nature Reviews Microbiology, 21, 772-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lluka, T. and Stokes, J.M. (2022) Antibiotic Discovery in the Artificial Intelligence Era. Annals of the New York Academy of Sciences, 1519, 74-93. [Google Scholar] [CrossRef] [PubMed]
|